

LM1877 Dual Power Audio Amplifier

General Description

The LM1877 is a monolithic dual power amplifier designed to deliver 2W/channel continuous into 8Ω loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q point centering. The LM1877 is internally compensated for all gains greater than 10.

Features

- 2W/channel
- -65 dB ripple rejection, output referred
- -65 dB channel separation, output referred

- Wide supply range, 6V-24V
- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown

Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players

Order Number LM1877N-9

See NS Package Number N14A

- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products

Equivalent Schematic Diagram

Absolute Maximum Ratings If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage 26V

Operating Temperature 0°C to + 70°C -65°C to +150°C Storage Temperature 150°C Junction Temperature 260°C Lead Temperature (Soldering, 10 sec.)

Flo	otri	cal	Cha	rant	orie	tics

Input Voltage

 $V_S = 20V$, $T_A = 25^{\circ}C$, (See Note 1) $R_L = 8\Omega$, $A_V = 50$ (34 dB) unless otherwise specified

±0.7V

Parameter	Conditions	Min	Тур	Max	Units
Total Supply Current	$P_{O} = 0W$		25	50	mA
Output Power LM1877	THD = 10% V _S = 20V, R _L = 8Ω	2.0			W/Ch
Total Harmonic Distortion LM1877	f = 1 kHz, V _S = 14V				
	P _O = 50 mW/Channel		0.075		%
	P _O = 500 mW/Channel		0.045		%
	P _O = 1 W/Channel		0.055		%
Output Swing	$R_L = 8\Omega$		V _S -6		Vp-p
Channel Separation	$C_F = 50 \ \mu$ F, $C_{IN} = 0.1 \ \mu$ F, f = 1 kHz, Output Referred				
	$V_{\rm S}$ = 20V, $V_{\rm O}$ = 4 Vrms	-50	-70		dB
	$V_{\rm S} = 7V, V_{\rm O} = 0.5$ Vrms		-60		dB
PSRR Power Supply Rejection Ratio	$C_F = 50 \ \mu$ F, $C_{IN} = 0.1 \ \mu$ F, f = 120 Hz, Output Referred				
	$V_{S} = 20V, V_{RIPPLE} = 1 Vrms$	-50	-65		dB
	$V_{S} = 7V, V_{RIPPLE} = 0.5 Vrms$		-40		dB
Noise	Equivalent Input Noise				
	$R_S = 0, C_{IN} = 0.1 \ \mu F,$ BW = 20 Hz-20 kHz, Output Noise Wideband		2.5		μV
	$R_{S} = 0, C_{N} = 0.1 \ \mu F, A_{V} 200$		0.80		mV
Open Loop Gain	$R_{S} = 0$, f = 100 kHz, $R_{L} = 8\Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current			50		nA
Input Impedance	Open Loop		4		MΩ
DC Output Level	V _S = 20V	9	10	11	v
Slew Rate			2.0		V/µs
Power Bandwidth			65		kHz
Current Limit			1.0		A

Note 1: For operation at ambient temperature greater than 25°C, the LM1877 must be derated based on a maximum 150°C junction temperature using a thermal resistance which depends upon device mounting techniques.

