National Semiconductor

LM2940C 1A Low Dropout Regulator

General Description

The LM2940C positive voltage regulator features the ability to source 1A of output current with an input-output differential of typically 0.5V and a maximum of 1V over the entire temperature range. Familiar regulator features such as internal current limit and thermal overload protection are also provided. Furthermore, a quiescent current reduction circuit has been added which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3V. The quiescent current with 1A of output current and an input-output differential of 5V is therefore only 30 mA. Higher quiescent currents only exist when the regulator is in the dropout mode ($V_{IN} - V_{OUT} \le 3V$).

The low dropout voltage coupled with the high output current capability make the LM2940C useful in applications where the input voltage is maintained at a level within one or two volts of the output voltage to reduce power dissipation and increase overall system efficiency.

The LM2940C is particularly suited for applications where battery life and reverse installation of batteries is a concern.

For automotive temperature range (-40°C to +125°C) applications, refer to the LM2940 datasheet.

Features

- Dropout voltage typically 0.5V @ I_O = 1A
- Output current in excess of 1A
- Output voltage trimmed before assembly
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- 100% electrical burn-in in thermal limit

Output Voltages

LM2940CT-5.0	5V
LM2940CT-12	12V
LM2940CT-15	15V
For output voltages of 5V, 8V, and 10V, datasheet.	refer to the LM2940

Equivalent Schematic

Absolute Maximum Ratings

If Military/Aerospace specified devices are required. please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Operating Temp. Range (T _A)	0°C to +125°C
Maximum Junction Temperature	150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature	
(Soldering, 10 seconds)	260°C
ESD Susceptability (Note 5)	2000V

input voltage	
Survival Voltage (≤1 ms)	45\
Operational Voltage	26\
Internal Power Dissipation (Note 1)	Internally limited

Electrical Characteristics $V_{IN} = V_O + 5V$, $I_O = 1A$, $C_{OUT} = 22 \ \mu$ F, $T_j = 25^{\circ}$ C, unless otherwise specified.

Output Voltage (V ₀)		5V		12V			15V				
Parameter	Conditions	Тур	Tested Limit (Note 2)	Design Limit (Note 3)	Тур	Tested Limit (Note 2)	Design Limit (Note 3)	Тур	Tested Limit (Note 2)	Design Limit (Note 3)	Units
Output Voltage	5 mA ≤ I _O ≤ 1A	5.00	4.85 5.15	4.75 5.25	12.00	11.64 12.36	11.40 12.60	15.00	14.55 15.45	14.25 15.75	
		$6.25V \le V_{IN} \le 26V$			13.6V ≤ V _{IN} ≤ 26V		$16.75V \le V_{IN} \le 26V$			1.0	
Line Regulation	$\begin{array}{l} V_{O}+2V\leq V_{IN}\leq 26V,\\ I_{O}=5\ \text{mA} \end{array}$	20	50		20	120		20	150		mV _{MAX}
Load Regulation	$50 \text{ mA} \le I_0 \le 1 \text{A}$	35	50		55	120		70	150		mV _{MAX}
Output Impedance	100 mADC and 20 mArms $f_0 = 120$ Hz	35			80			100			mΩ
Quiescent Current	V_{O} + 2V \leq V _{IN} \leq 26V, I _O = 5 mA	10	15		10	15		10	15		mA _{MAX}
	$V_{\rm IN} = V_{\rm O} + 5V, I_{\rm O} = 1A$	30	45	60	30	45	60	30	45	60	mA _{MAX}
Output Noise Voltage	10 Hz–100 kHz I _O = 5 mA	150			360			450			μVrms
Ripple Rejection	$f_0 = 120 \text{ Hz}, 1 \text{ Vrms}, I_0 = 100 \text{ mA}$	72	60		66	54		64	52		dBmin
Long Term Stability		20			48			60			mV/1000 Hr
Dropout Voltago	I _O = 1A	0.5	0.8	1.0	0.5	0.8	1.0	0.5	0.8	1.0	VMAX
Dropout voitage	l _O = 100 mA	110	150	200	110	150	200	110	150	200	mV _{MAX}
Short Circuit Current	V _{IN MAX} = 26V (Note 4)	1.9	1.6		1.9	1.6		1.9	1.6		A _{MIN}
Maximum Line Transient	$R_L = 100\Omega, T \le 1 \text{ ms}$	55	45		55	45		55	45		V _{MIN}
		V _O < 6V		V _O < 13V		V _O < 16V					
Reverse Polarity DC Input Voltage	$R_L = 100\Omega, V_O \ge -0.6V$	-30	-15		-30	-15		-30	-15		V _{MIN}
Reverse Polarity, Transient Input Voltage	$T \le 1 \text{ ms}, R_L = 100\Omega$	-55	-45	-45	-55	-45	-45	- 55	-45	-45	V _{MIN}

Note 1: Thermal resistance without a heat sink for junction-to-case temperature is 3°C/W. Thermal resistance case-to-ambient is 50°C/W.

Note 2: Tested Limits are guaranteed and 100% production tested.

Note 3: Design Limits are guaranteed (but not 100% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.

Note 4: Output current will decrease with increasing temperature, but will not go below 1A at the maximum specified temperature.

Note 5: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Typical Application

*Required if regulator is located far from power supply filter.

**COUT must be at least 22 µF to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

Typical Performance Characteristics

LM2940C

Output Capacitor ESR

 $C_{OUT} = 22 \,\mu F$ $V_0 = 5V$

11/1/11

STABLE REGION

400 600 800 1000

OUTPUT CARRIER (mA)

100

10

0.1

0.01

0 200

EQUIVALENT SERIES RESISTANCE (A)

OUTPUT CURRENT (mA)

10k

100k 1.00

1k

Output Impedance

1k 10k 100k 11

PREQUENCY (Hz)

10.00

5.00

0.00 2.00 1.00 0.50 0.20

LA 0.10

0.02

0.01

1

10 100

TL/H/6158-3

