100 mA Adjustable Output, Positive Voltage Regulator

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator.

- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe–Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Package

Vin

• Eliminates Stocking Many Fixed Voltages

Simplified Application

LM317L

Vout

R₁

240

$$V_{out} = 1.25V \left(1 + \frac{H_2}{R_1}\right) + I_{Adj}R_2$$

Since I_{Adj} is controlled to less than 100 $\mu A,$ the error associated with this term is negligible in most applications.

LOW CURRENT THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SEMICONDUCTOR TECHNICAL DATA

*SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM317LD	− T _J = 0° to +125°C	SOP-8
LM317LZ		Plastic
LM317LBD	T _⊥ = –40° to +125°C	SOP-8
LM317LBZ	1) = = 40 10 + 123 C	Plastic

MAXIMUM RATINGS

Rating		Value	Unit
Input-Output Voltage Differential	V _I –V _O	40	Vdc
Power Dissipation	PD	Internally Limited	W
Operating Junction Temperature Range		-40 to +125	°C
Storage Temperature Range		–65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_I-V_O = 5.0 V; I_O = 40 mA; T_J = T_{low} to T_{high} [Note 1]; I_{max} and P_{max} [Note 2];

unless otherwise noted.)

		Symbol	LM317L, LB			
Characteristics	Figure		Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 V \leq V ₁ – V _O \leq 40 V	1	Reg _{line}	-	0.01	0.04	%/V
Load Regulation (Note 3), $T_A = 25^{\circ}C$ 10 mA $\le I_O \le I_{max} - LM317L$ $V_O \le 5.0 V$ $V_O \ge 5.0 V$	2	Reg _{load}		5.0 0.1	25 0.5	mV % V _O
Adjustment Pin Current	3	I _{Adj}	-	50	100	μA
Adjustment Pin Current Change 2.5 V \leq V _I – V _O \leq 40 V, P _D \leq P _{max} 10 mA \leq I _O \leq I _{max} – LM317L	1, 2	Δl _{Adj}	_	0.2	5.0	μΑ
Reference Voltage 3.0 V \leq V _I - V _O \leq 40 V, P _D \leq P _{max} 10 mA \leq I _O \leq I _{max} - LM317L	3	V _{ref}	1.20	1.25	1.30	V
Line Regulation (Note 3) 3.0 V \leq V ₁ - V _O \leq 40 V	1	Reg _{line}	-	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA $\leq I_O \leq I_{max} - LM317L$ $V_O \leq 5.0 V$ $V_O \geq 5.0 V$	2	Reg _{load}		20 0.3	70 1.5	mV % V _O
Temperature Stability $(T_{low} \le T_J \le T_{high})$	3	T _S	-	0.7	-	% V _O
Minimum Load Current to Maintain Regulation (V _I – V _O = 40 V)	3	I _{Lmin}	-	3.5	10	mA
Maximum Output Current $V_I - V_O \le 6.25 \text{ V}, P_D \le P_{max}, \text{ Z Package}$ $V_I - V_O \le 40 \text{ V}, P_D \le P_{max}, T_A = 25^{\circ}\text{C}, \text{ Z Package}$	3	I _{max}	100	200 20	÷.	mA
RMS Noise, % of V _O T _A = 25°C, 10 Hz \leq f \leq 10 kHz		N	-	0.003	-	% V _O
Ripple Rejection (Note 4) $V_O = 1.2 V$, f = 120 Hz $C_{Adj} = 10 \mu$ F, $V_O = 10.0 V$	4	RR	60 -	80 80		dB
Long Term Stability, $T_J = T_{high}$ (Note 5) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S	-	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance, Junction-to-Case Z Package		R _{θJC}	-	83	-	°C/W
Thermal Resistance, Junction-to-Air Z Package		R _{θJA}	-	160	-	°C/W

NOTES: 1. T_{low} to T_{high} = 0° to +125°C for LM317L -40° to +125°C for LM317LB 2. I_{max} = 100 mA P_{max} = 625 mW 3. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

4. C_{Adj}, when used, is connected between the adjustment pin and ground.
5. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

Representative Schematic Diagram

Figure 1. Line Regulation and ${{\Delta I}_{\text{Adj}}}{\text{/Line Test Circuit}}$

Load Regulation (mV) = V₀ (min Load) -V₀ (max Load) V_O (min Load) – V_O (max Load) Load Regulation (% V_O) = Х Vo (min Load) - V_O (min Load) 100 V_O (max Load) V_{out} V_{in}^{*} Vin LM317L Ĉ ΙL R_L 3 (max Load) $R_1 \ge \frac{1}{1\%} \frac{240}{1\%}$ R_L ξ (min Load) l_{Adj} R_2 ξ 1% _

* Pulse Testing Required: 1% Duty Cycle is suggested.

Figure 15. Line Transient Response

Figure 16. Load Transient Response

APPLICATIONS INFORMATION

Basic Circuit Operation

The LM317L is a 3-terminal floating regulator. In operation, the LM317L develops and maintains a nominal 1.25 V reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R_1 (see Figure 13), and this constant current flows through R_2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_2}{R_1}\right) + I_{Adj} R_2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM317L was designed to control I_{Adj} to less than 100 µA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration

Load Regulation

The LM317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

External Capacitors

A 0.1 μ F disc or 1.0 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{Adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_O) in the form of a 1.0 µF tantalum or 25 µF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_O > 10 \ \mu\text{F}$, $C_{Adj} > 5.0 \ \mu\text{F}$). Diode D₁ prevents C_O from discharging thru the IC during an input short circuit. Diode D₂ protects against capacitor C_{Adj} discharging through the IC during an output short circuit. The combination of diodes D₁ and D₂ prevents C_{Adj} from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes

D1 protects the device during an input short circuit.

Figure 20. 5 V Electronic Shutdown Regulator

Figure 21. Slow Turn-On Regulator

Figure 22. Current Regulator