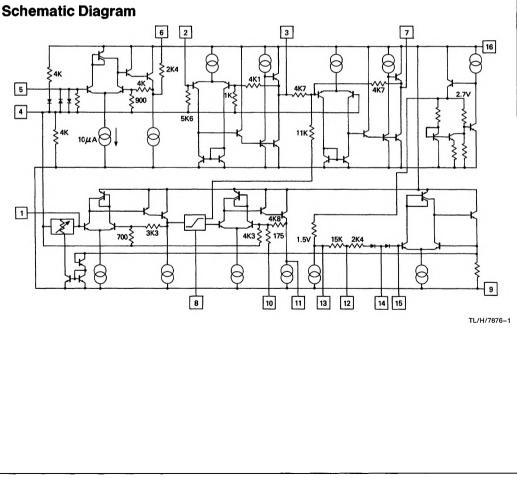


National Semiconductor Corporation

LM1112A/LM1112B/LM1112C Dolby® B-Type Noise Reduction Processor

General Description


The LM1112 is a monolithic integrated circuit specifically designed to realize the Dolby B-type noise reduction system.

It is a replacement for the LM1111 and the Signetics NE-645/648 but with improved performance figures.

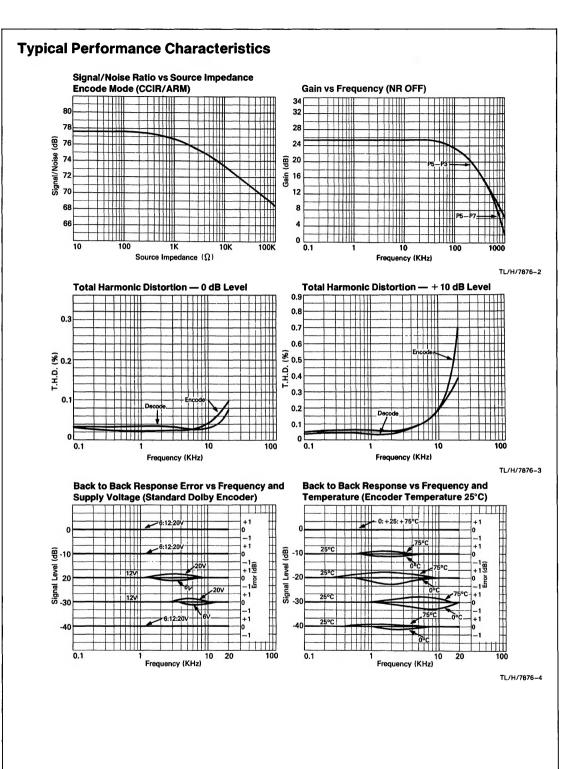
Features

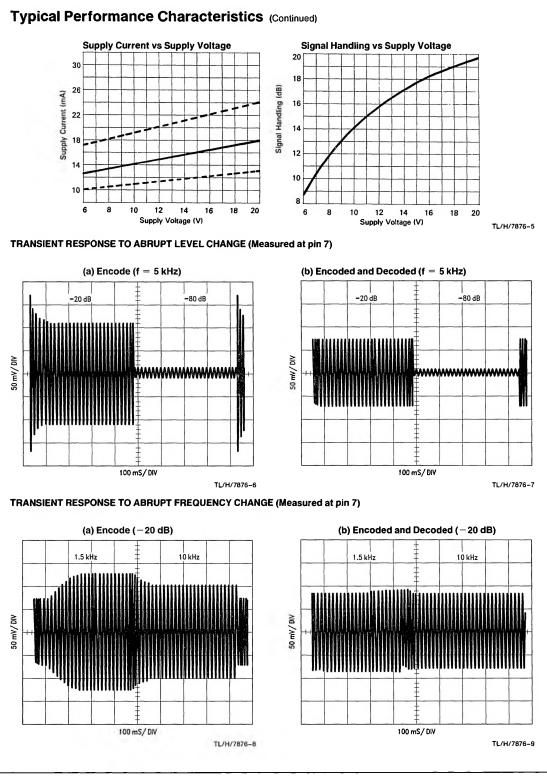
- Very high signal/noise ratio, 74 dB encode (CCIR/ARM)
- Wide supply voltage range, 6V to 20V
- Very close matching to standard Dolby characteristics
- Audible switch-on transients greatly reduced
- Improved temperature performance
- Reduced number of precision external components
- Improved transient stability
- Input protection diodes

Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained. Dolby and the double-D symbol are registered trademarks of Dolby Laboratories Licensing Corporation.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Storage Temperature Range Lead Temperature (Soldering, 10 sec.) -65°C to +150°C 260°C

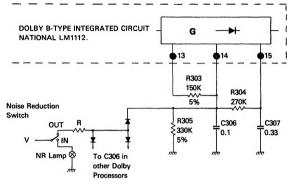

 Supply Voltage
 24V


 Operating Temperature Range
 -20°C to +70°C

Electrical Characteristics $V_S = 12V$, $T_A = 25^{\circ}C$. 0 dB refers to Dolby level which is 580 mVrms at	pin 3.
---	--------

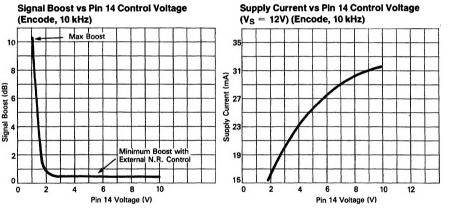
Parameter	Conditions	LM1112A			LM1112B			LM1112C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Supply Voltage Range		6		20	6		20	6		20	v
Supply Current			15	20		15	20		15	20	mA
Voltage Gain (Pin 5–3)	1 kHz Pins 6 and 12 Connected	24.5	25.5	26.5	24.5	25.5	26.5	24	25.5	27	dB
(Pin 5-6)	1 kHz Pin 6 Open		14.7			14.7			14.7		dB
(Pin 3-7)	1 kHz (Noise Reduction Out)	-0.5	0	0.5	-0.5	0	0.5	-1	0	1	dB
Distortion	1 kHz, 0 dB		0.03	0.1		0.03	0.1		0.03	0.1	%
	10 kHz, +10 dB		0.2			0.2			0.2		%
Signal Handling	1 kHz, 0.3% Distortion										
	$V_{\rm S} = 6V$		8.5			8.5			8.5		dB
	V _S = 12V	13	15.5		13	15.5		13	15.5		dB
	V _S = 18V		19			19			19		dB
Signal/Noise Ratio at Pin 7 (Note 1)	Pins 6 and 2 Connected										
Encode Mode (CCIR/ARM) NR In	R _S = 10k	71.5	74		71	74		70	74		dB
	$R_S = 1k$		77			77			77		dB
NR Out	R _S = 10k		83			83			83		dB
Decode Mode (CCIR/ARM)	R _S = 10k		83			83			83		dB
Encode Characteristics	Input to Pin 5 10 kHz, 0 dB	0	0.5	1.0	-0.2	0.5	1.2	-0.5	0.5	1.5	dB
	1.3 kHz, -20 dB	- 16.2	-15.7	- 15.2	- 16.7	- 15.7	-14.7	- 17.2	- 15.7	-14.2	dB
	5 kHz, -20 dB	-17.3	- 16.8	- 16.3	- 17.8	- 16.8	- 15.8	- 18.3	- 16.8	-15.3	dB
	3 kHz, -30 dB	-21.7	-21.2	-20.7	-22.2	-21.2	-20.2	-22.7	-21.2	- 19.7	dB
	5 kHz, -30 dB	-22.3	-21.8	-21.3	-22.8	-21.8	-20.8	-23.3	-21.8	-20.3	dB
	10 kHz, -30 dB	-24.0	-23.5	-23.0	-24.5	-23.5	-22.5	-25.0	-23.5	-22.0	dB
	10 kHz, -40 dB	-30,1	-29.6	-29.1	-30.3	-29.6	-28.9	-30.6	-29.6	-28.6	dB
Input Resistance	Pin 5	45	65	80	45	65	80	45	65	80	kΩ
	Pin 2	4.3	5.6	6.9	4.3	5.6	6.9	4.3	5.6	6.9	kΩ
Output Resistance	Pin 6	1.8	2.4	3.0	1.8	2.4	3.0	1.8	2.4	3.0	kΩ
	Pin 3		30	45		30	45		30	45	Ω
	Pin 7		30	45		30	45		30	45	Ω
PSRR	f = 120 Hz		40			40			40		dB
Load Impedance Pin 3		5			5			5			kΩ
Pin 7		5			5			5			kΩ

Note 1: Gaussian noise, measured over a period of 50 ms with a CCIR filler and an average responding meter.

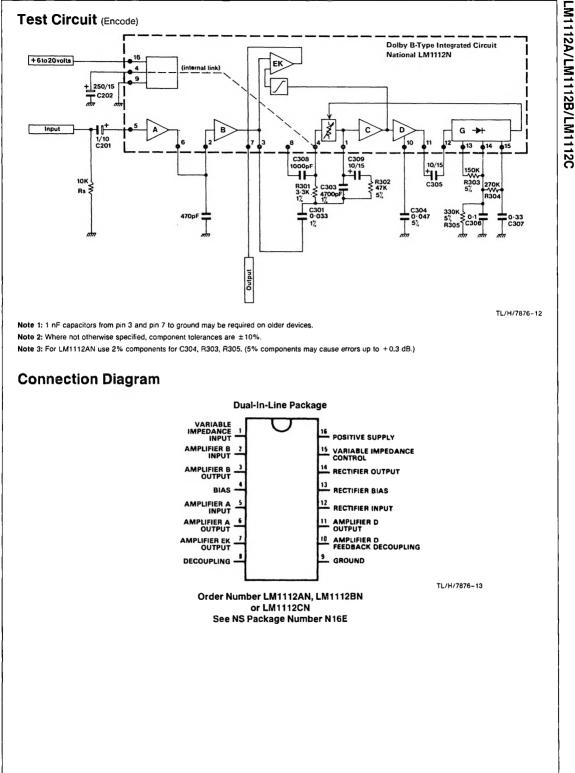

1-123

LM1112A/LM1112B/LM1112C

ELECTRICAL NOISE REDUCTION SWITCH


In place of the normal mechanical noise reduction on/off switch, the circuit below is often used to permit electrical NR control. When using this circuit, the following points should be noted:

- 1. Signal boost is reduced by increasing DC voltage on Pin 14 (see curve). A voltage of approximately 3V is adequate to achieve NR OFF.
- Supply current may be significantly increased by high pin 14 forced voltages. Values for V and R should thus be chosen such that pin 14 voltage is 3V-4V.
- 3. When electrical NR switching is used, signal level is slightly affected by the minimum value of the internal variable impedance. (At 10 kHz-10 dB, a residual boost of approximately 0.4 dB remains.) This is not the case for mechanical NR switching.



TL/H/7876-10

Note 1: Where not otherwise specified, component tolerances are $\pm 10\%$.

TL/H/7876-11

