February 2000

LM2936-5.0 **Ultra-Low Quiescent Current 5V Regulator**

General Description

The LM2936 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 15 µA quiescent current at a 100 µA load, the LM2936 is ideally suited for automotive and other battery operated systems. The LM2936 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936 has a 40V maximum operating voltage limit, a -40°C to +125°C operating temperature range, and $\pm 3\%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936 is available in a TO-92 package, a SO-8 surface mount package, and a TO-252 surface mount power package.

Features

- Ultra low quiescent current ($I_Q \le 15 \ \mu A$ for $I_O \le 100 \ \mu A$)
- Fixed 5V, 50 mA output
- Output tolerance ±3% over line, load, and temperature
- Dropout voltage typically 200 mV @ I_O = 50 mA
- Reverse battery protection
- –50V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40V operating voltage limit

LM2936-5.0 Ultra-Low Quiescent Current 5V Regulator

LM2936-5.0

Connection Diagrams (Continued)

Top View Order Number LM2936M-5.0 See NS Package Number M08A

TO-92

Bottom View Order Number LM2936Z-5.0 See NS Package Number Z03A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Ratings

Operating Temperature Range	–40°C to +125°C
Maximum Input Voltage (Operational)	40V
TO-92 (Z03A) θ _{JA}	195°C/W
SO-8 (M08A) θ _{JA}	140°C/W

Input Voltage (Survival)	+60V, -50V	ΤΟ-92 (Ζ03Α) θ _{ΙΑ}	195°C/W
ESD Susceptibility (Note 2)	2000V	SO-8 (M08A) 0,1A	140°C/W
Power Dissipation (Note 3)	Internally limited	SO-8 (M08A) θ _{JC}	45°C/W
Junction Temperature (T _{Jmax})	150°C	TO-252 (TD03B) θ _{JA}	136°C/W
Storage Temperature Range	–65°C to +150°C	TO-252 (TD03B) θ _{JC}	6°C/W
Lead Temperature (Soldering, 10	260°C	SOT-223 (MA04A) θ _{JA}	149°C/W
sec.)	260 C	SOT-223 (MA04A) θ _{JC}	36°C/W

Electrical Characteristics

V_{IN} = 14V, I_O = 10 mA, T_J = 25°C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

	· ·	11.2		1 0
		Typical	Tested	
Parameter	Conditions	(Note 4)	Limit	Units
			(Note 5)	
Output Voltage	$5.5V \le V_{IN} \le 26V,$		4.85	V _{min}
	$I_{O} \leq 50 \text{ mA} \text{ (Note 6)}$	5		V
			5.15	V _{max}
Quiescent Current	I_{O} = 100 µA, 8V ≤ V_{IN} ≤ 24V	9	15	μA _{max}
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$	0.20	0.50	mA _{max}
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$	1.5	2.5	mA _{max}
Line Regulation	$9V \le V_{IN} \le 16V$	5	10	mV _{max}
	$6V \le V_{IN} \le 40V, I_O = 1 \text{ mA}$	10	30	
Load Regulation	$100 \ \mu A \le I_O \le 5 \ mA$	10	30	mV _{max}
	$5 \text{ mA} \le \text{I}_{O} \le 50 \text{ mA}$	10	30	
Dropout Voltage	I _O = 100 μA	0.05	0.10	V _{max}
	I _O = 50 mA	0.20	0.40	V _{max}
Short Circuit Current	$V_{O} = 0V$	120	65	mA _{min}
			250	mA _{max}
Output Impedance	I_{O} = 30 mAdc and 10 mArms,	450		mΩ
	_f = 1000 Hz			
Output Noise Voltage	10 Hz–100 kHz	500		μV _{rms}
Long Term Stability		20		mV/1000 H
Ripple Rejection	V _{ripple} = 1 V _{rms} , _{fripple} = 120 Hz	60	40	dB _{min}
Reverse Polarity	$R_L = 500\Omega, V_O \ge -0.3V$		-15	V _{min}
DC Input Voltage				
Reverse Polarity	$R_{L} = 500\Omega, T = 1 \text{ ms}$	-80	-50	V _{min}
Transient Input Voltage				
Output Leakage with	$V_{IN} = -15V, R_{L} = 500\Omega$	-0.1	-600	μA _{max}
Reverse Polarity Input				
Maximum Line Transient	$R_{L} = 500\Omega, V_{O} \le 5.5V, T = 40 \text{ ms}$		60	V _{min}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.

Note 2: Human body model, 100 pF discharge through a 1.5 $k\Omega$ resistor.

Note 3: The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the LM2936 will go into thermal shutdown.

Note 4: Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.

Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level) and 100% tested.

Note 6: To ensure constant junction temperature, pulse testing is used.

Typical Performance Characteristics

Quiescent Current

150

150

150

Output Capacitor ESR

Current Limit

Typical Performance Characteristics (Continued)

Line Transient Response

Load Transient Response

Low Voltage Behavior

Applications Information

Unlike other PNP low dropout regulators, the LM2936 remains fully operational to 40V. Owing to power dissipation characteristics of the available packages, full output current cannot be guaranteed for all combinations of ambient temperature and input voltage. As an example, consider an LM2936Z operating at 25°C ambient. Using the formula for maximum allowable power dissipation given in (Note 3), we find that P_{Dmax} = 641 mW at 25°C. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 17.3V. The LM2936Z will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 17.3V. Similarly, at 40V input and 25°C ambient the LM2936Z can deliver 18 mA maximum.

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of 125° C the LM2936Z can only dissipate 128 mW, limiting the input voltage to 7.34V for a 50 mA load, or 3.5 mA output current for a 40V input.

The junction to ambient thermal resistance θ_{JA} rating has two distinct components: the junction to case thermal resistance rating θ_{JC} ; and the case to ambient thermal resistance rating θ_{CA} . The relationship is defined as: $\theta_{JA} = \theta_{JC} + \theta_{CA}$. For the SO-8 and TO-252 surface mount packages the θ_{JA} rating can be improved by using the copper mounting pads on the printed circuit board as a thermal conductive path to extract heat from the package.

On the SO-8 package the four ground pins are thermally connected to the backside of the die. Adding approximately 0.04 square inches of 2 oz. copper pad area to these four pins will improve the θ_{JA} rating to approximately 110°C/W. If this extra pad are is placed directly beneath the package there should not be any impact on board density.

On the TO-252 package the ground tab is thermally connected to the backside of the die. Adding 1 square inch of 2 oz. copper pad area directly under the ground tab will improve the θ_{JA} rating to approximately 50°C/W.

While the LM2936 has an internally set thermal shutdown point of typically 150°C, this is intended as a safety feature only. Continuous operation near the thermal shutdown temperature should be avoided as it may have a negative affect on the life of the device.

While the LM2936 maintains regulation to 60V, it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the LM2936 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40V, or where transients are likely to exceed 60V.

LM2936-5.0

LM2936-5.0

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com
 National Semiconductor

 Europe

 Fax:
 +49 (0) 180-530 85 86

 Email:
 europe.support@nsc.com

 Deutsch Tel:
 +49 (0) 69 9508 6208

 English
 Tel:
 +44 (0) 870 24 0 2171

 Français
 Tel:
 +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.