

LM117HVQML 3-Terminal Adjustable Regulator

Check for Samples: LM117HVQML

FEATURES

- Available with Radiation Guarantee
 - Total Ionizing Dose 100 krad(Si)
 - Low Dose Rate Qualified 100 krad(Si)
- Adjustable Output down to 1.2V
- Specified 0.5A or 1.5A Output Current
- Line Regulation Typically 0.01%/V
- Load Regulation Typically 0.1%
- Current Limit Constant with Temperature
- Eliminates the Need to Stock Many Voltages
- 80 dB Ripple Rejection
- Output is Short-Circuit Protected

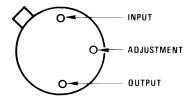
DESCRIPTION

The LM117HV are adjustable 3-terminal positive voltage regulators capable of supplying either 0.5A or 1.5A over a 1.2V to 57V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators.

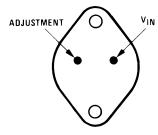
In addition to higher performance than fixed regulators, the LM117HV series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the LM117HV is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e. do not short the output to ground.

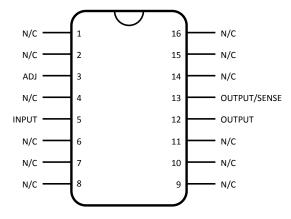

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117HV can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2V where most loads draw little current.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



CONNECTION DIAGRAMS

(See Physical Dimension section for further information)


CASE IS OUTPUT

CASE IS OUTPUT

Figure 1. 3-Pin PFM Metal Can Package Bottom View See NDT003A Package

Figure 2. 2-Pin TO Metal Can Package Bottom View See K Package

For the CLGA device to function properly, the "Output" and "Output/Sense" pins must be connected on the users printed circuit board.

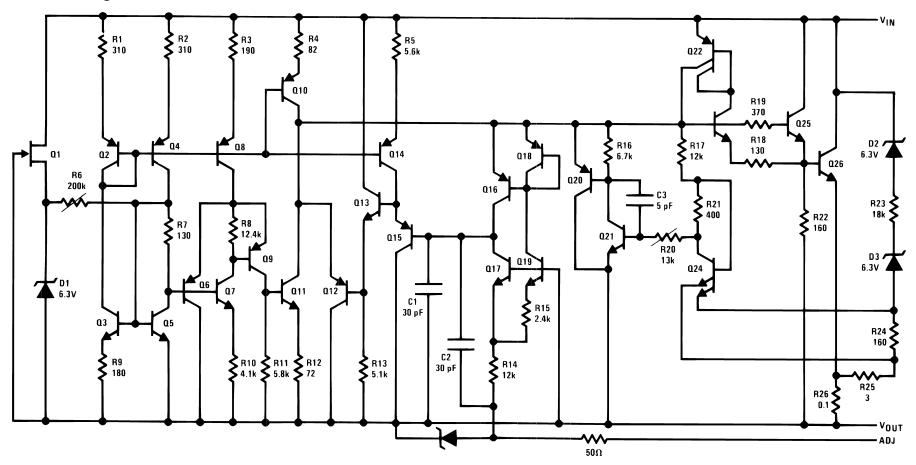

Figure 3. 16-Pin CLGA Top View See NAC0016A Package

Table 1. LM117HV Series Packages

Part Number Suffix	Package	Design Load Current
Н	PFM	0.5A
K	ТО	1.5A
WG, GW	CLGA	0.5A

Schematic Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)

TIDOUTATO III AXIII I AIII I I I I I I I I I I I	90				
Power Dissipation (2)			Internally limited		
Input - Output Voltage Differential			+60V, -0.3V		
Maximum Junction Temperature	Maximum Junction Temperature				
Storage Temperature	-65°C ≤ T _A ≤ +150°C				
Lead Temperature (Soldering, 10 s	300°C				
Thermal Resistance	θ _{JA}	T0 Metal Can - Still Air	39°C/W		
		T0 Metal Can - 500LF/Min Air flow	14°C/W		
		PFM Metal Can - Still Air	186°C/W		
		PFM Metal Can - 500LF/Min Air flow	64°C/W		
		CLGA - Still Air (LM117HVWG)	115°C/W		
		CLGA - 500LF/Min Air flow (LM117HVWG)	66°C/W		
		CLGA - Still Air (LM117HVGW)	130°C/W		
		CLGA - 500LF/Min Air flow (LM117HVGW)	80°C/W		
	θ_{JC}	T0 Metal Can	1.9°C/W		
		PFM Metal Can	21°C/W		
		CLGA (LM117HVWG) ⁽³⁾	3.4°C/W		
CLGA (LM117HVGW)			7°C/W		
ESD Tolerance ⁽⁴⁾			2000V		

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (2) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is P_{Dmax} = (T_{Jmax} T_A) / θ_{JA} or the number given in the Absolute Maximum Ratings, whichever is lower. "Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the PFM package and 20W for the TO package."
- (3) The package material for these devices allows much improved heat transfer over our standard ceramic packages. In order to take full advantage of this improved heat transfer, heat sinking must be provided between the package base (directly beneath the die), and either metal traces on, or thermal vias through, the printed circuit board. Without this additional heat sinking, device power dissipation must be calculated using θ_{JA}, rather than θ_{JC}, thermal resistance. It must not be assumed that the device leads will provide substantial heat transfer out the package, since the thermal resistance of the lead frame material is very poor, relative to the material of the package base. The stated θ_{JC} thermal resistance is for the package material only, and does not account for the additional thermal resistance between the package base and the printed circuit board. The user must determine the value of the additional thermal resistance and must combine this with the stated value for the package, to calculate the total allowed power dissipation for the device.
- (4) Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Recommended Operating Conditions

Operating Temperature Range	-55°C ≤ T _A ≤ +125°C
Operating remperature realige	33 C = 1A = +123 C

Table 2. Quality Conformance Inspection

	Mil-Std-883, Method 5005 - Group A							
Subgroup	Description	Temp °C						
1	Static tests at	25						
2	Static tests at	125						
3	Static tests at	-55						
4	Dynamic tests at	25						
5	Dynamic tests at	125						
6	Dynamic tests at	-55						
7	Functional tests at	25						
8A	Functional tests at	125						

Submit Documentation Feedback

Copyright © 2006–2011, Texas Instruments Incorporated

Table 2. Quality Conformance Inspection (continued)

	Mil-Std-883, Method 5005 - Group A						
Subgroup	roup Description						
8B	Functional tests at	-55					
9	Switching tests at	25					
10	Switching tests at	125					
11	Switching tests at	-55					
12	Settling time at	25					
13	Settling time at	125					
14	Settling time at	-55					

LM117HVH, HVWG Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_1 - V_0)$, $I_L = 8mA$, $V_{OUT} = 1.25V$ (Nominal)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
I _{Adj}	Adjustment Pin Current	V _{Diff} = 3V			100	μA	1
		$V_{Diff} = 3.3V$			100	μA	2, 3
		V _{Diff} = 40V			100	μΑ	1, 2, 3
lα	Minimum Load Current	$V_{Diff} = 3V$, $V_{O} = 1.7V$			5.0	mA	1
		$V_{Diff} = 3.3V, V_{O} = 1.7V$			5.0	mA	2, 3
		$V_{I} = 40V, V_{O} = 1.7V$			5.0	mA	1, 2, 3
		$V_I = 60V, V_O = 1.7V$			8.2	mA 2 mA 3 V 33 V 4 mV 5 mV 5 mV	1
V_{Ref}	Reference Voltage	$V_{Diff} = 3V$		1.2	1.3	V	1
		$V_{Diff} = 3.3V$		1.2	1.3	V	2, 3
		$V_{Diff} = 40V$		1.2	1.3	V	1, 2, 3
V_{RLine}	Line Regulation	$3V \le V_{Diff} \le 40V$, $V_{O} = V_{Ref}$		-8.64	8.64	mV	1
		$3.3V \le V_{Diff} \le 40V$, $V_{O} = V_{Ref}$		-18	18	mV	2, 3
		$40V \le V_{Diff} \le 60V$, $I_L = 60mA$		-25	25	μΑ μΑ mA mA mA V V W MV mV mV mV μΑ μΑ μΑ μΑ μΑ μΑ μΑ	1
V_{RLoad}	Load Regulation	$V_{Diff} = 3V$, $I_L = 10$ mA to 500mA		-15	15	mV	1
		$V_{Diff} = 3.3V$, $I_L = 10$ mA to 500mA		-15	100 μA 5.0 mA 5.0 mA 5.0 mA 5.0 mA 8.2 mA 1.3 V 1.3 V 1.3 V 8.64 mV 15 mV 15 mV 15 mV 15 mV 5.0 μA 5.0 μA	2, 3	
		$V_{Diff} = 40V$, $I_L = 10$ mA to 150mA		-15		1	
		$V_{Diff} = 40V$, $I_L = 10mA$ to 100mA		-15	15	mV mV mV mV mV	2, 3
Delta I _{Adj} / Load	Adjustment Pin Current Change	V _{Diff} = 3V, I _L = 10mA to 500mA		-5.0	5.0	μΑ	1
		$V_{Diff} = 3.3V$, $I_L = 10$ mA to 500mA		-5.0	5.0	μΑ	2, 3
		V _{Diff} = 40V, I _L = 10mA to 150mA		-5.0	5.0	μA	1
		$V_{Diff} = 40V$, $I_L = 10mA$ to $100mA$		-5.0	5.0	μA	2, 3

Copyright © 2006–2011, Texas Instruments Incorporated

LM117HVH, HVWG Electrical Characteristics DC Parameters (continued)

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_I - V_O)$, $I_L = 8mA$, $V_{OUT} = 1.25V$ (Nominal)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
Delta I _{Adj} /	Adjustment Pin Current Change	$3V \le V_{Diff} \le 40V$		-5.0	5.0	μΑ	1
Line		$3.3V \le V_{Diff} \le 40V$		-5.0	5.0	μΑ	2, 3
I _{OS}	Short Circuit Current	V _{Diff} = 60V		0.0	0.4	Α	1
		V _{Diff} = 4.25V		0.5	1.8	Α	1
θ_{R}	Thermal Regulation	$V_{Diff} = 40V, I_{L} = 150mA, t = 20mS$			6.0	mV	1

LM117HVH, HVWG Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_1 - V_0)$, $I_L = 8mA$, $V_{OUT} = 1.25V$ (Nominal)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_{I} = +6.25V, f = 120Hz,$ $e_{I} = 1V_{RMS}, I_{L} = 125mA,$ $V_{O} = V_{Ref}$	See ⁽¹⁾	66		dB	4, 5, 6

⁽¹⁾ Tested @ 25°C; specified, but not tested @ 125°C & -55°C

LM117HVH, HVWG Delta Electrical Characteristics DC Delta Parameters

The following conditions apply, unless otherwise specified.

Deltas performed on QMLV devices at Group B, Subgroup 5, only.

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
I_{Adj}	Adjust Pin Current	V _{Diff} = 3V		-10	10	μΑ	1
		$V_{Diff} = 40V$		-10	10	μΑ	1
V_{Ref}	Reference Voltage	V _{Diff} = 3V		-0.01	0.01	V	1
		$V_{Diff} = 40V$		-0.01	0.01	V	1
V _{RLine}	Line Regulation	$3V \le V_{Diff} \le 40V$, $V_{O} = V_{Ref}$		-4.0	4.0	mV	1
		$40V \le V_{Diff} \le 60V$, $I_L = 60mA$		-6.0	6.0	mV	1

LM117HVH, HVWG Post Radiation Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_1 - V_0)$, $I_L = 8mA$, $V_{OUT} = 1.25V$ (Nominal)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V_{Ref}	Reference Voltage	$V_{Diff} = 3V$		1.2	1.45	V	1
		V _{Diff} = 40V		1.2	1.45	V	1
V _{RLine}	Line Regulation	$3V \le V_{Diff} \le 40V$, $V_O = V_{Ref}$		-40	40	mV	1
V _{RLoad}	Load Regulation	V _{Diff} = 3V, I _L = 10mA to 500mA		-27	27	mV	1

LM117HVH, HVWG Post Radiation Electrical Characteristics AC Parameters

The following conditions apply, unless otherwise specified. $V_{Diff} = (V_1 - V_0)$, $I_1 = 8mA$, $V_{OUT} = 1.25V$ (Nominal)

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
RR	Ripple Rejection	$V_{l} = +6.25V, f = 120Hz,$ $e_{l} = 1V_{RMS}, I_{L} = 125mA,$ $V_{O} = V_{Ref}$		55		dB	4

Product Folder Links: LM117HVQML

LM117HVK Electrical Characteristics DC Parameters

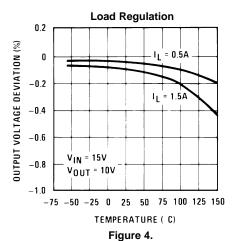
The following conditions apply, unless otherwise specified. $V_{Diff} = (V_I - V_O)$, $I_L = 10 \text{mA}$, $V_{OUT} = 1.25 \text{V}$ (Nominal)

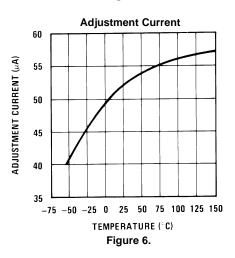
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
I _{Adj}	Adjustment Pin Current	V _{Diff} = 3V			100	μA	1
		$V_{Diff} = 3.3V$			100	μA	2, 3
		V _{Diff} = 40V			100	μA	1, 2, 3
IQ	Minimum Load Current	$V_{Diff} = 3V, V_{O} = 1.7V$			5.0 mA 5.0 mA 5.0 mA 8.2 mA 1.3 V 1.3 V 8.64 mV 18 mV 15 mV	1	
		$V_{Diff} = 3.3V, V_{O} = 1.7V$			5.0	mA	2, 3
		$V_1 = 40V, V_0 = 1.7V$			5.0	mA	1, 2, 3
		$V_{I} = 60V, V_{O} = 1.7V$		0.25	8.2	mA	1
V _{Ref}	Reference Voltage	V _{Diff} = 3V		1.2	1.3	V	1
		$V_{Diff} = 3.3V$		1.2	1.3	V	2, 3
		V _{Diff} = 40V		1.2	5.0 mA 8.2 mA 1.3 V 1.3 V 1.3 V 8.64 mV 18 mV 25 mV 15 mV 15 mV 15 mV 5.0 μA	1, 2, 3	
V _{RLine}	Line Regulation	$3V \le V_{Diff} \le 40V$, $V_{O} = V_{Ref}$		-8.64	8.64	mV	1
		$3.3V \le V_{Diff} \le 40V,$ $V_{O} = V_{Ref}$		-18	18	mV	2, 3
		$40V \le V_{Diff} \le 60V$, $I_L = 60mA$		-25	25	mA mA mA mA MA V V V V MV mV mV mV mV MV	1
V_{RLoad}	Load Regulation	$V_{Diff} = 3V$, $I_L = 10$ mA to 1.5A		-15	15	mV	1
		$V_{Diff} = 3.3V,$ $I_{L} = 10 \text{mA to } 1.5 \text{A}$		-15	15	mV	2, 3
		$V_{Diff} = 40V$, $I_L = 10mA$ to 300mA		-15	15	mV	1
		$V_{Diff} = 40V$, $I_L = 10$ mA to 195mA		-15	15	mV mV mV mV mV pA	2, 3
Delta I _{Adj} / Load	Adjustment Pin Current Change	$V_{Diff} = 3V$, $I_L = 10$ mA to 1.5A		-5.0	5.0	15 mV 15 mV 15 mV 5.0 μA	1
		$V_{Diff} = 3.3V$, $I_L = 10$ mA to 1.5A		-5.0	5.0	μΑ	2, 3
		$V_{Diff} = 40V$, $I_L = 10mA$ to 300mA		-5.0	5.0	μΑ	1
		$V_{Diff} = 40V$, $I_L = 10$ mA to 195mA		-5.0	5.0	μΑ	2, 3
Delta I _{Adj} /	Adjustment Pin Current Change	$3V \le V_{Diff} \le 40V$		-5.0	5.0	μA	1
Line		$3.3V \le V_{\text{Diff}} \le 40V$		-5.0	5.0	μΑ	2, 3
I _{os}	Short Circuit Current	$V_{Diff} = 60V$		0.0	0.4	Α	1
		$V_{Diff} = 3V$		1.5	3.5	Α	1
θ_{R}	Thermal Regulation	V _{Diff} = 40V, I _L = 300mA, t = 20mS			10.5	mV	1

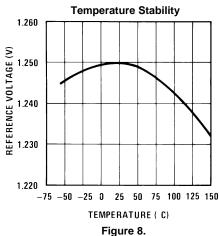
LM117HVK Electrical Characteristics AC Parameters

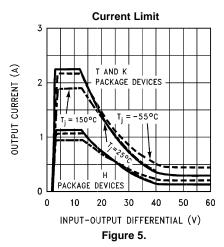
The following conditions apply, unless otherwise specified. $V_{Diff} = (V_1 - V_0)$, $I_L = 10 \text{mA}$.

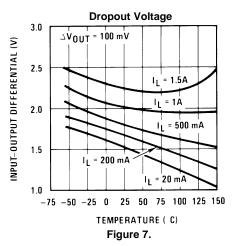
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups	
RR	Ripple Rejection	$V_{\rm I} = +6.25 \text{V}, f = 120 \text{Hz},$ $e_{\rm I} = 1 \text{V}_{\rm RMS}, I_{\rm L} = 0.5 \text{A},$ $V_{\rm O} = \text{V}_{\rm Ref}$	See ⁽¹⁾	66		dB	4, 5, 6	

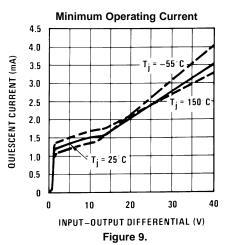

Product Folder Links: LM117HVQML


(1) Tested @ 25°C; specified, but not tested @ 125°C & -55°C




Typical Performance Characteristics


Output capacitor = $0 \mu F$ unless otherwise noted.



Typical Performance Characteristics (continued)

Output capacitor = $0 \mu F$ unless otherwise noted.

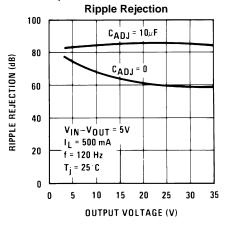


Figure 10.

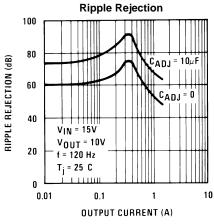
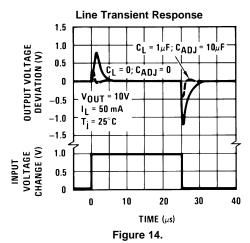
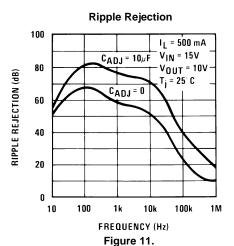
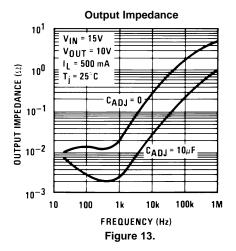
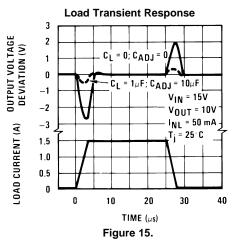
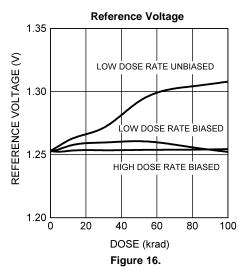
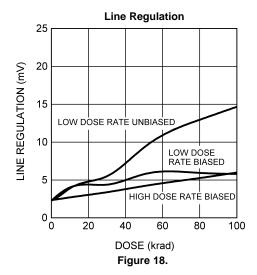
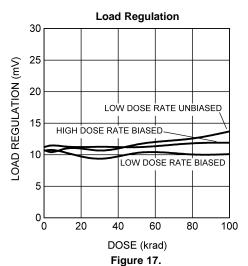
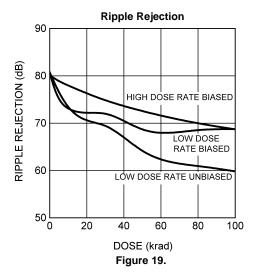






Figure 12.








Typical Radiation Characteristics

Irradiation conditions: $V_1 = 60V$; low dose rate = 10 mrad(Si)/s

APPLICATION HINTS

In operation, the LM117HV develops a nominal 1.25V reference voltage, V_{REF} , between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_1 then flows through the output set resistor R2, giving an output voltage of

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1} \right) + I_{ADJ}R2$$
 (1)

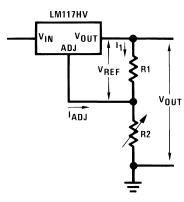


Figure 20.

Since the 100 μ A current from the adjustment terminal represents an error term, the LM117HV was designed to minimize I_{ADJ} and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

EXTERNAL CAPACITORS

An input bypass capacitor is recommended. A 0.1 μ F disc or 1 μ F solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117HV to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a 10 μ F bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over 10 μ F do not appreciably improve the ripple rejection at frequencies above 120 Hz. If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about 25 μF in aluminum electrolytic to equal 1 μF solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz. For this reason, 0.01 μF disc may seem to work better than a 0.1 μF disc as a bypass.

Although the LM117HV is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF. A 1 μ F solid tantalum (or 25 μ F aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of load capacitance larger than 10 μ F will merely improve the loop stability and output impedance.

LOAD REGULATION

The LM117HV is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_L$. If the set resistor is connected near the load the effective line resistance will be 0.05Ω (1 + R2/R1) or in this case, 11.5 times worse.

Copyright © 2006–2011, Texas Instruments Incorporated

Figure 21 shows the effect of resistance between the regulator and 240Ω set resistor.

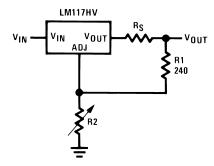


Figure 21. Regulator with Line Resistance in Output Lead

With the TO package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

PROTECTION DIODES

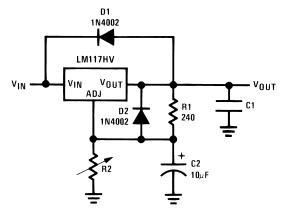
When external capacitors are used with *any* IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most 10 µF capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

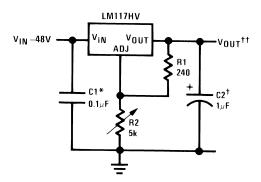
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN} . In the LM117HV, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of 25 μ F or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when *either* the input or output is shorted. Internal to the LM117HV is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25V or less and 10 μ F capacitance. Figure 22 shows an LM117HV with protection diodes included for use with outputs greater than 25V and high values of output capacitance.

CURRENT LIMIT

Internal current limit will be activated whenever the output current exceeds the limit indicated in the Typical Performance Characteristics. However, if during a short circuit condition the regulator's differential voltage exceeds the Absolute Maximum Rating of 60V (e.g. $V_{IN} \ge 60V$, $V_{OUT} = 0V$), internal junctions in the regulator may break down and the device may be damaged or fail. Failure modes range from an apparent open or short from input to output of the regulator, to a destroyed package (most common with the TO-220 package). To protect the regulator, the user is advised to be aware of voltages that may be applied to the regulator during fault conditions, and to avoid violating the Absolute Maximum Ratings.




Figure 22. Regulator with Protection Diodes

$$V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right) + I_{ADJ}R2$$

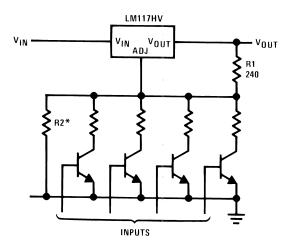
D1 protects against C1 D2 protects against C2

(2)

Typical Applications

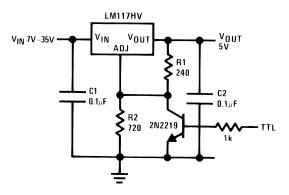
Full output current not available at high input-output voltages

†Optional—improves transient response. Output capacitors in the range of 1 μ F to 1000 μ F of aluminum or tantalum electrolytic


are commonly used to provide improved output impedance and rejection of transients.

*Needed if device is more than 6 inches from filter capacitors.

$$\dagger\dagger V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right) + I_{ADJ} R_2$$


Figure 23. 1.2V-45V Adjustable Regulator

*Sets maximum V_{OUT}

Figure 24. Digitally Selected Outputs

*Min. output ≈ 1.2V

Figure 25. 5V Logic Regulator with Electronic Shutdown*

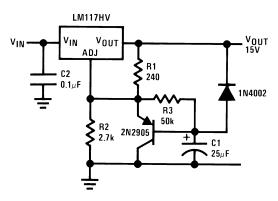
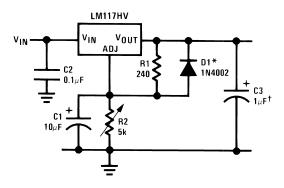



Figure 26. Slow Turn-On 15V Regulator

†Solid tantalum

*Discharges C1 if output is shorted to ground

Figure 27. Adjustable Regulator with Improved Ripple Rejection

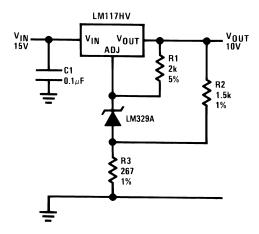
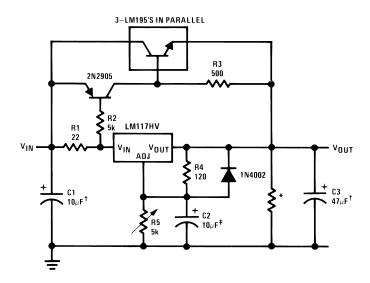
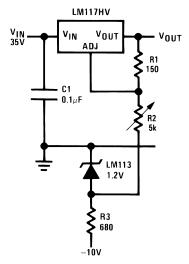



Figure 28. High Stability 10V Regulator


†Solid tantalum

‡Optional—improves ripple rejection

Figure 29. High Current Adjustable Regulator

^{*}Minimum load current = 30 mA

Full output current not available at high input-output voltages

Figure 30. 0 to 30V Regulator

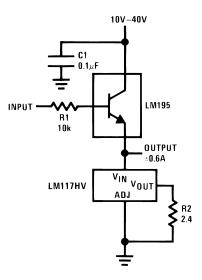
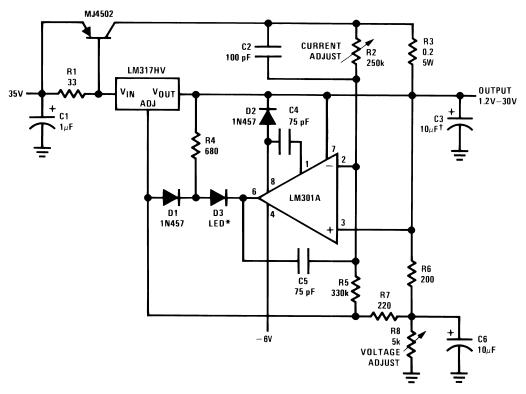



Figure 31. Power Follower

[†]Solid tantalum

Figure 32. 5A Constant Voltage/Constant Current Regulator

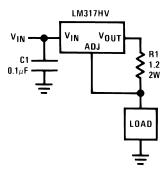
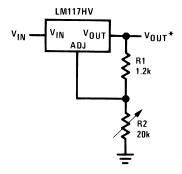



Figure 33. 1A Current Regulator

*Minimum load current ≈ 4 mA

Figure 34. 1.2V-20V Regulator with Minimum Program Current

^{*}Lights in constant current mode

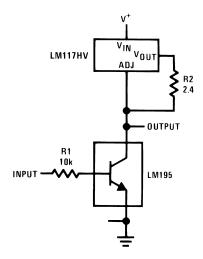
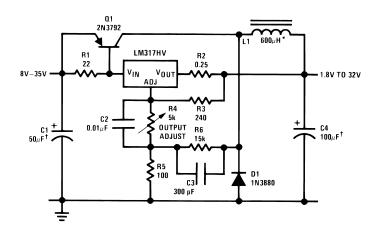
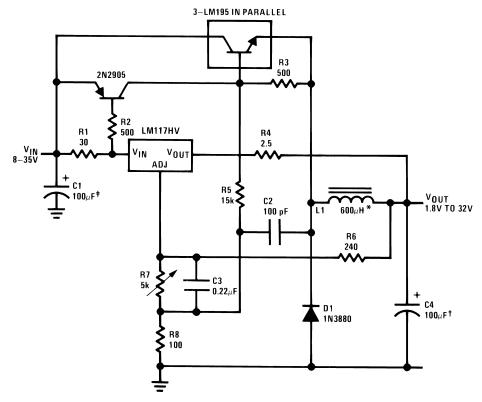



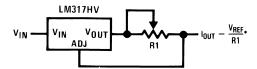
Figure 35. High Gain Amplifier



†Solid tantalum

*Core—Arnold A-254168-2 60 turns

Figure 36. Low Cost 3A Switching Regulator



†Solid tantalum

*Core—Arnold A-254168-2 60 turns

Figure 37. 4A Switching Regulator with Overload Protection

* $0.8\Omega \le R1 \le 120\Omega$

Figure 38. Precision Current Limiter

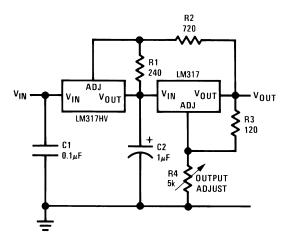
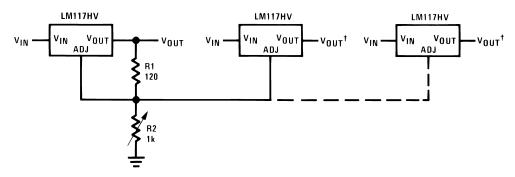



Figure 39. Tracking Preregulator

*All outputs within ±100 mV †Minimum load—10 mA

Figure 40. Adjustable Multiple On-Card Regulators with Single Control*

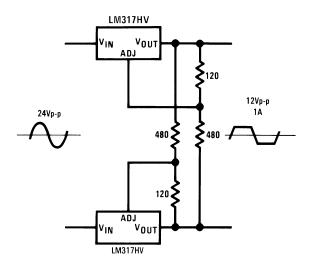
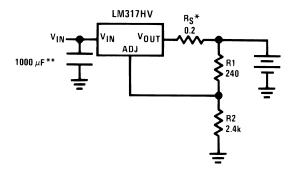



Figure 41. AC Voltage Regulator

*R_S—sets output impedance of charger $Z_{OUT} = R_S \left(1 + \frac{R2}{R1} \right)$

Use of R_S allows low charging rates with fully charged battery. **The 1000 μF is recommended to filter out input transients

Figure 42. 12V Battery Charger

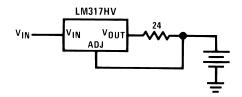


Figure 43. 50 mA Constant Current Battery Charger

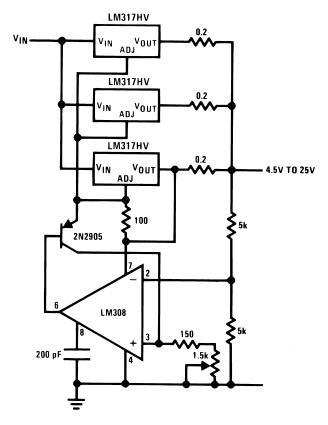
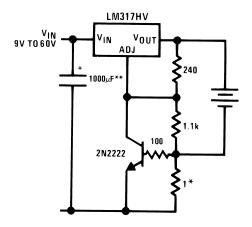



Figure 44. Adjustable 4A Regulator

^{*}Sets peak current (0.6A for 1Ω)

Figure 45. Current Limited 6V Charger

^{**}The 1000 μF is recommended to filter out input transients

REVISION HISTORY

Date Released	Revision	Section	Originator	Changes			
03/14/06	A	New Release, Corporate format	L. Lytle	2 MDS datasheets converted into one Corporate datasheet format. Corrected I_L from 60mA to 8mA for $R_{\rm Line}.$ Separated Delta $I_{\rm Adj}$ / Line from Delta $I_{\rm Adj}$ / Load for both the H & K devices. Removed drift from MNLM117HV-H electrical characteristics since not performed on 883 product. MNLM117HV-K Rev 0C1 & MNLM117HV-H Rev 2A1 will be archived.			
07/06/07	В	Features, Ordering Information, Connection Diagram, Absolute Maximum Ratings, Electrical's, Notes and Physical Dimensions	Larry McGee	Added Radiation information and WG information to data sheet. Revision A to be Archived.			
02/13/08	С	Features, Ordering Information, Electrical's, Notes and Typical Radiation Characteristics, Physical Dimensions Drawing	Larry McGee	Added ELDRS NSID information, HVH & HVWG Delta and Post Radiation Table, Typical Radiation Characteristics Plots, Note 8, 9 and WG Market Drawing. Revision B to be Archived.			
09/02/11 D		Ordering Information, Absolute Maximum Ratings	Larry McGee	Added 'GW' NSIDS & SMD numbers. Added Theta JA and Theta JC for 'GW' devices. Revision C to be Archived. Deleted Ordering Information table.			

10-Feb-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
5962-0722901QXA	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVH-QML 5962-0722901QXA Q ACO 5962-0722901QXA Q >T	Samples
5962-0722902QZA	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM	-55 to 125	LM117HVGW QML Q 5962-07229 02QZA ACO 02QZA >T	Samples
5962R0722901V9A	ACTIVE	DIESALE	Υ	0	42	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
5962R0722901VXA	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVHRQMLV 5962R0722901VXA Q ACO 5962R0722901VXA Q >T	Samples
5962R0722902VXA	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVHRLQMLV 5962R0722961VXA Q ACO 5962R0722961VXA Q >T	Samples
5962R0722902VZA	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM	-55 to 125	LM117HVGWR QMLV Q 5962R07229 02VZA ACO 02VZA >T	Samples
5962R0722961V9A	ACTIVE	DIESALE	Υ	0	42	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
5962R0722961VXA	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVHRLQMLV 5962R0722961VXA Q ACO 5962R0722961VXA Q >T	Samples
5962R0722962VZA	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM	-55 to 125	LM117HVGWRL QMLV Q 5962R07229 62VZA ACO 62VZA >T	Samples
LM117HVGW-QML	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM	-55 to 125	LM117HVGW QML Q 5962-07229 02QZA ACO 02QZA >T	Samples

www.ti.com 10-Feb-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM117HVGWRLQMLV	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM		LM117HVGWRL QMLV Q 5962R07229 62VZA ACO 62VZA >T	Samples
LM117HVGWRQMLV	ACTIVE	CLGA	NAC	16	42	TBD	CU SNPB	Level-1-NA-UNLIM		LM117HVGWR QMLV Q 5962R07229 02VZA ACO 02VZA >T	Samples
LM117HVH MDE	ACTIVE	DIESALE	Y	0	42	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM117HVH MDR	ACTIVE	DIESALE	Υ	0	42	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM117HVH-QML	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVH-QML 5962-0722901QXA Q ACO 5962-0722901QXA Q >T	Samples
LM117HVH/883	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVH/883 Q ACO LM117HVH/883 Q >T	Samples
LM117HVHRLQMLV	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM117HVHRLQMLV 5962R0722961VXA Q ACO 5962R0722961VXA Q >T	Samples
LM117HVHRQMLV	ACTIVE	ТО	NDT	3	20	TBD	POST-PLATE	Level-1-NA-UNLIM		LM117HVHRQMLV 5962R0722901VXA Q ACO 5962R0722901VXA Q >T	Samples
LM117HVK/883	ACTIVE	ТО	К	2	50	TBD	POST-PLATE	Level-1-NA-UNLIM		LM117HVK /883 Q ACO /883 Q >T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

10-Feb-2013

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

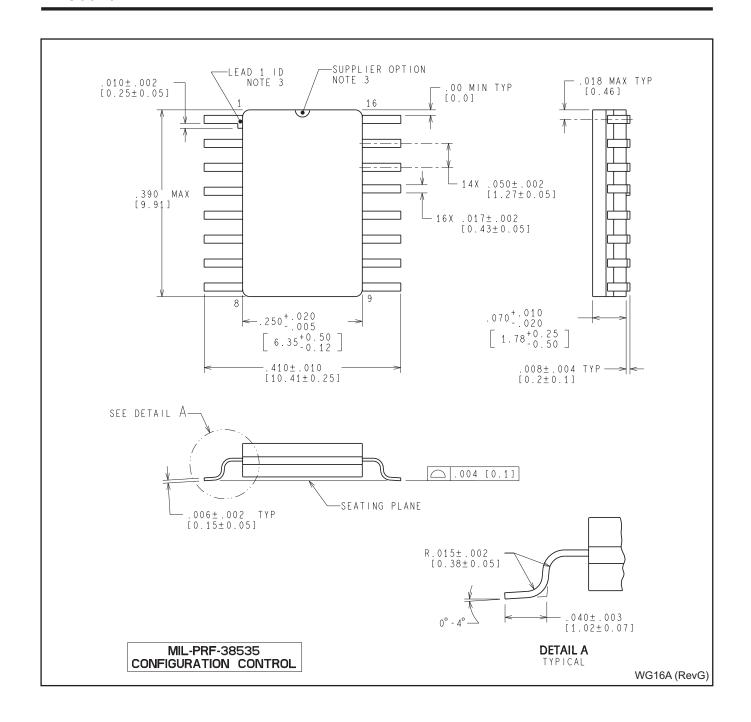
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

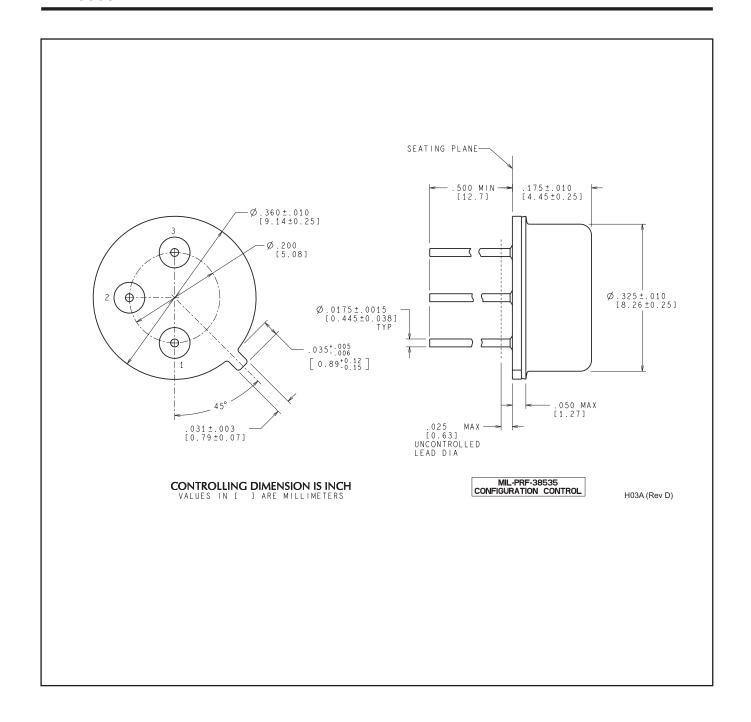
⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM117HVQML, LM117HVQML-SP:


Military: LM117HVQML


www.ti.com

Space: LM117HVQML-SP

NOTE: Qualified Version Definitions:

- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>