

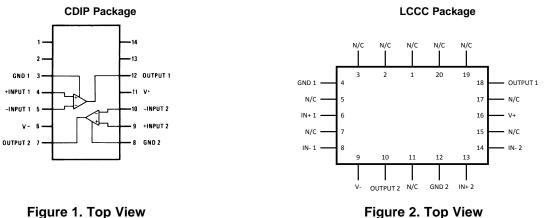
SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

# LM119QML High Speed Dual Comparator

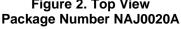
Check for Samples: LM119QML

# **FEATURES**

- Available with radiation guaranteed
  - High Dose Rate 100 krad(Si)
  - ELDRS Free 100 krad(Si)
- Two independent comparators
- Operates from a single 5V supply


- Typically 80 ns response time at ±15V
- Minimum fan-out of 2 each side
- Maximum input current of 1 µA over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

# DESCRIPTION


The LM119 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, it has higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.

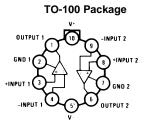
Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to ±15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.

## **Connection Diagrams**



Package Number J0014A



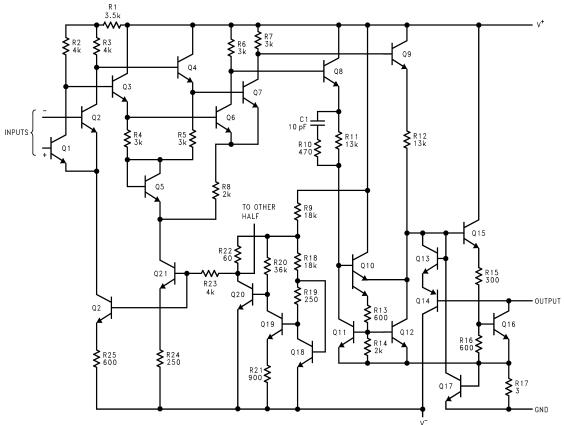



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

www.ti.com

SNOSAN3A - JULY 2008-REVISED JANUARY 2009




Case is connected to pin 5 (V<sup>-</sup>).

Figure 3. Top View Package Number LME0010C

# OUTPUT 1 1 0 V+ GND 1 2 9 INPUT 2 INPUT 1+ 3 INPUT 2+ 8 INPUT 1 4 7 GND 2 V 5 0 0UTPUT 2

### Figure 4. Top View Package Number NAD0010A, NAC0010A



\*Do not operate the LM119 with more than 16V between GND and V<sup>+</sup>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.



SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

www.ti.com

## Absolute Maximum Ratings <sup>(1)</sup>

| $36V \\ 36V \\ 25V \\ 18V \\ \pm 5V \\ \pm 15V \\ 0 mW \\ 0 sec \\ \le T_A \le 150^{\circ}C \\ \le T_A \le 125^{\circ}C \\ 50^{\circ}C \\ 260^{\circ}C \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25V<br>18V<br>$\pm 5V$<br>$\pm 15V$<br>00 mW<br>0 sec<br>$\leq T_A \leq 150^{\circ}C$<br>$\leq T_A \leq 125^{\circ}C$<br>$\leq 50^{\circ}C$                                                              |
| $18V$ $\pm 5V$ $\pm 15V$ $00 \text{ mW}$ $0 \text{ sec}$ $\leq T_A \leq 150^{\circ}\text{C}$ $\leq T_A \leq 125^{\circ}\text{C}$ $50^{\circ}\text{C}$                                                    |
| $\pm 5V$<br>$\pm 15V$<br>00 mW<br>0 sec<br>$\leq T_A \leq 150^{\circ}C$<br>$\leq T_A \leq 125^{\circ}C$<br>$\leq 50^{\circ}C$                                                                            |
| $\pm 15V$<br>20 mW<br>0 sec<br>$\leq T_A \leq 150^{\circ}C$<br>$\leq T_A \leq 125^{\circ}C$<br>$\leq 50^{\circ}C$                                                                                        |
| 00 mW<br>0 sec<br>$\leq T_A \leq 150^{\circ}C$<br>$\leq T_A \leq 125^{\circ}C$<br>$\leq 50^{\circ}C$                                                                                                     |
| 0 sec<br>$T_A \le 150^{\circ}C$<br>$T_A \le 125^{\circ}C$<br>$50^{\circ}C$                                                                                                                               |
| ≤ T <sub>A</sub> ≤ 150°C<br>≤ T <sub>A</sub> ≤ 125°C<br>150°C                                                                                                                                            |
| ≤ T <sub>A</sub> ≤ 125°C<br> 50°C                                                                                                                                                                        |
| 50°C                                                                                                                                                                                                     |
|                                                                                                                                                                                                          |
| 260°C                                                                                                                                                                                                    |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
| 9°C/W                                                                                                                                                                                                    |
| 3°C/W                                                                                                                                                                                                    |
| 2°C/W                                                                                                                                                                                                    |
| 8°C/W                                                                                                                                                                                                    |
| 4°C/W                                                                                                                                                                                                    |
| 2°C/W                                                                                                                                                                                                    |
| 5°C/W                                                                                                                                                                                                    |
| 32°C/W                                                                                                                                                                                                   |
| 5°C/W                                                                                                                                                                                                    |
| 32°C/W                                                                                                                                                                                                   |
|                                                                                                                                                                                                          |
| i°C/W                                                                                                                                                                                                    |
| 1°C/W                                                                                                                                                                                                    |
| 1°C/W                                                                                                                                                                                                    |
| 3°C/W                                                                                                                                                                                                    |
| 3°C/W                                                                                                                                                                                                    |
|                                                                                                                                                                                                          |
| TBD                                                                                                                                                                                                      |
| TBD                                                                                                                                                                                                      |
| TBD                                                                                                                                                                                                      |
| TBD                                                                                                                                                                                                      |
| 25mg                                                                                                                                                                                                     |
| 800V                                                                                                                                                                                                     |
|                                                                                                                                                                                                          |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage. (2)

The maximum power dissipation must be derated at elevated temperatures and is dictated by  $T_{Jmax}$  (maximum junction temperature),  $\theta_{JA}$  (package junction to ambient thermal resistance), and  $T_A$  (ambient temperature). The maximum allowable power dissipation at any (3) temperature is  $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$  or the number given in the Absolute Maximum Ratings, whichever is lower. (4) Human Body model, 1.5K $\Omega$  in series with 100pF.



SNOSAN3A – JULY 2008 – REVISED JANUARY 2009

www.ti.com

| Subgroup | Description         | Temp °C |
|----------|---------------------|---------|
| 1        | Static tests at     | 25      |
| 2        | Static tests at     | 125     |
| 3        | Static tests at     | -55     |
| 4        | Dynamic tests at    | 25      |
| 5        | Dynamic tests at    | 125     |
| 6        | Dynamic tests at    | -55     |
| 7        | Functional tests at | 25      |
| 8A       | Functional tests at | 125     |
| 8B       | Functional tests at | -55     |
| 9        | Switching tests at  | 25      |
| 10       | Switching tests at  | 125     |
| 11       | Switching tests at  | -55     |
| 12       | Settling time at    | 25      |
| 13       | Settling time at    | 125     |
| 14       | Settling time at    | -55     |

(1) Mil-Std-883, Method 5005 - Group 5



# SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

#### LM119/883 Electrical Characteristics DC Parameters

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol            | Parameter                 | Conditions                                                               | Notes   | Min  | Max       | Units | Sub-<br>groups |
|-------------------|---------------------------|--------------------------------------------------------------------------|---------|------|-----------|-------|----------------|
| +I <sub>CC</sub>  | Positive Supply Current   | $\pm V_{CC} = \pm 15V$ , $V_O = Low$                                     |         |      | 11        | mA    | 1              |
|                   |                           | $V^+ = 5.6V$ thru $1.4K\Omega$                                           |         |      | 11.5      | mA    | 2              |
| -I <sub>CC</sub>  | Negative Supply Current   | $\pm V_{CC} = \pm 15V$ , $V_O = Low$                                     |         | -4.2 |           | mA    | 1              |
|                   |                           | $V^+ = 5.6V$ thru $1.4K\Omega$                                           |         | -4.5 |           | mA    | 2              |
| I <sub>Leak</sub> | Output Leakage Current    | $^{+}V_{CC} = 15V, ^{-}V_{CC} = -1V,$                                    |         |      | 1.8       | μΑ    | 1              |
|                   |                           | $V_{Gnd} = 0V, V_O = 35V,$<br>$V_I = 5mV$                                |         |      | 9.5       | μΑ    | 2              |
|                   |                           |                                                                          |         |      | 10.0      | μΑ    | 3              |
| IB                | Input Bias Current        | $\pm V_{CC} = \pm 15V$                                                   |         |      | 0.47<br>5 | μA    | 1              |
|                   |                           |                                                                          |         |      | 0.95      | μA    | 2, 3           |
|                   |                           | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V, V_{CM} = 1.5V$                        |         |      | 0.47<br>5 | μA    | 1              |
|                   | Input Offset Voltage      |                                                                          |         |      | .95       | μΑ    | 2, 3           |
| V <sub>IO</sub>   | Input Offset Voltage      | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$                                      |         | -3.8 | 3.8       | mV    | 1              |
|                   |                           | $V_{CM} = 1V, R_S \le 5K\Omega$                                          |         | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                           | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$                                      |         | -3.8 | 3.8       | mV    | 1              |
|                   |                           | $V_{CM} = 3V, R_S \le 5K\Omega$                                          |         | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                           | $\pm V_{CC} = \pm 15V, V_{CM} = 12V,$                                    |         | -3.8 | 3.8       | mV    | 1              |
|                   |                           | R <sub>S</sub> ≤ 5KΩ                                                     |         | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                           | $\pm V_{CC} = \pm 15V, V_{CM} = -12V, R_S \le 5K\Omega$                  |         | -3.8 | 3.8       | mV    | 1              |
|                   |                           |                                                                          |         | -6.8 | 6.8       | mV    | 2, 3           |
| I <sub>IO</sub>   | Input Offset Current      | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V, V_{CM} = 1V$                          |         | -75  | 75        | nA    | 1              |
|                   |                           |                                                                          |         | -100 | 100       | nA    | 2, 3           |
|                   |                           | $^{+}V_{CC} = 5V, \ ^{-}V_{CC} = 0V, \ V_{CM} = 3V$                      |         | -75  | 75        | nA    | 1              |
|                   |                           |                                                                          |         | -100 | 100       | nA    | 2, 3           |
|                   |                           | $\pm V_{CC} = \pm 15 V$ , $V_{CM} = 12 V$                                |         | -75  | 75        | nA    | 1              |
|                   |                           |                                                                          |         | -100 | 100       | nA    | 2, 3           |
|                   |                           | $\pm V_{CC} = \pm 15 V$ , $V_{CM} = -12 V$                               |         | -75  | 75        | nA    | 1              |
|                   |                           |                                                                          |         | -100 | 100       | nA    | 2, 3           |
| V <sub>Sat</sub>  | Output Saturation Voltage | $\pm V_{CC} = \pm 15V$ , I <sub>O</sub> = 25mA,<br>V <sub>I</sub> = -5mV |         |      | 1.5       | V     | 1              |
|                   |                           | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$                                      | (1)     |      | 0.4       | V     | 1, 2           |
|                   |                           | I <sub>O</sub> = 4.0mA                                                   | (1)     |      | 0.6       | V     | 3              |
| A <sub>V</sub>    | Voltage Gain              | $\pm V_{CC} = \pm 15V$ , Delta V <sub>O</sub> = 12V,                     | (2),(3) | 10.5 |           | К     | 4              |
|                   |                           | $R_L = 1.4K\Omega$                                                       | (2),(3) | 10   |           | К     | 5, 6           |
|                   |                           | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$                                      | (2),(4) | 8.0  |           | К     | 4              |
|                   |                           | Delta $V_0 = 4.5V$ , $R_L = 1.4K\Omega$                                  | (2),(4) | 5.0  |           | К     | 5              |
|                   |                           |                                                                          | (2) (4) | 5.8  |           | К     | 6              |

(1) Output is monitored by measuring VI with limits from 0 to 6mV at all temperatures

(2) K = V/mV. (3) Gain is computed with an output swing from +13.5V to +1.5V.

(4) Gain is computed with an output swing from +5.0V to +0.5V.

ÈXAS **ISTRUMENTS** 

www.ti.com

## LM119-SMD Electrical Characteristics SMD 8601401 DC Parameters

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol            | Parameter                   | Conditions                                                              | Notes    | Min  | Max       | Units | Sub-<br>groups |
|-------------------|-----------------------------|-------------------------------------------------------------------------|----------|------|-----------|-------|----------------|
| +I <sub>CC</sub>  | Positive Supply Current     | $\pm V_{CC} = \pm 15 V$ , $V_O = Low$                                   |          |      | 11        | mA    | 1              |
|                   |                             | $V^+ = 5.6V$ thru $1.4K\Omega$                                          |          |      | 11.5      | mA    | 2, 3           |
| -I <sub>CC</sub>  | Negative Supply Current     | $\pm V_{CC} = \pm 15V, V_O = Low$                                       |          | -4.2 |           | mA    | 1              |
|                   |                             | $V^+ = 5.6V$ thru $1.4K\Omega$                                          |          | -4.5 |           | mA    | 2              |
|                   |                             |                                                                         |          | -6.0 |           | mA    | 3              |
| I <sub>Leak</sub> | Output Leakage Current      | <sup>+</sup> V <sub>CC</sub> = 15V, <sup>-</sup> V <sub>CC</sub> = -1V, | (1)      |      | 1.8       | μA    | 1              |
|                   |                             | $V_{Gnd} = 0V, V_O = 35V$                                               | (1)      |      | 10        | μA    | 2, 3           |
| I <sub>IB</sub>   | Input Bias Current          | $\pm V_{CC} = \pm 15 V$                                                 |          |      | 0.47<br>5 | μA    | 1              |
|                   |                             |                                                                         |          |      | 0.95      | μA    | 2, 3           |
|                   |                             | <sup>+</sup> V <sub>CC</sub> = 5V                                       | (2)      |      | 0.47<br>5 | μA    | 1              |
|                   |                             |                                                                         | (2)      |      | .95       | μA    | 2, 3           |
| V <sub>IO</sub>   | Input Offset Voltage        | $^+V_{CC} = 5V, V_{CM} = 1V, R_S \le 5K\Omega$                          | (2)      | -3.8 | 3.8       | mV    | 1              |
|                   |                             |                                                                         | (2)      | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V,$                                         | (2)      | -3.8 | 3.8       | mV    | 1              |
|                   |                             | R <sub>S</sub> ≤ 5KΩ                                                    | (2)      | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15 V, V_{CM} = 12 V,$                                 |          | -3.8 | 3.8       | mV    | 1              |
|                   |                             | R <sub>S</sub> ≤ 5KΩ                                                    |          | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = -12V,$                                  |          | -3.8 | 3.8       | mV    | 1              |
|                   |                             | $R_{S} \leq 5K\Omega$                                                   |          | -6.8 | 6.8       | mV    | 2, 3           |
| Ю                 | Input Offset Current        | $^{+}V_{CC} = 5V, V_{CM} = 1V$                                          | (2)      | -75  | 75        | nA    | 1              |
|                   |                             |                                                                         | (2)      | -100 | 100       | nA    | 2, 3           |
|                   |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V$                                          | (2)      | -75  | 75        | nA    | 1              |
|                   |                             |                                                                         | (2)      | -100 | 100       | nA    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = 12V$                                    |          | -75  | 75        | nA    | 1              |
|                   |                             |                                                                         |          | -100 | 100       | nA    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = -12V$                                   |          | -75  | 75        | nA    | 1              |
|                   |                             |                                                                         |          | -100 | 100       | nA    | 2, 3           |
| VI                | Input Voltage Range         | $^{+}V_{CC} = 5V$                                                       | (2), (3) | 1.0  | 3.0       | V     | 1, 2, 3        |
|                   |                             | $\pm V_{CC} = \pm 15V$                                                  | (3)      | -12  | 12        | V     | 1, 2, 3        |
| V <sub>Sat</sub>  | Output Saturation Voltage   | $\pm V_{CC} = \pm 15V$ , $I_0 = 25mA$ ,<br>$V_1 \le -5mV$               | (1)      |      | 1.5       | V     | 1, 2, 3        |
|                   |                             | $^{+}V_{CC} = 3.5V, ^{-}V_{CC} = -1V,$                                  |          |      | 0.4       | V     | 1, 2           |
|                   |                             | $V_{I} \leq -6mV, I_{O} \leq 3.2mA$                                     |          |      | 0.6       | V     | 3              |
| A <sub>V</sub>    | Voltage Gain                | $\pm V_{CC} = \pm 15V$ , Delta V <sub>O</sub> = 12V,                    | (4)      | 10.5 |           | К     | 4              |
|                   |                             | $R_L = 1.4K\Omega$                                                      | (4)      | 10   |           | К     | 5, 6           |
|                   |                             | $^{+}V_{CC} = 5V, ~V_{CC} = 0V,$                                        | (2), (4) | 8.0  |           | К     | 4              |
|                   |                             | Delta $V_0 = 4.5V$ , $R_L = 1.4K\Omega$                                 | (2), (4) | 5.0  |           | К     | 5              |
|                   |                             |                                                                         | (2), (4) | 5.8  |           | К     | 6              |
| CMRR              | Common Mode Rejection Ratio | $\pm V_{CC} = \pm 15V, V_{CM} = \pm 12V$                                |          | 80   |           | dB    | 4              |

 $\begin{array}{ll} (1) & V_{I} \geq 8mV \text{ at extremes for } I_{Leak} \text{ and } V_{I} \leq -8mV \text{ at extremes for } V_{Sat} \ (V_{I} \text{ to exceed } V_{OS}. \\ (2) & 5V \text{ differential across } +V_{CC} \text{ and } -V_{CC}. \\ (3) & \text{Parameter guaranteed by } V_{IO} \text{ and } I_{IO} \text{ tests.} \\ (4) & K = V/mV. \end{array}$ 



# LM119 Electrical Characteristics SMD 5962-9679801, HIGH DOSE RATE DC Parameters

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol            | Parameter                   | Conditions                                                                      | Notes    | Min  | Max       | Units | Sub-<br>groups |
|-------------------|-----------------------------|---------------------------------------------------------------------------------|----------|------|-----------|-------|----------------|
| +l <sub>CC</sub>  | Positive Supply Current     | $\pm V_{CC} = \pm 15 V, V_O = Low$                                              |          |      | 11        | mA    | 1              |
|                   |                             | $V^+ = 5.6V$ thru $1.4K\Omega$                                                  |          |      | 11.5      | mA    | 2, 3           |
| -I <sub>CC</sub>  | Negative Supply Current     | $\pm V_{CC} = \pm 15 V, V_O = Low$                                              |          | -4.2 |           | mA    | 1              |
|                   |                             | $V^+ = 5.6V$ thru $1.4K\Omega$                                                  |          | -4.5 |           | mA    | 2              |
|                   |                             |                                                                                 |          | -6.0 |           | mA    | 3              |
| I <sub>Leak</sub> | Output Leakage Current      | $^{+}V_{CC} = 15V, \ ^{-}V_{CC} = -1V,$                                         | (1)      |      | 1.8       | μA    | 1              |
|                   |                             | $V_{Gnd} = 0V, V_O = 35V$                                                       | (1)      |      | 10        | μA    | 2, 3           |
| I <sub>IB</sub>   | Input Bias Current          | $\pm V_{CC} = \pm 15 V$                                                         |          |      | 0.47<br>5 | μA    | 1              |
|                   |                             |                                                                                 |          |      | 0.95      | μΑ    | 2, 3           |
|                   |                             | $^+V_{CC} = 5V$                                                                 | (2)      |      | 0.47<br>5 | μA    | 1              |
|                   |                             |                                                                                 | (2)      |      | .95       | μA    | 2, 3           |
| V <sub>IO</sub>   | Input Offset Voltage        | $^{+}V_{CC} = 5V, V_{CM} = 1V, R_{S} \le 5K\Omega$                              | (2)      | -3.8 | 3.8       | mV    | 1              |
|                   |                             |                                                                                 | (2)      | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V,$                                                 | (2)      | -3.8 | 3.8       | mV    | 1              |
|                   |                             | R <sub>S</sub> ≤ 5KΩ                                                            | (2)      | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = 12V,$                                           |          | -3.8 | 3.8       | mV    | 1              |
|                   |                             | R <sub>S</sub> ≤ 5KΩ                                                            |          | -6.8 | 6.8       | mV    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = -12V,$                                          |          | -3.8 | 3.8       | mV    | 1              |
|                   |                             | $R_S \le 5K\Omega$                                                              |          | -6.8 | 6.8       | mV    | 2, 3           |
| lio               | Input Offset Current        | $^{+}V_{CC} = 5V, V_{CM} = 1V$                                                  | (2)      | -75  | 75        | nA    | 1              |
|                   |                             |                                                                                 | (2)      | -100 | 100       | nA    | 2, 3           |
|                   |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V$                                                  | (2)      | -75  | 75        | nA    | 1              |
|                   |                             |                                                                                 | (2)      | -100 | 100       | nA    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = 12V$                                            |          | -75  | 75        | nA    | 1              |
|                   |                             |                                                                                 |          | -100 | 100       | nA    | 2, 3           |
|                   |                             | $\pm V_{CC} = \pm 15V, V_{CM} = -12V$                                           |          | -75  | 75        | nA    | 1              |
|                   |                             |                                                                                 |          | -100 | 100       | nA    | 2, 3           |
| VI                | Input Voltage Range         | $^{+}V_{CC} = 5V$                                                               | (2), (3) | 1.0  | 3.0       | V     | 1, 2, 3        |
|                   |                             | $\pm V_{CC} = \pm 15V$                                                          | (3)      | -12  | 12        | V     | 1, 2, 3        |
| V <sub>Sat</sub>  | Output Saturation Voltage   | $\pm V_{CC} = \pm 15V$ , $I_0 = 25mA$ ,<br>$V_1 \le -5mV$                       | (1)      |      | 1.5       | V     | 1, 2, 3        |
|                   |                             | $^{+}V_{CC} = 3.5V, \ ^{-}V_{CC} = -1V,$                                        |          |      | 0.4       | V     | 1, 2           |
|                   |                             | $V_{I} \le -6mV, I_{O} \le 3.2mA$                                               |          |      | 0.6       | V     | 3              |
| A <sub>V</sub>    | Voltage Gain                | $\pm V_{CC} = \pm 15V$ , Delta V <sub>O</sub> = 12V,                            | (4)      | 10.5 |           | К     | 4              |
|                   |                             | $R_L = 1.4K\Omega$                                                              | (4)      | 10   |           | К     | 5, 6           |
|                   |                             | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$<br>Delta $V_{O} = 4.5V, R_{L} = 1.4K\Omega$ | (2), (4) | 8.0  |           | К     | 4              |
|                   |                             | Delta V <sub>O</sub> = 4.5V, R <sub>L</sub> = $1.4$ K $\Omega$                  | (2), (4) | 5.0  |           | К     | 5              |
|                   |                             |                                                                                 | (2), (4) | 5.8  |           | К     | 6              |
| CMRR              | Common Mode Rejection Ratio | $\pm V_{CC} = \pm 15 V, V_{CM} = \pm 12 V$                                      |          | 80   | T         | dB    | 4              |

 $\begin{array}{ll} (1) & V_{I} \geq 8mV \text{ at extremes for } I_{Leak} \text{ and } V_{I} \leq -8mV \text{ at extremes for } V_{Sat} \ (V_{I} \text{ to exceed } V_{OS}. \\ (2) & 5V \text{ differential across } +V_{CC} \text{ and } -V_{CC}. \\ (3) & \text{Parameter guaranteed by } V_{IO} \text{ and } I_{IO} \text{ tests.} \\ (4) & K = V/mV. \end{array}$ 

SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

www.ti.com

# SMD 5962-9679801, HIGH DOSE RATE DC DELTA Parameters

The following conditions apply, unless otherwise specified.

 $V_{CM} = 0V$ , Delta calculations performed on QMLV devices at group B, subgroup 5 only.

| Symbol           | Parameter               | Conditions                                                                    | Notes | Min  | Max | Units | Sub-<br>groups |
|------------------|-------------------------|-------------------------------------------------------------------------------|-------|------|-----|-------|----------------|
| +I <sub>CC</sub> | Positive Supply Current | $\pm V_{CC} = \pm 15V$ , $V_O = Low$<br>$V^+ = 5.6V$ thru $1.4K\Omega$        |       | -1.0 | 1.0 | mA    | 1              |
| -I <sub>CC</sub> | Negative Supply Current | $\pm V_{CC} = \pm 15V$ , $V_O = Low$<br>$V^+ = 5.6V$ thru $1.4K\Omega$        |       | -0.5 | 0.5 | mA    | 1              |
| V <sub>IO</sub>  | Input Offset Voltage    | <sup>+</sup> V <sub>CC</sub> = 5V, V <sub>CM</sub> = 1V, R <sub>S</sub> ≤ 5KΩ |       | -0.4 | 0.4 | mV    | 1              |

## SMD 5962-9679801, High Dose Rate 100K Post Radiation Parameters @ 25°C <sup>(1)</sup>

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol          | Parameter            | Conditions                                              | Notes | Min  | Max | Units | Sub-<br>groups |
|-----------------|----------------------|---------------------------------------------------------|-------|------|-----|-------|----------------|
| I <sub>IB</sub> | Input Bias Current   | $\pm V_{CC} = \pm 15V$                                  |       |      | 1.0 | μA    | 1              |
|                 |                      | $V_{CC} = 5V$                                           |       |      | 1.0 | μA    | 1              |
| V <sub>IO</sub> | Input Offset Voltage | $^+V_{CC} = 5V, V_{CM} = 1V, R_S \le 5K\Omega$          |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $^+V_{CC} = 5V, V_{CM} = 3V, R_S \le 5K\Omega$          |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $\pm V_{CC} = \pm 15V, V_{CM} = 12V, R_S \le 5K\Omega$  |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $\pm V_{CC} = \pm 15V, V_{CM} = -12V, R_S \le 5K\Omega$ |       | -4.0 | 4.0 | mV    | 1              |

(1) Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate sensitivity. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, per Test Method 1019, Condition A.

## LM119 Electrical Characteristics SMD 5962-9679802, ELDRS FREE DC Parameters

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol            | Parameter               | Conditions                                                               | Notes | Min  | Мах       | Units | Sub-<br>groups |
|-------------------|-------------------------|--------------------------------------------------------------------------|-------|------|-----------|-------|----------------|
| +I <sub>CC</sub>  | Positive Supply Current | $\pm V_{CC} = \pm 15V, V_O = Low$                                        |       |      | 11        | mA    | 1              |
|                   |                         | $V^+ = 5.6V$ thru $1.4K\Omega$                                           |       |      | 11.5      | mA    | 2, 3           |
| -I <sub>CC</sub>  | Negative Supply Current | $\pm V_{CC} = \pm 15V, V_O = Low$                                        |       | -4.2 |           | mA    | 1              |
|                   |                         | $V^+ = 5.6V$ thru $1.4K\Omega$                                           |       | -4.5 |           | mA    | 2              |
|                   |                         |                                                                          |       | -6.0 |           | mA    | 3              |
| I <sub>Leak</sub> | Output Leakage Current  | ye Current ${}^+V_{CC} = 15V, {}^-V_{CC} = -1V, V_{Gnd} = 0V, V_O = 35V$ | (1)   |      | 1.8       | μA    | 1              |
|                   |                         | $V_{Gnd} = 0V, V_O = 35V$                                                | (1)   |      | 10        | μA    | 2, 3           |
| I <sub>IB</sub>   | Input Bias Current      | $\pm V_{CC} = \pm 15V$                                                   |       |      | 0.47<br>5 | μA    | 1              |
|                   |                         |                                                                          |       |      | 0.95      | μA    | 2, 3           |
|                   |                         | $^{+}V_{CC} = 5V$                                                        | (2)   |      | 0.47<br>5 | μΑ    | 1              |
|                   |                         |                                                                          | (2)   |      | .95       | μA    | 2, 3           |

(1)  $V_I \ge 8mV$  at extremes for  $I_{Leak}$  and  $V_I \le -8mV$  at extremes for  $V_{Sat}$  ( $V_I$  to exceed  $V_{OS}$ .

(2) 5V differential across +V<sub>CC</sub> and -V<sub>CC</sub>.



#### SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

# LM119 Electrical Characteristics SMD 5962-9679802, ELDRS FREE DC Parameters (continued)

The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol           | Parameter                   | Conditions                                             | Notes    | Min  | Max | Units | Sub-<br>groups |
|------------------|-----------------------------|--------------------------------------------------------|----------|------|-----|-------|----------------|
| V <sub>IO</sub>  | Input Offset Voltage        | $^+V_{CC} = 5V, V_{CM} = 1V, R_S \le 5K\Omega$         | (2)      | -3.8 | 3.8 | mV    | 1              |
|                  |                             |                                                        | (2)      | -6.8 | 6.8 | mV    | 2, 3           |
|                  |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V,$                        | (2)      | -3.8 | 3.8 | mV    | 1              |
|                  |                             | R <sub>S</sub> ≤ 5KΩ                                   | (2)      | -6.8 | 6.8 | mV    | 2, 3           |
|                  |                             | $\pm V_{CC} = \pm 15V, V_{CM} = 12V,$                  |          | -3.8 | 3.8 | mV    | 1              |
|                  |                             | R <sub>S</sub> ≤ 5KΩ                                   |          | -6.8 | 6.8 | mV    | 2, 3           |
|                  |                             | $\pm V_{CC} = \pm 15 V, V_{CM} = -12 V,$               |          | -3.8 | 3.8 | mV    | 1              |
|                  |                             | $R_{S} \le 5K\Omega$                                   |          | -6.8 | 6.8 | mV    | 2, 3           |
| l <sub>io</sub>  | Input Offset Current        | $^{+}V_{CC} = 5V, V_{CM} = 1V$                         | (2)      | -75  | 75  | nA    | 1              |
|                  |                             |                                                        | (2)      | -100 | 100 | nA    | 2, 3           |
|                  |                             | $^{+}V_{CC} = 5V, V_{CM} = 3V$                         | (2)      | -75  | 75  | nA    | 1              |
|                  |                             |                                                        | (2)      | -100 | 100 | nA    | 2, 3           |
|                  |                             | $\pm V_{CC} = \pm 15 V, V_{CM} = 12 V$                 |          | -75  | 75  | nA    | 1              |
|                  |                             |                                                        |          | -100 | 100 | nA    | 2, 3           |
|                  |                             | $\pm V_{CC} = \pm 15V, V_{CM} = -12V$                  |          | -75  | 75  | nA    | 1              |
|                  |                             |                                                        |          | -100 | 100 | nA    | 2, 3           |
| VI               | Input Voltage Range         | $^{+}V_{CC} = 5V$                                      | (3), (3) | 1.0  | 3.0 | V     | 1, 2, 3        |
|                  |                             | $\pm V_{CC} = \pm 15V$                                 | (3)      | -12  | 12  | V     | 1, 2, 3        |
| V <sub>Sat</sub> | Output Saturation Voltage   | $\pm V_{CC} = \pm 15V$ , $I_O = 25mA$ , $V_I \le -5mV$ | (1)      |      | 1.5 | V     | 1, 2, 3        |
|                  |                             | $^{+}V_{CC} = 3.5V, ^{-}V_{CC} = -1V,$                 |          |      | 0.4 | V     | 1, 2           |
|                  |                             | $V_1 \le -6mV, I_0 \le 3.2mA$                          |          |      | 0.6 | V     | 3              |
| A <sub>V</sub>   | Voltage Gain                | $\pm V_{CC} = \pm 15 V$ , Delta V <sub>O</sub> = 12V,  | (4)      | 10.5 |     | К     | 4              |
|                  |                             | $R_L = 1.4K\Omega$                                     | (4)      | 10   |     | К     | 5, 6           |
|                  |                             | $^{+}V_{CC} = 5V, ^{-}V_{CC} = 0V,$                    | (5), (4) | 8.0  |     | К     | 4              |
|                  |                             | Delta $V_0 = 4.5V$ , $R_L = 1.4K\Omega$                | (5), (4) | 5.0  |     | К     | 5              |
|                  |                             |                                                        | (5), (4) | 5.8  |     | К     | 6              |
| CMRR             | Common Mode Rejection Ratio | $\pm V_{CC} = \pm 15V, V_{CM} = \pm 12V$               |          | 80   |     | dB    | 4              |

(3) Parameter guaranteed by  $V_{IO}$  and  $I_{IO}$  tests.

(4) K = V/mV.

(5) 5V differential across +V<sub>CC</sub> and -V<sub>CC</sub>.

## SMD 5962-9679802, ELDRS FREE DC DELTA Parameters

The following conditions apply, unless otherwise specified.

 $V_{CM}$  = 0V, Delta calculations performed on QMLV devices at group B, subgroup 5 only.

| Symbol           | Parameter               | Conditions                                                              | Notes | Min  | Мах | Units | Sub-<br>groups |
|------------------|-------------------------|-------------------------------------------------------------------------|-------|------|-----|-------|----------------|
| +I <sub>CC</sub> | Positive Supply Current | $\pm V_{CC} = \pm 15V$ , $V_O = Low$<br>$V^+ = 5.6V$ thru 1.4K $\Omega$ |       | -1.0 | 1.0 | mA    | 1              |
| -I <sub>CC</sub> | Negative Supply Current | $\pm V_{CC} = \pm 15V$ , $V_O = Low$<br>$V^+ = 5.6V$ thru 1.4K $\Omega$ |       | -0.5 | 0.5 | mA    | 1              |
| V <sub>IO</sub>  | Input Offset Voltage    | $^+V_{CC} = 5V, V_{CM} = 1V, R_S \le 5K\Omega$                          |       | -0.4 | 0.4 | mV    | 1              |

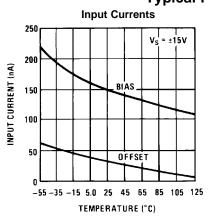
STRUMENTS

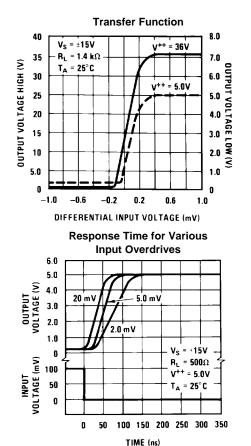
EXAS

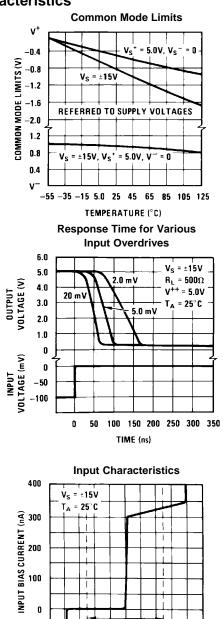
# SMD 5962-9679802, ELDRS FREE 100K Post Radiation Parameters @ 25°C (1)

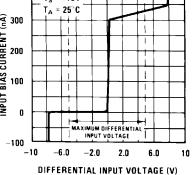
The following conditions apply, unless otherwise specified.  $V_{CM} = 0V$ 

| Symbol          | Parameter            | Conditions                                                | Notes | Min  | Max | Units | Sub-<br>groups |
|-----------------|----------------------|-----------------------------------------------------------|-------|------|-----|-------|----------------|
| I <sub>IB</sub> | Input Bias Current   | $\pm V_{CC} = \pm 15V$                                    |       |      | 1.0 | μA    | 1              |
|                 |                      | $V_{CC} = 5V$                                             |       |      | 1.0 | μA    | 1              |
| V <sub>IO</sub> | Input Offset Voltage | <sup>+</sup> $V_{CC} = 5V, V_{CM} = 1V, R_S \le 5K\Omega$ |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $^+V_{CC} = 5V, V_{CM} = 3V, R_S \le 5K\Omega$            |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $\pm V_{CC} = \pm 15V, V_{CM} = 12V, R_S \le 5K\Omega$    |       | -4.0 | 4.0 | mV    | 1              |
|                 |                      | $\pm V_{CC} = \pm 15V, V_{CM} = -12V, R_S \le 5K\Omega$   |       | -4.0 | 4.0 | mV    | 1              |


(1) Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. Low dose rate testing has been performed on a wafer-by-wafer basis, per Test Method 1019, Condition D of MIL-STD-883, with no enhanced low dose rate sensitivity (ELDRS).


10 Submit Documentation Feedback

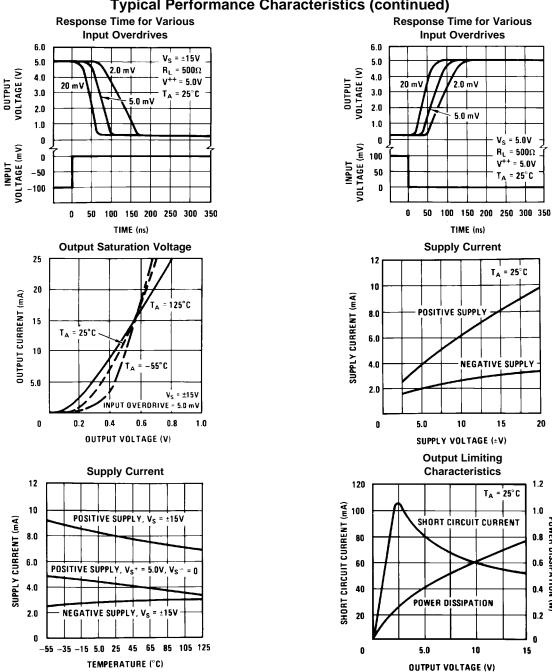




#### SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

**Typical Performance Characteristics** 







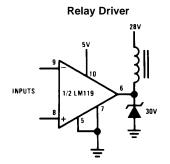



Texas INSTRUMENTS

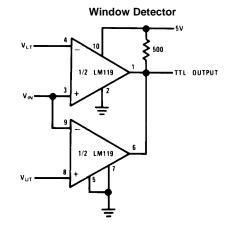
www.ti.com

#### SNOSAN3A - JULY 2008-REVISED JANUARY 2009




POWER DISSIPATION

€




SNOSAN3A - JULY 2008 - REVISED JANUARY 2009

## **TYPICAL APPLICATIONS**



Pin numbers are for LME0010C package.



 $\begin{aligned} V_{OUT} &= 5V \text{ for } V_{LT} \leq V_{IN} \leq V_{UT} \\ V_{OUT} &= 0 \text{ for } V_{IN} \leq V_{LT} \text{ or } V_{IN} \geq V_{UT} \end{aligned}$ 

# LM119QML

SNOSAN3A – JULY 2008 – REVISED JANUARY 2009

www.ti.com

Texas Instruments

## **REVISION HISTORY**

| Date<br>Released | Revision | Section                                                       | Originator  | Changes                                                                                                                                                                                        |
|------------------|----------|---------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07/24/08         | A        | New release to corporate format                               | L. Lytle    | 2 MDS datasheets converted into one<br>corporate data sheet format. Added Radiation<br>information. MDS data sheets MNLM119-X<br>Rev. 0F1 & MDLM119-X Rev 2A2 will be<br>archived.             |
| 01/13/09         | В        | Features, Ordering Info., Electrical Section, Notes 13 and 14 | Larry McGee | Added reference to ELDRS and Die NSID's to<br>data sheet. Correction from: 100k rd(Si) to 100<br>krad(Si) in ordering info. Changed wording in<br>Notes 13 and 14 Revision A will be Archived. |



## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan<br>(2) | Lead/Ball Finish | MSL Peak Temp<br>(3) | Op Temp (°C) | Top-Side Markings                                             | Samples |
|------------------|---------------|--------------|--------------------|------|-------------|-----------------|------------------|----------------------|--------------|---------------------------------------------------------------|---------|
| 5962-9679801VCA  | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119J-QMLV<br>5962-9679801VCA Q                              | Samples |
| 5962-9679801VIA  | ACTIVE        | TO-100       | LME                | 10   | 20          | TBD             | POST-PLATE       | Level-1-NA-UNLIM     | -55 to 125   | LM119H-QMLV<br>5962-9679801VIA Q ACO<br>5962-9679801VIA Q >T  | Samples |
| 5962R9679801VCA  | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119JRQMLV<br>5962R9679801VCA Q                              | Samples |
| 5962R9679801VHA  | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>RQMLV Q<br>5962R96798<br>01VHA ACO<br>01VHA >T      | Samples |
| 5962R9679801VIA  | ACTIVE        | TO-100       | LME                | 10   | 20          | TBD             | POST-PLATE       | Level-1-NA-UNLIM     | -55 to 125   | LM119HRQMLV<br>5962R9679801VIA Q ACO<br>5962R9679801VIA Q >T  | Samples |
| 5962R9679801VXA  | ACTIVE        | CLGA         | NAC                | 10   | 54          | TBD             | Call TI          | Level-1-NA-UNLIM     | -55 to 125   | LM119WG<br>RQMLV Q<br>5962R96798<br>01VXA ACO<br>01VXA >T     | Samples |
| 5962R9679802VCA  | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119JRLQMLV<br>5962R9679802VCA Q                             | Samples |
| 5962R9679802VHA  | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>RLQMLV Q<br>5962R96798<br>02VHA ACO<br>02VHA >T     | Samples |
| 5962R9679802VIA  | ACTIVE        | TO-100       | LME                | 10   | 20          | TBD             | Call TI          | Call TI              | -55 to 125   | LM119HRLQMLV<br>5962R9679802VIA Q ACO<br>5962R9679802VIA Q >T | Samples |
| 5962R9679802VXA  | ACTIVE        | CLGA         | NAC                | 10   | 54          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119WG<br>RLQMLV Q<br>5962R96798<br>02VXA ACO<br>02VXA >T    | Samples |
| 86014012A        | ACTIVE        | LCCC         | NAJ                | 20   | 50          | TBD             | POST-PLATE       | Level-1-NA-UNLIM     | -55 to 125   | LM119E<br>-SMD Q                                              | Samples |

# PACKAGE OPTION ADDENDUM



www.ti.com

26-Jan-2013

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp    | Op Temp (°C) |                                                               | Sample |
|------------------|--------|--------------|--------------------|------|-------------|----------|------------------|------------------|--------------|---------------------------------------------------------------|--------|
|                  | (1)    |              | Drawing            |      |             | (2)      |                  | (3)              | -            | (4)<br>5962-86014<br>012A ACO<br>012A >T                      | -      |
| 8601401CA        | ACTIVE | CDIP         | J                  | 14   | 25          | TBD      | A42 SNPB         | Level-1-NA-UNLIM | -55 to 125   | LM119J-SMD<br>5962-8601401CA Q                                | Sample |
| 8601401HA        | ACTIVE | CLGA         | NAD                | 10   | 19          | TBD      | A42 SNPB         | Level-1-NA-UNLIM | -55 to 125   | LM119W<br>-SMD Q<br>5962-86014<br>01HA ACO<br>01HA >T         | Sampl  |
| 8601401IA        | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119H-SMD<br>5962-8601401IA Q ACO<br>5962-8601401IA Q >T     | Sampl  |
| LM119E-SMD       | ACTIVE | LCCC         | NAJ                | 20   | 50          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119E<br>-SMD Q<br>5962-86014<br>012A ACO<br>012A >T         | Sampl  |
| LM119E/883       | ACTIVE | LCCC         | NAJ                | 20   | 50          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119E<br>/883 Q ACO<br>/883 Q >T                             | Sampl  |
| LM119H-QMLV      | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119H-QMLV<br>5962-9679801VIA Q ACO<br>5962-9679801VIA Q >T  | Sampl  |
| LM119H-SMD       | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119H-SMD<br>5962-8601401IA Q ACO<br>5962-8601401IA Q >T     | Sampl  |
| LM119H/883       | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119H/883 Q ACO<br>LM119H/883 Q >T                           | Sampl  |
| LM119HRLQMLV     | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | Call TI          | Call TI          | -55 to 125   | LM119HRLQMLV<br>5962R9679802VIA Q ACO<br>5962R9679802VIA Q >T | Sampl  |
| LM119HRQMLV      | ACTIVE | TO-100       | LME                | 10   | 20          | TBD      | POST-PLATE       | Level-1-NA-UNLIM | -55 to 125   | LM119HRQMLV<br>5962R9679801VIA Q ACO<br>5962R9679801VIA Q ≻T  | Sampl  |
| LM119J-QMLV      | ACTIVE | CDIP         | J                  | 14   | 25          | TBD      | A42 SNPB         | Level-1-NA-UNLIM | -55 to 125   | LM119J-QMLV<br>5962-9679801VCA Q                              | Sampl  |
| LM119J-SMD       | ACTIVE | CDIP         | J                  | 14   | 25          | TBD      | A42 SNPB         | Level-1-NA-UNLIM | -55 to 125   | LM119J-SMD                                                    | Sampl  |

# PACKAGE OPTION ADDENDUM



www.ti.com

26-Jan-2013

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan<br>(2) | Lead/Ball Finish | MSL Peak Temp<br>(3) | Op Temp (°C) | <b>Top-Side Markings</b><br>(4)<br>5962-8601401CA Q        | Samples |
|------------------|---------------|--------------|--------------------|------|-------------|-----------------|------------------|----------------------|--------------|------------------------------------------------------------|---------|
| LM119J/883       | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -25 to 85    | LM119J/883 Q                                               | Samples |
| LM119JRLQMLV     | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119JRLQMLV<br>5962R9679802VCA Q                          | Sample  |
| LM119JRQMLV      | ACTIVE        | CDIP         | J                  | 14   | 25          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119JRQMLV<br>5962R9679801VCA Q                           | Sample  |
| LM119W-SMD       | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>-SMD Q<br>5962-86014<br>01HA ACO<br>01HA >T      | Sample  |
| LM119W/883       | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>/883 Q ACO<br>/883 Q >T                          | Sample  |
| LM119WGRLQMLV    | ACTIVE        | CLGA         | NAC                | 10   | 54          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119WG<br>RLQMLV Q<br>5962R96798<br>02VXA ACO<br>02VXA >T | Sample  |
| LM119WGRQMLV     | ACTIVE        | CLGA         | NAC                | 10   | 54          | TBD             | Call TI          | Level-1-NA-UNLIM     | -55 to 125   | LM119WG<br>RQMLV Q<br>5962R96798<br>01VXA ACO<br>01VXA >T  | Sample  |
| LM119WRLQMLV     | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>RLQMLV Q<br>5962R96798<br>02VHA ACO<br>02VHA >T  | Sample  |
| LM119WRQMLV      | ACTIVE        | CLGA         | NAD                | 10   | 19          | TBD             | A42 SNPB         | Level-1-NA-UNLIM     | -55 to 125   | LM119W<br>RQMLV Q<br>5962R96798<br>01VHA ACO<br>01VHA >T   | Sample  |

<sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.



26-Jan-2013

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> Only one of markings shown within the brackets will appear on the physical device.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF LM119QML, LM119QML-SP :

Military: LM119QML

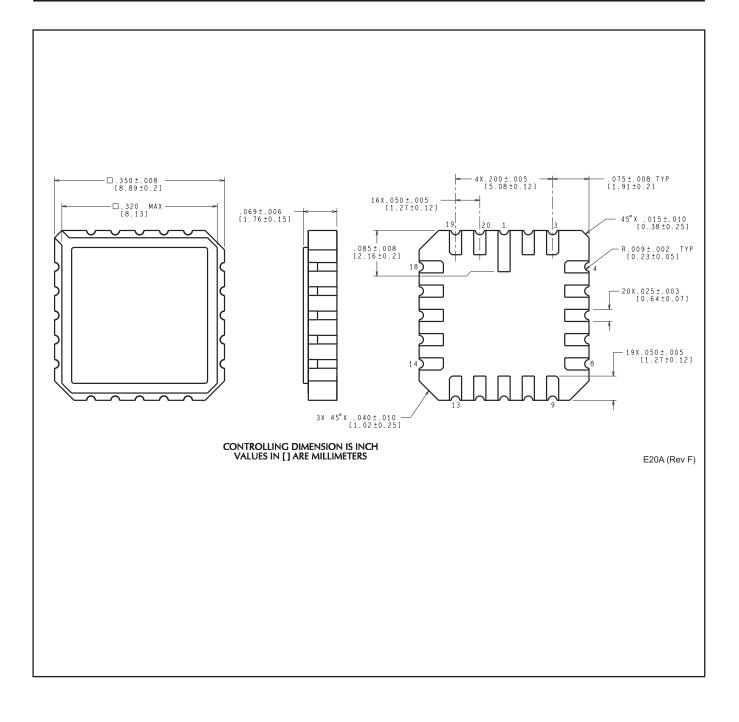
• Space: LM119QML-SP

NOTE: Qualified Version Definitions:

- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

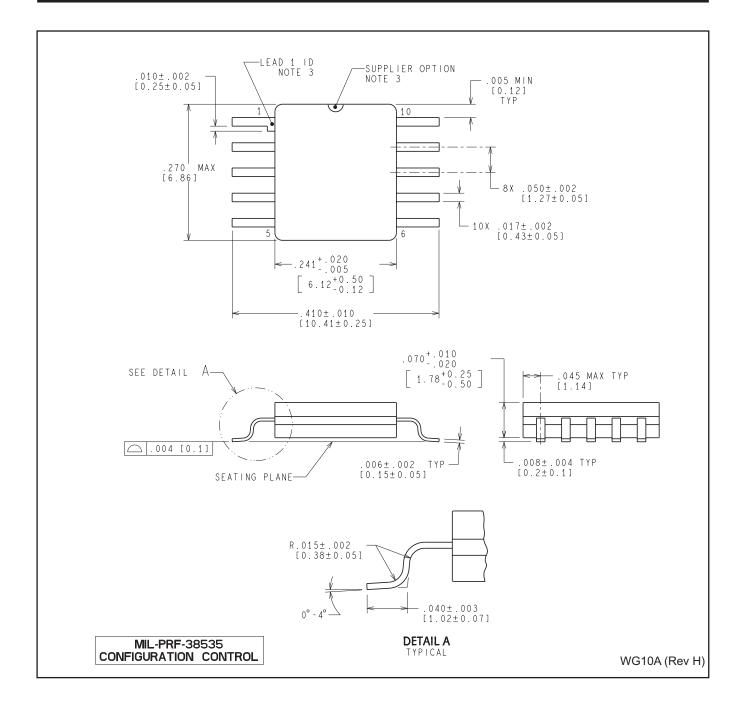
J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

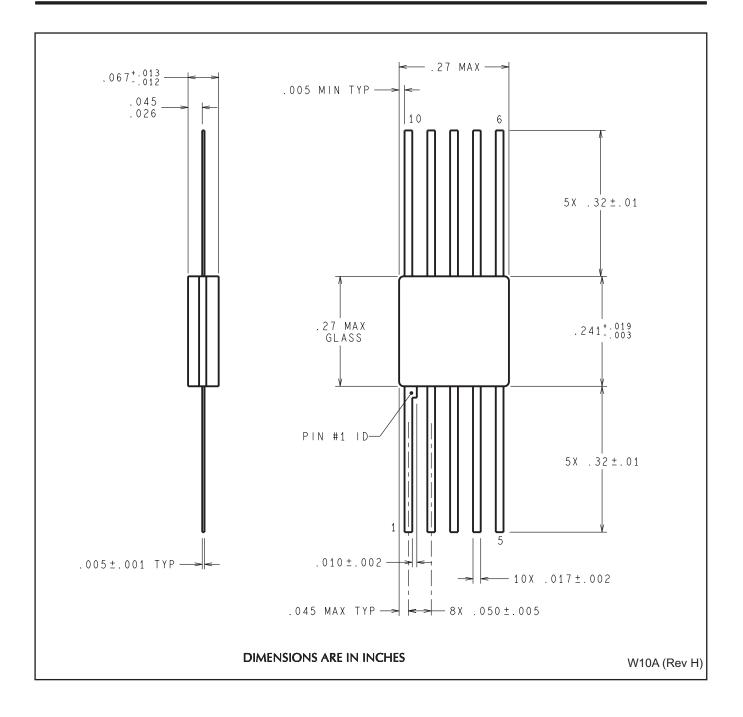



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.


# **MECHANICAL DATA**

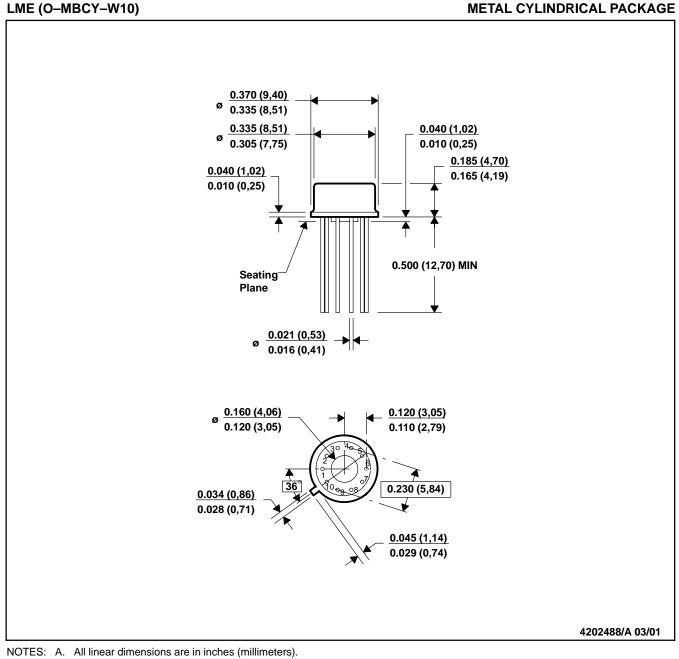
# NAJ0020A






# NAC0010A




# NAD0010A





# **MECHANICAL DATA**

MMBC006 - MARCH 2001



- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-006/TO-100.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated