

LM48823, LM48823TLEVAL

www.ti.com

Boomer® Audio Power Amplifier Series Mono, Bridge-Tied Load, Ceramic Speaker LM48823 Driver with I²C Volume Control and Reset

Check for Samples: LM48823, LM48823TLEVAL

FEATURES

- **Integrated Charge Pump**
- **Bridge-tied Load Output**
- **High PSRR**
- I²C Volume and Mode Control
- **Reset Input**
- Advanced Click-and-Pop Suppression
- Low Supply Current
- Minimum external components

- **Micro-power shutdown** ٠
- Available in space-saving 16-bump µSMD package

APPLICATIONS

- Cell phones
- Smart phones
- Portable media devices
- Notebook PCs

DESCRIPTION

The LM48823 is a single supply, mono, ceramic speaker driver with an integrated charge-pump, designed for portable devices, such as cell phones, where board space is at a premium. The LM48823 charge pump allows the device to deliver $5.4V_{RMS}$ from a single 4.2V supply.

The LM48823 features high power supply rejection ratio (PSRR), 93dB at 217Hz, allowing the device to operate in noisy environments without additional power supply conditioning. Flexible power supply requirements allow operation from 2.0V to 4.5V. The LM48823 features an active low reset input that reverts the device to its default state. Additionally, the LM48823 features a 32-step I²C volume control. The low power Shutdown mode reduces supply current consumption to 0.01µA.

The LM48823's superior click and pop suppression eliminates audible transients on power-up/down and during shutdown. The LM48823 is available in an ultra-small 16-bump micro SMD package (2mmx2mm).

Table 1. Key Specifications

	VALUE	UNIT
• Output Voltage at V_{DD} = 4.2V, R _L = 2.2µF + 15 Ω THD+N ≤ 1%	5.4V _{RMS} (typ)	
 Quiescent Power Supply Current at 4.2V 	3.3mA (typ)	
■ PSRR at 217Hz	93	dB (typ)
Shutdown current	0.01µA (typ)	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

LM48823, LM48823TLEVAL

SNAS464E -JUNE 2008-REVISED OCTOBER 2010

www.ti.com

Connection Diagram

TL Package

Figure 2. Top View See NS Package Number TLA1611A

Figure 3. Top View XY – Date Code TT – Lot Traceability G – Boomer Family K6 – LM48823TL

Table 2.	Ordering	Information
----------	----------	-------------

Order Number	Package	Package DWG #	Transport Media	MSL Level	Green Status
LM48823TL	16–Bump micro SMD	TLA1611A	250 units on tape and reel	1	NOPB
LM48823TLX	16–Bump micro SMD	TLA1611A	3000 units on tape and reel	1	NOPB

Copyright © 2008–2010, Texas Instruments Incorporated

EXAS

Pin Designator	Pin Name	Pin Function
A1	SV _{DD}	Signal Power Supply
A2	SGND	Signal Ground
A3	BYPASS	Amplifier Reference Bypass
A4	INA	Amplifier Inverting input A
B1	OUTA	Amplifier Inverting output A
B2	OUTB	Amplifier Non-Inverting Output B
B3	RESET	Active Low Reset Input. Connect to V_{DD} for normal operation. Toggle between V_{DD} and GND to reset the device.
B4	INB	Amplifier Non-Inverting Input B
C1	V _{SS}	Charge Pump Output
C2	SCL	I ² C Serial Clock Input
C3	SDA	I ² C Serial Data Input
C4	I ² CV _{DD}	I ² C Supply Voltage
D1	C1N	Charge Pump Flying Capacitor Negative Terminal
D2	PGND	Power Ground
D3	C1P	Charge Pump Flying Capacitor Positive Terminal
D4	PV _{DD}	Power Supply

Table 3 Bump Descriptions

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

Supply Voltage (Note 1)	5.25V
Storage Temperature	-65°C to +150°C
Input Voltage	-0.3V to V _{DD} +0.3V
Power Dissipation (Note 3)	Internally Limited
ESD Rating (Note 4)	8kV
ESD Rating (Note 5)	250V
Junction Temperature	150°C
Thermal Resistance	
θ _{JA} (typ) - (TLA1611A)	63.2°C/W

(1) :. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Operating Ratings

4

Temperature Range	
$T_{MIN} \le T_A \le T_{MAX}$	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$
Supply Voltage	
PV_{DD} and SV_{DD}	$2.0V \le V_{DD} \le 4.5V$
I ² CV _{DD}	$1.8V \le I^2 C V_{DD} \le 4.5V$

RUMENTS

SNAS464E – JUNE 2008 – REVISED OCTOBER 2010

Audio Amplifier Electrical Characteristics $V_{DD} = 4.2V^{(1)}$ (2)

The following specifications apply for $A_V = 6dB$, $R_L = 2.2\mu F + 15\Omega$, $C1 = C2 = 2.2\mu F$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

			LN	148823	Unite		
Symbol	Parameter	Conditions	Typical ⁽³⁾ Limits ⁽⁴⁾		Units (Limits)		
I _{DD}	Quiescent Power Supply Current	$V_{IN} = 0V, R_L = \infty$	3.3	4.3	mA (max)		
I _{SD}	Shutdown Current	Shutdown Enabled	0.01	1	μA (max)		
V _{OS}	Differential Output Offset Voltage	V _{IN} = 0V	0.5	3	mV (max)		
VIH	Logic High Input Threshold	RESET		1.4	V (min)		
VIL		RESET		0.4	V (max)		
٨	Calia	Minimum Gain Setting	-70		dB		
A _V	Gain	Maximum Gain Setting	24		dB		
D		Maximum Gain Setting	9	7 11	kΩ (min) kΩ (max)		
R _{IN}	Input Resistance	Minimum Gain Setting	80	64 96	kΩ (min) kΩ (max)		
Vo	Output Voltage	$R_L = 2.2\mu$ F+15Ω, THD+N = 1% f = 1kHz f = 5kHz	5.4 3.1		V _{RMS} V _{RMS}		
THD+N	Total Harmonic Distortion + Noise	$V_{O} = 4V_{RMS}$	0.015		%		
		V _{RIPPLE} = 200mV _{P-P} Sine, Inputs AC GND, C _{IN} = 1µF, input referred					
PSRR	Power Supply Rejection Ratio	f = 217Hz f = 1kHz	93 93	82	dB (min) dB		
SNR	Signal-to-Noise-Ratio	$P_{OUT} = 40$ mW, R _L = 16 Ω f = 1kHz	119		dB		
∈os	Output Noise	AV = 4dB, Input Referred, A-weighted Filter	5.5		μV		
T _{WU}	Wake-Up Time		200		μs		

(1) :. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) Typical values represent most likely parametric norms at $T_A = +25^{\circ}$ C, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

(4) Datasheet min/max specification limits are guaranteed by test or statistical analysis.

SNAS464E – JUNE 2008 – REVISED OCTOBER 2010

www.ti.com

I2C Interface Characteristics $V_{DD} = 3.0V^{(1)}$ (2)

The following specifications apply for $A_V = 6dB$, $R_L = 2.2\mu F + 15\Omega$, $C1 = C2 = 2.2\mu F$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Cumhal	Banamatan	Conditions	L	M48823	Units
Symbol	Parameter	Conditions	Typical ⁽³⁾	Limits ⁽⁴⁾	(Limits)
t ₁	SCL period			2.5	µs (min)
t ₂	SDA Setup Time			100	ns (min)
t ₃	SDA Stable Time			0	ns (min)
t ₄	Start Condition Time			100	ns (min)
t ₅	Stop Condition Time			100	ns (min)
V _{IH}	Logic High Input Threshold			$0.7 \times l^2 CV_{DD}$	V (min)
V _{IL}	Logic Low Input Threshold			$0.3 \times I^2 CV_{DD}$	V (max)

(1) :. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

(4) Datasheet min/max specification limits are guaranteed by test or statistical analysis.

6

Copyright © 2008–2010, Texas Instruments Incorporated

ÈXAS

NSTRUMENTS

SNAS464E -JUNE 2008-REVISED OCTOBER 2010

8

Copyright © 2008–2010, Texas Instruments Incorporated

SNAS464E -JUNE 2008-REVISED OCTOBER 2010

Application Information

FXAS

NSTRUMENTS

I²C COMPATIBLE INTERFACE

The LM48823 is controlled through an I²C compatible serial interface that consists of a serial data line (SDA) and a serial clock (SCL). The clock line is uni-directional. The data line is bi-directional (open drain). The LM48823 and the master can communicate at clock rates up to 400kHz. Figure 2 shows the I²C interface timing diagram. Data on the SDA line must be stable during the HIGH period of SCL. The LM48823 is a transmit/receive slaveonly device, reliant upon the master to generate the SCL signal. Each transmission sequence is framed by a START condition and a STOP condition (Figure 3). Each data word, device address and data, transmitted over the bus is 8 bits long and is always followed by an acknowledge pulse (Figure 4). The LM48823 device address is 1110110.

I²C BUS FORMAT

The I²C bus format is shown in Figure 4. The START signal, the transition of SDA from HIGH to LOW while SCL is HIGH, is generated, alerting all devices on the bus that a device address is being written to the bus.

SNAS464E – JUNE 2008 – REVISED OCTOBER 2010

The 7-bit device address is written to the bus, most significant bit (MSB) first, followed by the R/W bit. R/W = 0 indicates the master is writing to the slave device, R/W = 1 indicates the master wants to read data from the slave device. Set R/W = 0; the LM48823 is a WRITE-ONLY device and will not respond to the R/W = 1. The data is latched in on the rising edge of the clock. Each address bit must be stable while SCL is HIGH. After the last address bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48823 receives the correct address, the device pulls the SDA line low, generating an acknowledge bit (ACK).

Once the master device registers the ACK bit, the 8-bit register data word is sent. Each data bit should be stable while SCL is HIGH. After the 8-bit register data word is sent, the LM48823 sends another ACK bit. Following the acknowledgement of the register data word, the master issues a STOP bit, allowing SDA to go high while SCL is high.

Figure 4. I²C Timing Diagram

Figure 5. Start and Stop Diagram

Figure 6. Example Write Sequence

Table 4	L Device	Address
		Audicaa

	B7	B6	B5	B4	B3	B2	B1	B0 R/W
Chip Address	1	1	1	0	1	1	0	0

Table 5. Mode Control Registers

					-			
Register Name	B7	B6	B5	B4	B3	B2	B1	В0
Mode Control	VOL4	VOL3	VOL2	VOL1	VOL0	0	ENABLE_A	ENABLE_B

SNAS464E – JUNE 2008 – REVISED OCTOBER 2010

GENERAL AMPLIFIER FUNCTION

The LM48823 is a ceramic speaker driver that utilizes National's inverting charge pump technology to deliver over $15V_{P,P}$ to a 2.2µF ceramic speaker while operating from a single 4.2V supply. The LM48823 features a unique input stage that converts two single-ended audio signals into a mono BTL output. This stereo to mono conversion is useful in applications where a stereo audio source is driving a single ceramic speaker, such as a ringer on a cellular phone. Connect INA and INB as shown in Figure 5 for the stereo-to-mono conversion. When the LM48823 is used with a single-ended mono audio source, connect both INA and INB to the audio source as shown in Figure 6.

Figure 7. Stereo to Mono Conversion Connection Example

Figure 8. Mono Audio Source Connection Example

VOLUME CONTROL

Table 6. Volume Control

Volume Step	VOL4	VOL3	VOL2	VOL1	VOL0	Gain (dB)
1	0	0	0	0	0	-70
2	0	0	0	0	1	-56
3	0	0	0	1	0	-46
4	0	0	0	1	1	-38
5	0	0	1	0	0	-32
6	0	0	1	0	1	-28
7	0	0	1	1	0	-24
8	0	0	1	1	1	-21
9	0	1	0	0	0	-18
10	0	1	0	0	1	-15
11	0	1	0	1	0	-12
12	0	1	0	1	1	-10
13	0	1	1	0	0	-8
14	0	1	1	0	1	-6

Copyright © 2008–2010, Texas Instruments Incorporated

SNAS464E -JUNE 2008-REVISED OCTOBER 2010

www.ti.com

Table 6. Volume Control (continued)								
Volume Step	VOL4	VOL3	VOL2	VOL1	VOL0	Gain (dB)		
15	0	1	1	1	0	-4		
16	0	1	1	1	1	-2		
17	1	0	0	0	0	0		
18	1	0	0	0	1	2		
19	1	0	0	1	0	4		
20	1	0	0	1	1	6		
21	1	0	1	0	0	8		
22	1	0	1	0	1	10		
23	1	0	1	1	0	12		
24	1	0	1	1	1	14		
25	1	1	0	0	0	16		
26	1	1	0	0	1	18		
27	1	1	0	1	0	19		
28	1	1	0	1	1	20		
29	1	1	1	0	0	21		
30	1	1	1	0	1	22		
31	1	1	1	1	0	23		
32	1	1	1	1	1	24		

Table 6. Volume Control (continued)

SHUTDOWN FUNCTION

The LM48823 features a low-power shutdown mode that disables the device, lowering the quiescent current to 0.01μ A. Set bits B1 (ENABLE_A) and B2 (ENABLE_B) to 0 to disable the amplifiers and charge pump. Set both ENABLE_A and ENABLE_B to 1 for normal operation. Shutdown mode does not clear the I²C register. When reenabled, the device returns to its previous volume setting. To clear the I²C register, either remove power from the device, or toggle RESET (see RESET section).

RESET

The LM48823 features an active low reset input. Driving RESET low clears the I²C register. Volume control is set to 00000 (-70dB) and both ENABLE_A and ENABLE_B are set to 0, disabling the device. While RESET is low, the LM48823 ignores any I²C data. After the device is reset, and RESET is driven high, the LM48823 remains in shutdown mode with the volume set to -70dB. Re-enable the device by writing to the I²C register.

PROPER SELECTION OF EXTERNAL COMPONENTS

Power Supply Bypassing/Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Place a 1μ F ceramic capacitor from V_{DD} to GND. Additional bulk capacitance may be added as required.

Bypass Capacitor Selection

The BYPASS capacitor, C_{BYPASS}, improves PSRR, noise rejection and output offset. For best results, use a capacitor of identical value to the input coupling capacitors

Charge Pump Capacitor Selection

Use low ESR ceramic capacitors (less than $100m\Omega$) for optimum performance.

SNAS464E -JUNE 2008-REVISED OCTOBER 2010

www.ti.com

Charge Pump Flying Capacitor (C1)

The flying capacitor (C1) affects the load regulation and output impedance of the charge pump. A C1 value that is too low results in a loss of current drive, leading to a loss of amplifier headroom. A higher value C1 improves load regulation and lowers charge pump output impedance to an extent. Above 2.2μ F, the R_{DS(ON)} of the charge pump switches and the ESR of C1 and C2 dominate the output impedance. A lower value capacitor can be used in systems with low maximum output power requirements.

Charge Pump Hold Capacitor (C2)

The value and ESR of the hold capacitor (C2) directly affects the ripple on CPV_{SS}. Increasing the value of C2 reduces output ripple. Decreasing the ESR of C2 reduces both output ripple and charge pump output impedance. A lower value capacitor can be used in systems with low maximum output power requirements.

Input Capacitor Selection

Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48823. The input capacitors create a high-pass filter with the input resistors R_{IN} . The -3dB point of the high pass filter is found using Equation (1) below.

 $f = 1 / 2\pi R_{IN}C_{IN} \quad (Hz)$

(1)

Where the value of R_{IN} is given in the Electrical Characteristics Table.

High pass filtering the audio signal helps protect the speakers. When the LM48823 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

PCB Layout Guidelines

Minimize trace impedance of the power, ground and all output traces for optimum performance. Voltage loss due to trace resistance between the LM48823 and the load results in decreased output power and efficiency. Trace resistance between the power supply and ground has the same effect as a poorly regulated supply, increased ripple and reduced peak output power. Use wide traces for power supply inputs and amplifier outputs to minimize losses due to trace resistance, as well as route heat away from the device. Proper grounding improves audio performance, minimizes crosstalk between channels and prevents switching noise from interfering with the audio signal. Use of power and ground planes is recommended.

Place all digital components and route digital signal traces as far as possible from analog components and traces. Do not run digital and analog traces in parallel on the same PCB layer. If digital and analog signal lines must cross either over or under each other, ensure that they cross in a perpendicular fashion.

Designator	Quantity	Description
C1, C2	2	2.2µF ±10% 10V X5R Ceramic Capacitor (603) Panasonic ECJ-1VB1A225K Murata GRM033R6OJ104KE19D
C3 – C5	3	1µF ±10% 10V Tantalum Capacitor (402) AVX TACK105M010QTA
C6	1	4.7µF ±10% 6.3V X5R Ceramic Capacitor (603) Panasonic ECJ-1VB0J475K Murata GRM188R60J475KE19D
C7, C8	2	0.1µF ±10% 6.3V X5R Ceramic Capacitor (201) Panasonic ECJ-ZEB0J104K Murata GRM188R61A225KE34D
JU1 – JU5	5	2 Pin Header
JU6, JU7	3	2 Pin Header
J1	1	5-Pin I ² C Header

LM48823TL Demoboard Bill of Materials

Copyright © 2008–2010, Texas Instruments Incorporated

LM48823, LM48823TLEVAL

www.ti.com

SNAS464E – JUNE 2008 – REVISED OCTOBER 2010

Designator	Quantity	Description
LM4823TL	1	LM48823TL (16-Bump microSMD)

Demo Board Schematic

Figure 9. LM48823 Demo Board Schematic

PC Board Layout

Figure 10. FIGURE 8: Top Silkscreen Layer

SNAS464E - JUNE 2008-REVISED OCTOBER 2010

Figure 12. FIGURE 10: Layer 2

Copyright © 2008–2010, Texas Instruments Incorporated

www.ti.com

Figure 15. FIGURE 13: Bottom Silkscreen

Revision History

Rev	Date	Description
1.0	06/27/08	Initial release.
1.01	07/15/08	Edited the Ordering Information table.
1.02	10/08/10	Updated some Limits (under Gain) in the Volume Control table.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
LM48823TL/NOPB	ACTIVE	DSBGA	YZR	16	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
LM48823TLX/NOPB	ACTIVE	DSBGA	YZR	16	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM48823TL/NOPB	DSBGA	YZR	16	250	178.0	8.4	2.08	2.08	0.76	4.0	8.0	Q1
LM48823TLX/NOPB	DSBGA	YZR	16	3000	178.0	8.4	2.08	2.08	0.76	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Nov-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM48823TL/NOPB	DSBGA	YZR	16	250	203.0	190.0	41.0
LM48823TLX/NOPB	DSBGA	YZR	16	3000	206.0	191.0	90.0

YZR0016

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated