LM486

National Semiconductor

LM4861 Boomer[®] Audio Power Amplifier Series ¹/₂W Audio Power Amplifier with Shutdown Mode

General Description

The LM4861 is a bridge-connected audio power amplifier capable of delivering 500 mW of continuous average power to an 8Ω load with less than 1% (THD+N) over the audio spectrum using a 5V power supply.

Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4861 does not require output coupling capacitors, bootstrap capacitors, or snubber networks, it is optimally suited for low-power portable systems.

The LM4861 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4861 can be configured by external gain-setting resistors for differential gains of 1 to 10 without the use of external compensation components.

Key Specifications

- THD+N at 500 mW continuous average output power into 8Ω
- Instantaneous peak output power
 Shutdown current
 - 0.6 μA (typ)

1% (max)

>1W

Features

- No output coupling capacitors, bootstrap capacitors, or snubber circuits are necessary
- Small Outline (SO) packaging
- Compatible with PC power supplies
- Thermal shutdown protection circuitry
- Unity-gain stable
- External Gain Configuration Capability

Applications

- Personal computers
- Portable consumer products
- Cellular phones
- Self-powered speakers
- Toys and games

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	6.0V
Storage Temperature	-65°C to +150°C
Input Voltage	-0.3V to V _{DD} + 0.3V
Power Dissipation (Note 3)	Internally limited
ESD Susceptibility (Note 4)	3000V
ESD Susceptibility (Note 5)	250V
Junction Temperature	150°C

215°C
220°C

See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings

Temperature Range $T_{MIN} \le T_A \le T_{MAX}$

Supply Voltage

 $\begin{array}{ll} -20^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +85^{\circ}\text{C} \\ 2.7\text{V} \leq \text{V}_{\text{DD}} \leq 5.5\text{V} \end{array}$

LM486

Electrical Characteristics (Notes 1, 2)

The following specifications apply for V_{DD} = 5V, $R_L = 8\Omega$ unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

	Symbol Parameter Conditions	LM4861		Limite	
Symbol		Conditions	Typical (Note 6)	Limit (Note 7)	(Limits)
V _{DD}	Supply Voltage	- 1 -		2.7 5.5	V (min) V (max)
IDD	Quiescent Power Supply Current	V _{IN} = 0V, I _O = 0A (Note 8)	6.5	10.0	mA (max)
I _{SD}	Shutdown Current	V _{pin1} = V _{DD} (Note 9)	0.6		μΑ
Vos	Output Offset Voltage	$V_{IN} = 0V$	5.0	50.0	mV (max)
Po	Output Power	THD + N = 1% (max); f = 1 kHz		0.50	W (min)
THD+N	Total Harmonic Distortion + Noise	$P_0 = 500 \text{ mWrms}$; 20 Hz $\leq f \leq 20 \text{ kHz}$	0.45		%
PSRR	Power Supply Rejection Ratio	$V_{DD} = 4.9V \text{ to } 5.1V$	65		dB

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_JA$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4861, $T_{JMAX} = 150^{\circ}$ C, and the typical junction-to-ambient thermal resistance, when board mounted, is 170° C/W.

Note 4: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Note 5: Machine Model, 220 pF-240 pF discharged through all pins.

Note 6: Typicals are measured at 25°C and represent the parametric norm.

Note 7: Limits are guaranteed to Nationai's AOQL (Average Outgoing Quality Level).

Note 8: The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.

Note 9: Shutdown current has a wide distribution. For power management sensitive designs, contact your local National Semiconductor Sales Office.

1-184

-
4
ò
Ő

100k

2

External Components Description (Figures 1, 2)				
Components	Functional Description			
1. R _i	Inverting input resistance which sets the closed-loop gain in conjunction with R_f . This resistor also forms a high pass filter with C_j at $f_C = 1/(2\pi R_j C_j)$.			
2. C _i	Input coupling capacitor which blocks DC voltage at the amplifier's input terminals. Also creates a highpass filter with R _i at f _C = $1/(2\pi R_i C_i)$.			
3. R _f	Feedback resistance which sets closed-loop gain in conjunction with R _i .			
4. C _S	Supply bypass capacitor which provides power supply filtering. Refer to the Application Information section for proper placement and selection of supply bypass capacitor.			
5. C _B	Bypass pin capacitor which provides half supply filtering. Refer to the Application Information section for proper placement and selection of bypass capacitor.			
6. C _f *	Used when a differential gain of over 10 is desired. C_f in conjunction with R_f creates a low-pass filter which bandwidth limits the amplifier and prevents high frequency oscillation bursts. $f_c = 1/(2\pi R_f C_f)$			

*Optional component dependent upon specific design requirements. Refer to the Application Information section for more information.

Typical Performance Characteristics

1-186

W.

Application Information

BRIDGE CONFIGURATION EXPLANATION

As shown in *Figure 1*, the LM4861 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unitygain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of R_t to R_i while the second amplifier's gain is fixed by the two internal 40 k Ω resistors. *Figure 1* shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase 180°. Consequently, the differential gain for the IC is:

$$A_{vd} = 2 * (R_f/R_i)$$

By driving the load differentially through outputs V_{O1} and V_{O2} , an amplifier configuration commonly referred to as "bridged mode" is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of its load is connected to ground.

A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping which will damage high frequency transducers used in loudspeaker systems, please refer to the **Audlo Power Amplifier Design** section.

A bridge configuration, such as the one used in Boomer Audio Power Amplifiers, also creates a second advantage over single-ended amplifiers. Since the differential outputs, V_{O1} and V_{O2}, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor in a single supply, single-ended amplifier, the half-supply bias across the load would result in both increased internal IC power dissipation and also permanent loudspeaker damage. An output coupling capacitor forms a high pass filter with the load requiring that a large value such as 470 μ F be used with an 8 Ω load to preserve low frequency response. This combination does not produce a flat response down to 20 Hz, but does offer a compromise between printed circuit board size and system cost, versus low frequency response.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or singleended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Equation 1 states the maximum power dissipation point for a bridge amplifier operating at a given supply voltage and driving a specified output load.

$$P_{\text{DMAX}} = 4^* (V_{\text{DD}})^2 / (2\pi^2 R_{\text{L}})$$
(1)

Since the LM4861 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. Even with this substantial

increase in power dissipation, the LM4861 does not require heatsinking. From Equation 1, assuming a 5V power supply and an 8 Ω load, the maximum power dissipation point is 625 mW. The maximum power dissipation point obtained from Equation 1 must not be greater than the power dissipation that results from Equation 2:

$$P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$$
(2)

For the LM4861 surface mount package, $\theta_{JA} = 170^{\circ}C/W$ and TJMAX = 150°C. Depending on the ambient temperature, TA, of the system surroundings, Equation 2 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 1 is greater than that of Equation 2, then either the supply voltage must be decreased or the load impedance increased. For the typical application of a 5V power supply, with an 8Ω load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 44°C provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature can be increased. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers.

POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. As displayed in the **Typical Performance Characteristics** section, the effect of a larger half supply bypass capacitor is improved low frequency THD + N due to increased half-supply stability. Typical applications employ a 5V regulator with 10 μ F and a 0.1 μ F bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4861. The selection of bypass capacitors, especially C_B, is thus dependent upon desired low frequency THD + N, system cost, and size constraints.

SHUTDOWN FUNCTION

In order to reduce power consumption while not in use, the LM4861 contains a shutdown pin to externally turn off the amplifier's bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the shutdown pin. Upon going into shutdown, the output is immediately disconnected from the speaker. There is a built-in threshold which produces a drop in quiescent current to 500 uA typically. For a 5V power supply, this threshold occurs when 2V-3V is applied to the shutdown pin. A typical guiescent current of 0.6 µA results when the supply voltage is applied to the shutdown pin. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up resistor of 47 kΩ will disable the LM4861. There are no soft pull-down resistors inside the LM4861, so a definite shutdown pin voltage must be applied externally, or the internal logic gate will be left floating which could disable the amplifier unexpectedly.

Application information (Continued)

HIGHER GAIN AUDIO AMPLIFIER

The LM4861 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential gain of greater than 10 is required, then a feedback capacitor is needed, as shown in Figure 2, to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates unwanted high frequency oscillations. Care should be taken when calculating the -3 dB frequency in that an incorrect combination of Rf and Cf will cause rolloff before 20 kHz. A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is $R_f = 100 k\Omega$ and $C_f = 5 pF$. These components result in a -3 dB point of approximately 320 kHz. Once the differential gain of the amplifier has been calculated, a choice of Rf will result, and Cf can then be calculated from the formula stated in the External Components Description section.

VOICE-BAND AUDIO AMPLIFIER

Many applications, such as telephony, only require a voiceband frequency response. Such an application usually requires a flat frequency response from 300 Hz to 3.5 kHz. By adjusting the component values of *Figure 2*, this common application requirement can be implemented. The combination of R_i and C_i form a highpass filter while R_f and C_f form a lowpass filter. Using the typical voice-band frequency range, with a passband differential gain of approximately 100, the following values of R_i, C_i, R_f, and C_f follow from the equations stated in the **External Components Description** section.

 R_{i} = 10 k Ω , R_{f} = 510k , C_{i} = 0.22 μF ,and C_{f} = 15 pF

Five times away from a -3 dB point is 0.17 dB down from the flatband response. With this selection of components, the resulting -3 dB points, f_L and f_H, are 72 Hz and 20 kHz, respectively, resulting in a flatband frequency response of better than ± 0.25 dB with a rolloff of 6 dB/octave outside of the passband. If a steeper rolloff is required, other common bandpass filtering techniques can be used to achieve higher order filters.

SINGLE-ENDED AUDIO AMPLIFIER

Although the typical application for the LM4861 is a bridged monoaural amp, it can also be used to drive a load singleendedly in applications, such as PC cards, which require that one side of the load is tied to ground. Figure 3 shows a common single-ended application, where VO1 is used to drive the speaker. This output is coupled through a 470 µF capacitor, which blocks the half-supply DC bias that exists in all single-supply amplifier configurations. This capacitor, designated Co in Figure 3, in conjunction with RL, forms a highpass filter. The -3 dB point of this high pass filter is $1/(2\pi R_1 C_0)$, so care should be taken to make sure that the product of R₁ and C_O is large enough to pass low frequencies to the load. When driving an 8Ω load, and if a full audio spectrum reproduction is required, Co should be at least 470 µF. VO2, the output that is not used, is connected through a 0.1 µF capacitor to a 2 kΩ load to prevent instability. While such an instability will not affect the waveform of VO1, it is good design practice to load the second output.

AUDIO POWER AMPLIFIER DESIGN

Design a 500 mW / 8 Ω Audio Amplifier

Given:

500 mWrms
80
1 Vrms(max)
20 kΩ
20 Hz-20 kHz ±0.25 dB

A designer must first determine the needed supply rail to obtain the specified output power. Calculating the required supply rail involves knowing two parameters, V_{opeak} and also the dropout voltage. The latter is typically 0.7V. V_{opeak} can be determined from equation 3.

$$V_{\text{opeak}} = \sqrt{(2R_{\text{L}}P_{\text{O}})} \tag{3}$$

For 500 mW of output power into an 8Ω load, the required V_{opeak} is 2.83V. A minumum supply rail of 3.53V results from adding V_{opeak} and V_{od}. But 3.53V is not a standard voltage that exists in many applications and for this reason, a supply rail of 5V is designated. Extra supply voltage creates dynamic headroom that allows the LM4861 to reproduce peaks in excess of 500 mW without clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the **Power Dissipation** section.

Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 4.

$$A_{vd} \ge 2^* \sqrt{(P_O R_L)} / (V_{IN}) = V_{orms} / V_{inrms}$$
 (4)

$$R_f/R_i = A_{vd}/2$$
(5)

From equation 4, the minimum A_{vd} is: $A_{vd} = 2$

Since the desired input impedance was 20 kΩ, and with a A_{vd} of 2, a ratio of 1:1 of R_f to R_i results in an allocation of $R_i = R_f = 20$ kΩ. Since the A_{vd} was less than 10, a feedback capacitor is not needed. The final design step is to address the bandwidth requirements which must be stated as a pair of -3 dB frequency points. Five times away from a -3 db point is 0.17 dB down from passband response which is better than the required ± 0.25 dB specified. This fact results in a low and high frequency pole of 4 Hz and 100 kHz respectively. As stated in the **External Components** section, R_i in conjunction with C_i create a highpass filter.

$$C_i \ge 1 / (2\pi^* 20 \text{ k}\Omega^* 4 \text{ Hz}) = 1.98 \mu\text{F}; \text{ use } 2.2 \mu\text{F}.$$

The high frequency pole is determined by the product of the desired high frequency pole, f_H , and the differential gain, A_{vd} . With a $A_{vd}=2$ and $f_H=100$ kHz, the resulting GBWP = 100 kHz which is much smaller than the LM4861 GBWP of 7 MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4861 can still be used without running into bandwidth problems.