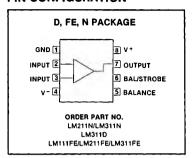
# **VOLTAGE COMPARATOR**

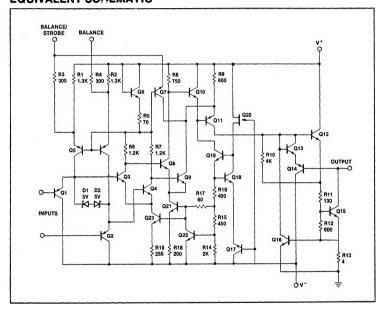
## DESCRIPTION

The LM111 series are voltage comparators that have input currents approximately a hundred times lower than devices like the  $\mu$ A710. They are designed to operate over a wider range of supply voltages; from standard  $\pm$ 15V op amp supplies down to the single 5V supply used for IC logic. Their output is compatible with RTL, DTL, and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50V at currents as high as 50mA.

Both the inputs and the outputs of the LM111 series can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the  $\mu\text{A710}$  (200ns response time vs 40ns) the devices are also much less prone to spurious oscillations. The LM111 series has the same pin configuration as the  $\mu\text{A710}$  series.


### **FEATURES**

- Operates from single 5V supply
- Maximum input bias current: 150nA (LM311 - 250nA)
- Maximum offset current: 20nA (LM311 -50nA)
- Differential input voltage range: ±30V
- Power consumption: 135mW at ±15V
- High sensitivity—200V/mV


### **APPLICATIONS**

- Zero crossing detector
- Precision squarer
- Positive/negative peak detector
  Low voltage adjustable reference
- Low voltage adjustable reference
  supply
- · Switching power amplifier

### PIN CONFIGURATION



# **EQUIVALENT SCHEMATIC**



# **ABSOLUTE MAXIMUM RATINGS**

| PARAMETER                          | RATING      | UNIT        |
|------------------------------------|-------------|-------------|
| Total supply voltage               | 36          | V           |
| Output to negative supply voltage: | }           | }           |
| LM111/LM211                        | 50          | .∤ <u>v</u> |
| LM311                              | 40<br>30    | \ \ \ \     |
| Ground to negative supply voltage  |             | 1 5 1       |
| Differential input voltage         | ±30         | \ \         |
| Input voltage1                     |             | V           |
| Power dissipation <sup>2</sup>     | 500         | mW          |
| Output short circuit duration      | 10          | sec         |
| Operating temperature range        | }           |             |
| LM111                              | -55 to +125 | °C          |
| LM211                              | -25 to +85  | °C ∣        |
| LM311                              | 0 to +70    | °C          |
| Storage temperature range          | -65 to +150 | °C          |
| Lead temperature                   | 300         | o °C        |
| (soldering, 10sec)                 |             |             |


# **VOLTAGE COMPARATOR**

# DC ELECTRICAL CHARACTERISTICS 1,2,3

| PARAMETER                                          | TEST CONDITIONS                                                                                        | LM111/LM211 |                     |            | LM311  |                             |             |          |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|---------------------|------------|--------|-----------------------------|-------------|----------|
|                                                    |                                                                                                        | Min         | Тур                 | Max        | Min    | Тур                         | Max         | UNIT     |
| Input offset voltage4                              | $T_A = 25^{\circ}C$ , $R_S \leq 50k\Omega$                                                             |             | 0.7                 | 3.0        |        | 2.0                         | 7.5         | mV       |
| Input offset current4<br>Input bias current        | T <sub>A</sub> = 25°C<br>T <sub>A</sub> = 25°C                                                         |             | 4.0<br>60           | 10<br>100  |        | 6.0<br>100                  | 50<br>250   | nA<br>nA |
| Voltage gain                                       | T <sub>A</sub> = 25°C                                                                                  |             | 200                 |            |        | 200                         |             | V/mV     |
| Response time <sup>5</sup><br>Saturation voltage   | $T_A = 25^{\circ}C$ $V_{IN} \le -5mV$ , $I_{OUT} = 50mA$ $T_A = 25^{\circ}C$                           |             | 200<br>0.75         | 1.5        |        | 200<br>0.75                 | 1.5         | ns<br>V  |
| Strobe on current<br>Output leakage current        | $T_A = 25^{\circ}C$ $V_{IN} \ge 5mV, V_{OUT} = 35V$ $T_A = 25^{\circ}C, I_{STROBE} = 3mA$              |             | 3.0                 | 10         |        | 3.0                         | 50          | mA<br>nA |
| Input offset voltage4                              | $R_S \leq 50 k\Omega$                                                                                  |             | 1                   | 4.0        |        |                             | 10          | mV       |
| Input offset current4<br>Input bias current        |                                                                                                        |             |                     | 20<br>150  |        |                             | 70<br>300   | nA<br>nA |
| Input voltage range<br>Saturation voltage          | V = ± 15V (PIn 7 may go to 5V)<br>V+ ≥ 4.5V, V- = 0<br>V <sub>IN</sub> ≤ -6mV, I <sub>SINK</sub> ≤ 8mA | - 14.5      | 13.8,- 14.7<br>0.23 | 13.0       | - 14.5 | 13.8, <b>–</b> 14.7<br>0.23 | 13.0<br>0.4 | V        |
| Output leakage current                             | $V_{IN} \ge 5 mV$ , $V_{OUT} = 35 V$                                                                   |             | 0.1                 | 0.5        |        | 1                           |             | μА       |
| Positive supply current<br>Negative supply current | T <sub>A</sub> = 25°C<br>T <sub>A</sub> = 25°C                                                         |             | 5.1<br>4.1          | 6.0<br>5.0 |        | 5.1<br>4.1                  | 7.5<br>5.0  | mA<br>mA |

- 1. This rating applies for  $\pm 15 \text{V}$  supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.
- 2. The maximum junction temperature of the LM311 is 110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150° C/W, junction to ambient, in the N package, a thermal resistance of 162° C/W, and ° C/W for the Ceramic package. The maximum junction temperature of the LM111 is 150°C, while that of the LM211 is 110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient. The thermal resistance of the Cerdip package is 110°C/W, junction to ambient.
- 3. These specifications apply for  $V_S = \pm 15 V$  and  $0^{\circ} C < T_A < 70^{\circ} C$  unless otherwise specified. With the LM211, however, all temperature specifications are limited to -25°C ≤ TA≤ 85°C and for the LM111 is limited to -55°C < TA < 125°C. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V supply up to ±15V supplies.
- The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance
- 5. The response time specified is for a 100mV input step with 5mV overdrive.
- Do not short the strobe prin to ground; it should be current driven at 3mA to 5mA.

## TYPICAL APPLICATIONS

