LM4136 Quad Operational Amplifier

General Description

The LM4136 monolithic quad operational amplifier consists of four independent high gain, internally frequency compensated operational amplifiers. The specifically designed low noise input transistors allow the LM4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners. The simplified output stage completely eliminates crossover distortion under any load conditions, has large source and sink capacity, and is shortcircuit protected. A novel current source stabilizes output parameters over a wide power supply voltage range.

Features

- Unity gain bandwidth—3.0 MHz
- Continuous short circuit protection
- No frequency compensation required
- No latch up
- Large common mode and differential voltage range
- LM741 operational amplifier type performance
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Applications

- Audio preamplifiers
- Signal conditioning

Connection Diagram

14-Lead DIP and SO-14 Package

Top View

TL/H/10065-1

Equivalent Circuit (1/4 of Circuit)

Ordering Information

	Device Code	NS Package Number	Package Description		
ĺ	LM4136CJ	J14A	Ceramic DIP		
	LM4136CN	N14A	Molded DIP		
	LM4136CM	M14A	Molded Surface Mount		

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range	
Ceramic DIP	-65°C to +175°C
Molded DIP and SO-14	-65°C to +150°C
Operating Temperature Range	0°C to +70°C
Lead Temperature	
Ceramic DIP (Soldering, 60 sec.)	300°C
Molded DIP and SO-14	
(Soldering, 10 sec.)	265°C

Internal Power Dissipation (Notes 1, 2)	
14L-Ceramic DIP	1.36W
14L-Molded DIP	1.04W
SO-14	0.93W
Supply Voltage	±18V
Differential Input Voltage (Note 3)	±30V
Input Voltage (Note 1)	± 15V
Output Short Circuit Duration (Note 4)	Indefinite
ESD Tolerance	1000V

LM4136 Electrical Characteristics $T_A = 25^{\circ}C$, $V_{CC} = \pm 15V$ unless otherwise specified

Symbol	Parameter	meter Conditions		Min	Тур	Max	Units
VIO	Input Offset Voltage		R _S ≤ 10 kΩ		0.5	6.0	mV
10	Input Offset Current				5.0	200	nA
1 _{IB}	Input Bias Current				40	500	nA
Zl	Input Impedance			0.3	5.0		MΩ
Pc	Power Consumption				210	340	mW
CMR	Common Mode Rejection		$R_S \le 10 k\Omega$	70	90	- ()	dB
VIR	Input Voltage Range			±12	±14		V
PSRR	Power Supply Rejection Ratio		$R_{S} \le 10 k\Omega$		30	150	μ٧/٧
A _{VS}	Large Signal Voltage Gain		$R_L \ge 2.0 \text{ k}\Omega, V_O = \pm 10V$	20	300		V/m\
VOP	Output Voltage Swing		$R_L = 10 k\Omega$	± 12	±14		v
			$R_L = 2.0 k\Omega$	±10	±13		
TR	Transient Response	Rise Time	$V_{\rm I} = 20 {\rm mV}, {\rm R}_{\rm L} = 2.0 {\rm k}\Omega,$		0.13 5.0		μs
		Overshoot	$C_{L} = 100 \text{pF}, A_{V} = 1.0$				%
BW	Bandwidth Slew Rate		A _V = 1.0		3.0		MHz
SR			$R_{\rm L} = 2.0 {\rm k}\Omega, {\rm A_V} = 1.0$		1.0		ν/μ
CS	Channel Separation		$f = 10 \text{ kHz}, R_S = 1.0 \text{ k}\Omega$ Open Loop		105		dB
			$f = 10 \text{ kHz}, \text{R}_{\text{S}} = 1.0 \text{k}\Omega$ $A_{\text{V}} = 100$		105		
The follow	wing specifications apply ove	or the range of (0°C ≤ T _A ≤ +70°C				
VIO			R _S ≤ 10 kΩ			7.5	mV
10	Input Offset Current					300	nA
10 1	I _{IB} Input Bias Current		-			800	nA
I _{IB}	Input Bias Current			1		000	
	Input Bias Current Power Consumption		$T_A = T_{A Max}$		180	300	
I _{IB}	• 	-	$T_{A} = T_{A Max}$ $T_{A} = T_{A Min}$		180 240		mW
I _{IB}	• 			15		300	

Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW/°C, the 14L-Molded DIP at 8.3 mW/°C, and the SO-14 at 7.5 mW/°C.

Note 3: For supply voltage less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Short circuit may be to ground, one amplifier only.

³⁻⁶⁵³

LM4136

Typical Applications (Continued)

LM4136

Differential Input Instrumentation Amplifier with High Common Mode Rejection

LM4136

