

LM387/LM387A Low Noise Dual Preamplifier

General Description

The LM387 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with an internal power supply decoupler-regulator, providing 110 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain (104 dB), large output voltage swing ($V_{\rm CC}-2V$)p-p, and wide power bandwidth (75 kHz, 20 Vp-p). The LM387A is a selected version of the LM387 that has lower noise in a NAB tape circuit, and can operate on a larger supply voltage. The LM387 operates from a single supply across the wide range of 9V to 30V, the LM387A operates on a supply of 9V to 40V.

The amplifiers are internally compensated for gains greater than 10. The LN387, LM387A is available in an 8-lead dual-in-line package. The LM387, LM387A is biased like the LM381. See AN-64 and AN-104.

Features

- Low noise
- High gain

- 1.0 μV total input noise 104 dB open loop
- Single supply operation
- Wide supply range LM387

9 to 30V 9 to 40V

- Power supply rejection
- 110 dB
- Large output voltage swing (V_{CC} 2V)p-p
- Wide bandwidth 15 MHz unity gain
- Power bandwidth 75 kHz, 20 Vp-p
- Internally compensated
- Short circuit protected
- Performance similar to LM381

Schematic and Connection Diagrams

Dual-In-Line Package

Top View

Order Number LM387N or LM387AN See NS Package Number N08E

TL/H/7845-1

Typical Applications

FIGURE 1. Flat Gain Circuit (Ay = 1000)

FIGURE 2. NAB Tape Circuit

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage LM387

LM387 LM387A +30V +40V Power Dissipation (Note 1)

Operating Temperature Range

0°C to +70°C -65°C to +150°C

Storage Temperature Range Lead Temperature (Soldering, 10 sec.)

260°C

1.5W

Electrical Characteristics T_A = 25°C, V_{CC} = 14V, unless otherwise stated

Parameter	Conditions	Min	Тур	Max	Units
Voltage Gain	Open Loop, f = 100 Hz		160,000		V/V
Supply Current	LM387, V_{CC} 9V-30V, $R_L = \infty$ LM387A, V_{CC} 9V-40V, $R_L = \infty$		10 10		mA mA
Input Resistance Positive Input Negative Input		50	100 200		kΩ kΩ
Input Current Negative Input			0.5	3.1	μΑ
Output Resistance	Open Loop		150		Ω
Output Current	Source Sink		8 2		mA mA
Output Voltage Swing	Peak-to-Peak		V _{CC} -2		٧
Unity Gain Bandwidth		L	15		MHz
Large Signal Frequency Response	20 Vp-p ($V_{CC} > 24V$), THD \leq 1%		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrm
Supply Rejection Ratio Input Referred	f = 1 kHz		110		dB
Channel Separation	f = 1 kHz	40	60		dB
Total Harmonic Distortion	60 dB Gain, f = 1 kHz		0.1	0.5	%
Total Equivalent Input Noise (Flat Gain Cricuit)	10 Hz-10,000 Hz LM387 <i>Figure 1</i>		1.0	1.2	μVrm
Output Noise NAB Tape Playback Circuit Gain of 37 dB	Unweighted LM387A Figure 2		400	700	μVrm

Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 80°C/W junction to ambient.

Typical Applications (Continued)

Two-Pole Fast Turn-ON NAB Tape Preamplifier

Frequency Response of NAB Circuit of Figure 2

Typical Performance Characteristics

Typical Applications (Continued)

Inverting Amplifier Ultra-Low Distortion

Typical Magnetic Phono Preamplifier

