LM1819

LM1819 Air-Core Meter Driver

Literature Number: SNOSBE7A

©1995 National Semiconductor Corporation TL/H/5263

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings				
If Military/Aerospace specified devices a	are required,	Operating Temperature	-40° C to $+85^{\circ}$ C	
please contact the National Semicond		Storage Temperature	-65°C to -150°C	
Office/Distributors for availability and specifications.		Lead Temp. (Soldering, 10 seconds)	260°C	
Supply Voltage, V+ (pin 13)	20V	BVCEO	20V _{MIN}	
Power Dissipation (note 1)	1300 mW	DICEO	20 V MIIN	

Electrical Characteristics $V_S = 13.1V T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Parameter Pin(s) Conditions		Min	Тур	Мах	Units
IS	Supply Current	(See)				65	mA
V _{REG}	Regulator Voltage			8.1	8.5	8.9	V
	Regulator Output Resistance		$I_{REG} = 0 \text{ mA to 3 mA}$		13.5		Ω
V _{REF}	Reference Voltage	4	$I_{REF} = 0 \text{ mA}$	1.9	2.1	2.3	V
	Reference Output Resistance	4	$I_{REF} = 0 \ \mu A$ to 50 μA		5.3		kΩ
	Norton Amplifier Mirror Gain	5, 6	$I_{BIAS} \cong 20 \ \mu A$	0.9	1.0	1.1	
h _{FE}	NPN Transistor DC Gain	9, 10			125		
	Function Generator Feedback Bias Current	1	V ₁ = 5.1V		1.0		mA
	Drive Voltage Extremes, Sine and Cosine	2, 12	$I_{LOAD} = 20 \text{ mA}$	±4	±4.5		v
	Sine Output Voltage with Zero Input	2	$V_8 = V_{REF}$	-350	0	+ 350	mV
	Function Generator Linearity		FSD = 305°			±1.7	%FSD
k Function Generator Gain			Meter Deflection/ ΔV_8	50.75	53.75	56.75	°/V

Note 1: For operation above 25°C, the LM1819 must be derated based upon a 125°C maximum junction temperature and a thermal resistance of 76°C/W which applies for the device soldered in a printed circuit board and operating in a still-air ambient.

Application Hints

AIR-CORE METER MOVEMENTS

Air-core meters are often favored over other movements as a result of their mechanical ruggedness and their independence of calibration with age. A simplified diagram of an aircore meter is shown in Figure 2. There are three basic pieces: a magnet and pointer attached to a freely rotating axle, and two coils, each oriented at a right angle with respect to the other. The only moving part in this meter is the axle assembly. The magnet will tend to align itself with the vector sum of H fields of each coil, where H is the magnetic field strength vector. If, for instance, a current passes through the cosine coil (the reason for this nomenclature will become apparent later) as shown in Figure 3(a), the magnet will align its magnetic axis with the coil's H field. Similarly, a current in the sine coil (Figure 3(b)) causes the magnet to align itself with the sine ${\bf H}$ field. If currents are applied simultaneously to both sine and cosine coils, the magnet will turn to the direction of the vector sum of the two

H fields (Figure 3(c)). H is proportional to the voltage applied to a coil. Therefore, by varying both the polarity and magnitude of the coil voltages the axle assembly can be made to rotate a full 360°. The LM1819 is designed to drive the meter through a minimum of 305°.

In an air-core meter the axle assembly is supported by two nylon bushings. The torque exerted on the pointer is much greater than that found in a typical d'Arsonval movement. In contrast to a d'Arsonval movement, where calibration is a function of spring and magnet characteristics, air-core meter calibration is only affected by the mechanical alignment of the drive coils. Mechanical calibration, once set at manufacture, can not change.

Making pointer position a linear function of some input is a matter of properly ratioing the drive to each coil. The **H** field contributed by each coil is a function of the applied current, and the current is a function of the coil voltage. Our desired result is to have θ (pointer deflection, measured in degrees) proportional to an input voltage:

$$\theta = kV_{IN}$$
 [1]

where k is a constant of proportionality, with units of degrees/volt. The vector sum of each coils' **H** field must follow the deflection angle θ . We know that the axle assembly always points in the direction of the vector sum of **H**_{SINE} and **H**_{COSINE}. This direction (see *Figure 4*) is found from the formula:

FIGURE 4. The vector sum of H_{COSINE} and H_{SINE} points in a direction θ measured in a clockwise direction from H_{COSINE} .

Comparing [3] to [2] we see that if \mathbf{H}_{SINE} varies as the sine of θ , and $\mathbf{H}_{\text{COSINE}}$ varies as the cosine of θ , we will generate a net **H** field whose direction is the same as θ . And since the axle assembly aligns itself with the net **H** field, the pointer will always point in the direction of θ .

THE LM1819

Included in the LM1819 is a function generator whose two outputs are designed to vary approximately as the sine and cosine of an input. A minimum drive of ± 20 mA at $\pm 4V$ is available at pins 2 (sine) and 12 (cosine). The common side of each coil is returned to a 5.1V zener diode reference and fed back to pin 1.

For the function generator, $k \cong 54^{\circ}/V$ (in equation 1). The input (pin 8) is internally connected to the Norton amplifier's output. V_{IN} as considered in equation [1] is actually the difference of the voltages at pins 8 (Norton output/function generator input) and 4. Typically the reference voltage at pin 4 is 2.1V. Therefore,

$$\theta = k(V_8 - V_{BFF}) = 54 (V_8 - 2.1)$$
 [4

As V_8 varies from 2.1V to 7.75V, the function generator will drive the meter through the chip's rated 305° range.

Air-core meters are mechanically zeroed during manufacture such that when only the cosine coil is driven, the pointer indicates zero degrees deflection. However, in some applications a slight trim or offset may be required. This is accomplished by sourcing or sinking a DC current of a few microamperes at pin 4.

A Norton amplifier is available for conditioning various input signals and driving the function generator. A Norton amplifier was chosen since it makes a simple frequency to voltage converter. While the non-inverting input (pin 6) bias is at one diode drop above ground, the inverting input (5) is at 2.1V, equal to the pin 4 reference. Mirror gain remains essentially flat to I_{MIRROR}=5 mA. The Norton amplifier's output (8) is designed to source current into its load. To bypass the Norton amplifier simply ground the non-inverting input, tie the inverting input to the reference, and drive pin 8 (Norton output/function generator input) directly.

An NPN transistor is included on chip for buffering and squaring input signals. Its usefulness is exemplified in *Figures 1 & 6* where an ignition pulse is converted to a rectangular waveform by an RC network and the transistor. The emitter is internally connected to ground. It is important not to allow the base to drop below $-5V_{dc}$, as damage may occur. The 2.1V reference previously described is derived from an 8.5V regulator at pin 11. Pin 11 is used as a stable supply for collector loads, and currents of up to 5 mA are easily accommodated.

Application Hints (Continued)

TACHOMETER APPLICATION

A measure of the operating level of any motor or engine is the rotational velocity of its output shaft. In the case of an automotive engine the crankshaft speed is measured using the units "revolutions per minute" (RPM). It is possible to indirectly measure the speed of the crankshaft by using the signal present on the engine's ignition coil. The fundamental frequency of this signal is a function of engine speed and the number of cylinders and is calculated (for a four-stroke engine) from the formula:

 $f = n\omega/120$ (Hz) (

where n = number of cylinders, and ω = rotational velocity of the crankshaft in RPM. From this formula the maximum frequency normally expected (for an 8 cylinder engine turning 4500RPM) is 300 Hz. In certain specialized ignition systems (motorcycles and some automobiles) where the coil waveform is operated at twice this frequency ($f = \omega/60$). These systems are identified by the fact that multiple coils are used in lieu of a single coil and distributor. Also, the coils have two outputs instead of one.

A typical automotive tachometer application is shown in Figure 1. The coil waveform is filtered, squared and limited by the RC network and NPN transistor. The frequency of the pulse train at pin 9 is converted to a proportional voltage by the Norton amplifier's charge pump configuration. The ignition circuit shown in Figure 5 is typical of automotive systems. The switching element "S" is opened and closed in synchronism with engine rotation. When "S" is closed, energy is stored in Lp. When opened, the current in Lp diverts from "S" into C. The high voltage produced in Ls when "S" is opened is responsible for the arcing at the spark plug. The coil voltage (see Figure 6) can be used as an input to the LM1819 tachometer circuit. This waveform is essentially constant duty cycle. D4 rectifies this waveform thereby preventing negative voltages from reaching the chip. C4 and R5 form a low pass filter which attenuates the high frequency ringing, and R7 limits the input current to about 2.5mA. R6 acts as a base bleed to shut the transistor OFF when "S" is closed. The collector is pulled up to the internal regulator by R_{REG}. The output at pin 9 is a clean rectangular pulse.

Many ignition systems use magnetic, hall effect or optical sensors to trigger a solid state switching element at "S." These systems (see the LM1815) typically generate pulses of constant *width* and amplitude suitable for driving the charge pump directly.

The charge pump circuit in *Figure 7* can be operated in two modes: constant input pulse width (C1 acts as a coupling capacitor) and constant input duty cycle (C1 acts as a differentiating capacitor). The transfer functions for these two modes are quite diverse. However, deflection is always directly proportional to R2 and ripple is proportional to C2. The following variables are used in the calculation of meter deflection:

symbol	description
--------	-------------

n	number	of	cylind	ers

- $\omega, \omega_{\text{IDLE}}$ engine speed at redline and idle, RPM θ pointer deflection at redline, degrees
- *θ* pointer deflection at redline, degrees
 δ charge pump input pulse width, seconds
- δ charge pump input pulse width, seconds
- V_{IN} peak to peak input voltages, volts
- $\Delta \theta$ maximum desired ripple, degrees
- k function generator gain, degrees/volt

 f, f_{IDLE} input frequency at redline and idle, Hz Where the NPN transistor and regulator are used to create a pulse $V_{\text{IN}}\!=\!8.5V$. Acceptable ripple ranges from 3 to 10 degrees (a typical pointer is about 3 degrees wide) depending on meter damping and the input frequency.

The constant pulse width circuit is designed using the following equations;

(2)
$$C_1 \ge \frac{100}{R_1}$$

(3)
$$R_2 = \frac{R_1\theta}{V_{IN}\delta k_f} = \frac{120R_1\theta}{V_{IN}n\omega\delta k_1}$$

4)
$$C_2 = \frac{1}{R_2 \Delta \theta f_{\text{IDLE}}} = \frac{1}{R_2 \Delta \theta n \omega_{\text{IDLE}}}$$

The constant duty cycle equations are as follows:

 $R_{REG} \ge 3 \ k\Omega$

- $$\label{eq:rescaled} \begin{split} R_1 &\leq V_{IN} x 10^4 \ -R_{REG} \\ C_1 &\leq \delta / 10 (R_{REG} + R_1) \end{split}$$
- $R_{Z} = \theta/3.54n\omega C_{1} = \theta/425fC_{1}$

$$C_2 = 425C_1/\Delta\theta$$

The values in *Figure 1* were calculated with n=4, ω =6000RPM, θ =270 degrees, δ =1 ms, V_{IN} is V_{REG}-0.7V, and $\Delta\theta$ =3 degrees in the constant duty cycle mode. For distributorless ignitions these same equations will apply if ω /60 is substituted for *f*.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
	Wireless Connectivity	www.ti.com/wirelessconnectivity		
				a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated