

LM125/LM325 Dual Voltage Regulators

General Description

These dual polarity tracking regulators are designed to provide balanced positive and negative output voltages at current up to 100 mA, and are set for \pm 15V outputs. Input voltages up to \pm 30V can be used and there is provision for adjustable current limiting. These devices are available in two package types to accommodate various power requirements and temperature ranges.

Features

- ± 15V tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 2%

LM125/LM325

- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, the please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

Input Voltage	±30V
Forced V _O + (Min) (Note 1)	-0.5V
Forced VO ⁻ (Max) (Note 1)	+ 0.5V
Power Dissipation (Note 2)	PMAX
Output Short-Circuit Duration (Note 3)	Continuous

Operating Conditions

Operating Free Temperature Range	
LM125	-55°C to +125°C
LM325 0°C to + 70°C	
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	300°C

1.10 5 41

Electrical Characteristics LM125/LM325 (Note 2)

Parameter	Conditions	Min.	Тур	Max	Units
Output Voltage LM125 LM325	$T_j = 25^{\circ}C$	14.8 14.5	15 15	15.2 15.5	v v
Input-Output Differential	1946 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 -	2.0			v
Line Regulation	$V_{IN} = 18V \text{ to } 30V, I_{L} = 20 \text{ mA}, T_{j} = 25^{\circ}\text{C}$		2.0	10	mV
Line Regulation Over Temperature Range	$V_{IN} = 18V$ to 30V, $I_L = 20$ mA,	S - 1 - 2	2.0	20	٣V
Load Regulation Vo ⁺ Vo ⁻	$I_L = 0 \text{ to } 50 \text{ mA}, V_{IN} = \pm 30 \text{V},$ $T_j = 25^{\circ}\text{C}$		3.0 5.0	10 10	mV mV
Load Regulation Over Temperature Range V_0^+ V_0^-	$I_{L} = 0$ to 50 mA, $V_{IN} = \pm 30V$		4.0 7.0,	20 20	mV mV
Output Voltage Balance LM125 LM325	T _j = 25°C	-	ء ج	±150 ±300	mV mV
Output Voltage Over Temperature Range LM125 LM325	$P \le P_{MAX}, 0 \le I_O \le 50 \text{ mA},$ 18V $\le V_{IN} \le 30$	14.65 14.27	9	15.35 15.73	v
Temperature Stability of VO	1 () () () () () () () () () (±0.3		%
Short Circuit Current Limit	T _j = 25℃		260	1 1	mA
Output Noise Voltage	T _j = 25°C, BW = 100 - 10 kHz		150		μVrms
Positive Standby Current	T _j = 25°C	e.	1.75	3.0	mA
Negative Standby Current	T _j = 25°C		3.1	5.0	mA
Long Term Stability	8		0.2	- 1	%/kHi
Thermal Resistance Junction to Case (Note 4) LM125H, LM325H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		20 215 82		•C/W •C/W •C/W
Junction to Ambient LM325N	(Still Air)	4.	90	18 8	°C/W

Note 1: That voltage to which the output may be forced without damage to the device.

Note 2: Unless otherwise specified these specifications apply for $T_j = 55^{\circ}$ C to + 150°C on LM125, $T_j = 0^{\circ}$ C to + 125°C on LM325A, $T_j = 0^{\circ}$ C to

Note 4: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Note 5: Refer to RETS125X drawing for military specification of LM125.

Typical Performance Characteristics (Continued)

TIME (1,m/DIV)

for Positive Regulator

TIME (2mm/DIV)

- 10 mA

11100

NEGATIVE 40 REGULATOR

= ±25V

1.84

+386

+200

+188

0

-100

-200

18 9

20

38

50

68

78

108

INPUT RIPPLE ATTENUATION

DUTPUT VOLTAGE DEVIATION (mV)

Line Transient Response

AVm = +28V TD +23V

Line Transient Response for Negative Regulator

TIME (18ps/01V)

Output Impedance vs Frequency NEGATIVE

/|||

1.0k 181

POSITIV

FREQUENCY (Hz)

REGULATOR

100k 1M

TL/H/7776-5

Typical Applications

.....

TL/H/7776-6

2.0 Amp Boosted Regulator With Current Limit

TL/H/7776-7

Note: Metal can (H) packages shown. I_{CL} = Current Limit Sense Voltage (See Curve)

†Solid tantalum

††Short pins 6 and 7 on dip

tttR_{CL} can be added to the basic regulator between pins 6 and 5, 1 and 2 to reduce current limit.

*Required if regulator is located an appreciable distance from power supply filter.

**Although no capacitor is needed for stability, it does help transient response. (If needed use 1 μ F electrolytic).

***Although no capacitor is needed for stability, it does help transient response. (If needed use 10 µF electrolytic).

RCL

+Vout †C3

10µF

Typical Applications (Continued)

TL/H/7776-9

126

20

180

290

0.9

1.35k
