

LM48903 Boomer® Audio Power Amplifier Series Stereo Class D Spatial Array

Check for Samples: LM48903

FEATURES

- Spatial Sound Processing
- I²S Input
- Stereo, Analog, Differential-Input ADC
- **Edge Rate Control**
- Short Circuit and Thermal Overload Protection
- Minimum external components
- **Click and Pop suppression**
- Micro-power shutdown

Available in space-saving micro SMD package

APPLICATIONS

- **Smart Phones**
- **Portable Gaming**
- **Tablets**
- **Multimedia Devices**
- **MP3 Player Accessories**

DESCRIPTION

The LM48903 is a stereo Class D amplifier that utilizes TI's proprietary spatial sound processor to create an enhanced sound stage for portable multimedia devices. The Class D output stages feature National's edge rate control (ERC) PWM architecture that significantly reduces RF emissions while preserving audio guality and efficiency.

The LM48903's flexible I²S interface is compatible with standard serial audio interfaces. A stereo differential-input ADC gives the device the ability to process analog stereo audio signals.

The LM48903 is configured through an I²C compatible interface and is capable of delivering 1.7W/channel of continuous output power into an 8Ω load with less than 10% THD+N.

Output short circuit and thermal overload protection prevent the device from being damaged during fault conditions. Click and pop suppression eliminates audible transients on power-up/down and during shutdown. The LM48903 is available in space saving micro SMD package.

Table 1. Key Specifications

	VALUE	UNIT
 SNR (A-Weighted) 	90dBA (typ)	■ Output Power/chann el, PV _{DD} = 5V
$R_L = 8\Omega$, THD+N $\leq 1\%$	1.3	W (typ)
∎ THD+N	0.08% (typ)	
Efficiency/Channel	91% (typ)	
■ PSRR at 217Hz	69	dB (typ)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

SNAS587 - APRIL 2012

www.ti.com

Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Figure 2. Top View

SNAS587-APRIL 2012

www.ti.com

30–Bump Marking

Figure 3. Top View XY = Date code TT = Die traceability G = Boomer Family K6 = LM48903TL

SNAS587-APRIL	2012

BUMP	NAME	DESCRIPTION	
A1	DGND	Digital Ground	
A2	MCLK	Master Clock	
A3	IOV _{DD}	Digital Interface Power Supply	
A4	SDA	I ² C Serial Data Input	
A5	SCL	I ² C Clock Input	
B1	DV _{DD}	Digital Power Supply	
B2	SHDN	Active Low Shutdown. Connect to VDD for normal operation.	
B3	SDIO	I ² S Serial Data Input/Output	
B4	WS	I ² S Word Select Input	
B5	SCLK	Serial Clock Input	
C1	PLLV _{DD}	PLL Power Supply	
C2	GAIN0	Gain Setting Input 0	
C3	GAIN1	Gain Setting Input 1	
C4	MODE0	Spatial Mode Control Input 0	
C5	MODE1	Spatial Mode Control Input 1	
D1	AV _{DD2}	ADC Analog Power Supply	
D2	AGND2	ADC Analog Ground	
D3	AGND1	Modulator Analog Ground	
D4	OUT1-	Channel 1 Inverting Output. Connect to OUT2- in Parallel Mode	
D5	OUT1+	Channel 1 Non-Inverting Output. Connect to OUT2+ in Parallel Mode	
E1	INL-	Left Channel Inverting Analog Input	
E2	INL+	Left Channel Non-Inverting Analog Input	
E3	AV _{DD1}	Modulator Analog Power Supply	
E4	PGND	Power Ground	
E5	PV _{DD}	Class D Power Supply	
F1	INR-	Right Channel Inverting Analog Input	
F2	INR+	Right Channel Non-Inverting Analog Input	
F3	REF	ADC Reference Bypass	
F4	OUT2-	Channel 2 Inverting Output. Connect to OUT1- in Parallel Mode.	

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

Supply Voltage	
AV _{DD} , PV _{DD} , PLV _{DD} , IOV _{DD} ⁽¹⁾	6V
Supply Voltage, DV _{DD} ⁽¹⁾	2.2V
Storage Temperature	−65°C to + 150°C
Input Voltage	-0.3V to V _{DD} + 0.3V
Power Dissipation ⁽³⁾	Internally limited
ESD Susceptibility ⁽⁴⁾	2000V
ESD Susceptibility ⁽⁵⁾	150V
Junction Temperature	150°C
Thermal Resistance	
θ _{JA} (TLA30)	54°C/W

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA}, and the ambient temperature, T_A. The maximum allowable power dissipation is P_{DMAX} = (T_{JMAX} - T_A) / θ_{JA} or the given in *Absolute Maximum Ratings*, whichever is lower.

(4) Human body model, applicable std. JESD22-A114C.

(5) Machine model, applicable std. JESD22-A115-A.

Operating Ratings

Temperature Range	
$T_{MIN} \le T_A \le T_{MAX}$	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$
Supply Voltage	
AV _{DD}	$2.7V \le AV_{DD} \le 5.5V$
PV _{DD}	$2.7V \le PV_{DD} \le 5.5V$
PLLV _{DD}	$2.7V \le PLLV_{DD} \le 5.5V$
IOV _{DD}	$1.62V \le IOV_{DD} \le 5.5V$
DV _{DD}	$1.62 \text{V} \le \text{DV}_{\text{DD}} \le 1.98 \text{V}$

LM48903

SNAS587 - APRIL 2012

www.ti.com

Electrical Characteristics $PV_{DD} = AV_{DD}$, $IOV_{DD} = PLLV_{DD} = 3.6V$, $DV_{DD} = 1.8$ ^{(1) (2)}

The following specifications apply for $A_V = 0$ dB, $C_{REF} = 4.7\mu$ F, $R_L = 8\Omega$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

a · ·			LM48903			Units
Symbol	Parameter	Conditions	Min (2)	Тур (3)	Max (2)	(Limits)
AV _{DD}	Analog Supply Voltage Range		2.7		5.5	V
PV _{DD}	Amplifier Supply Voltage Range		2.7		5.5	V
PLLV _{DD}	PLL Supply Voltage Range		2.7		5.5	V
IOV _{DD}	Interface Supply Voltage Range		1.62		5.5	V
DV _{DD}	Digital Supply Voltage Range		1.62		1.98	V
Al _{DD}	Analog Quiescent Supply Current			15.2	19	mA
PI _{DD}	Amplifier Quiescent Supply Current	$R_{L} = 8\Omega$		2.6		mA
PLLI _{DD}	PLL Quiescent Supply Current			1.3		mA
DI _{DD}	Quiescent Digital Power Supply Current			5.4	5.8	mA
I _{SD}	Shutdown Current (Analog, Amplifier and PLL Supplies)	Shutdown Enabled		0.4	3.5	μA
DI _{STBY}	Digital Standby Current			30		μA
DI _{SD}	Digital Shutdown Current	Shutdown Enabled		6.6	10	μA
V _{OS}	Differential Output Offset Voltage	V _{IN} = 0	-7.5	0.8	7.5	mV
T NALL A LAR T' AN A		Power Up (Device Initialization)		150		ms
T _{WU}	Wake-up Time	From Shutdown		28.5		ms
f _{SW}	Switching Frequency	f _S = 48kHz		384		kHz
		$R_{L} = 4\Omega, THD+N = 10\%$ f = 1kHz, 22kHz BW V _{DD} = 5V		2.8		W
		$V_{DD} = 3.6V$		1.4		W
		$R_L = 4\Omega$, THD+N = 1% f = 1kHz, 22kHz BW		1.4		
		$V_{DD} = 5V$		2.2		W
_		V _{DD} = 3.6V		1.2		W
P _O	Output Power/Channel	$R_L = 8\Omega$, THD+N = 10% f = 1kHz, 22kHz BW	I	I	I	1
		$V_{DD} = 5V$		1.7		W
		V _{DD} = 3.6V		860		mW
		$R_L = 8\Omega$, THD+N = 1% f = 1kHz, 22kHz BW	I		I	
		$V_{DD} = 5V$		1.3		W
		V _{DD} = 3.6V	500	650		mW
		$R_{L} = 4\Omega$, THD+N = 10%, f = 1kHz, 2	22kHz BW	*		
		$V_{DD} = 5V$		3.3		W
D		V _{DD} = 3.6V		1.7		W
Po	Output Power (Parallel Mode)	$R_{L} = 4\Omega$, THD+N = 1%, f = 1kHz, 22	2kHz BW			•
		$V_{DD} = 5V$		2.5		W
		V _{DD} = 3.6V		1.2		W
THD+N	Total Harmonic Distortion + Noise	$P_O = 350 \text{mW}, \text{ f} = 1 \text{kHz}, \text{ R}_L = 8\Omega$		0.08		%

(1) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(2) R_L is a resistive load in series with two inductors to simulate an actual speaker load. For $R_L = 8\Omega$, the load is 15μ H+ 8Ω + 15μ H. For $R_L = 4\Omega$, the load is 15μ H+ 4Ω + 15μ H.

(3) Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

Copyright © 2012, Texas Instruments Incorporated

SNAS587 - APRIL 2012

Electrical Characteristics $PV_{DD} = AV_{DD}$, $IOV_{DD} = PLLV_{DD} = 3.6V$, $DV_{DD} = 1.8$ ^{(1) (2)} (continued)

The following specifications apply for $A_V = 0$ dB, $C_{REF} = 4.7\mu$ F, $R_L = 8\Omega$, f = 1kHz, unless otherwise specified. Limits apply for $T_A = 25$ °C.

				LM48903		11-14-
Symbol	Parameter	Conditions	Min (2)	Тур (3)	Max (2)	Units (Limits)
		$V_{RIPPLE} = 200 m V_{P-P}$ sine, Inputs AC	GND, C _{IN} =	1µF		
		$f_{RIPPLE} = 217Hz$, Applied to PV_{DD}		69		dB
		$f_{RIPPLE} = 217Hz$, Applied to DV_{DD}		64		dB
PSRR	Power Supply Rejection Ratio (ADC Path)	$f_{RIPPLE} = 1 kHz$, Applied to PV_{DD}	60	68		dB
		$f_{RIPPLE} = 1 kHz$, Applied to DV_{DD}	56	62		dB
		$f_{RIPPLE} = 10 kHz$, Applied to PV_{DD}		62		dB
		$f_{RIPPLE} = 10 kHz$, Applied to DV_{DD}		52		dB
		$V_{RIPPLE} = 200 m V_{P-P}$ sine, Inputs $-\infty d$	IBFS			
	Power Supply Rejection Ratio (I ² S Path)	$f_{RIPPLE} = 217Hz$, Applied to PV_{DD}		68		dB
		$f_{RIPPLE} = 217Hz$, Applied to DV_{DD}		72		dB
PSRR		$f_{RIPPLE} = 1 kHz$, Applied to PV_{DD}	60	67		dB
		$f_{RIPPLE} = 1 kHz$, Applied to DV_{DD}	55	69		dB
		$f_{RIPPLE} = 10 kHz$, Applied to PV_{DD}		58		dB
		$f_{RIPPLE} = 10 kHz$, Applied to DV_{DD}		56		dB
CMRR	Common Mode Rejection Ratio	$V_{RIPPLE} = 1V_{P-P}, f_{RIPPLE} = 217Hz, A_V = 0dB$		78		dB
		$V_{DD} = 5V, P_{O} = 1.1W$		91		%
η	Efficiency/Channel	$V_{DD} = 3.6V, P_{O} = 400mW$		90		%
	F#:sisesor	$V_{DD} = 5V, P_{O} = 1.1W$		86		%
η	Efficiency	$V_{DD} = 3.6V, P_{O} = 400mW$		83		%
		ADC Input, P _O = 1W		89		dB
SNR	Signal-to-NoiseRatio	I^2S Input, $P_O = 1W$		90		dB
ε _{OS}	Output Noise	Inputs AC GND, A-weighted, $A_V = 0$ dB		130		μV
		I ² S Input		72		μV
X _{TALK}	Crosstalk			72		dB

I²C Interface Characteristics ⁽¹⁾ ⁽²⁾

The following specifications apply for $R_{PU} = 1k\Omega$ to IOV_{DD}, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

			LM48903		LM48903			
Symbol	Parameter	Conditions	Min (3)	Тур (4)	Max (3)	Units		
V _{IH}	Logic Input High Threshold	SDA, SCL	0.7*IOV _{DD}			V		
VIL	Logic Input Low Threshold	SDA, SCL			0.3	mV		
V _{OL}	Logic Output Low Threshold	SDA, I _{SDA} = 3.6mA			0.35	V		
I _{OH}	Logic Output High Current	SDA, SCL			2	μA		
	SCL Frequency				400	kHz		
1	Hold Time (repeated START Condition)		0.6			μs		
2	Clock Low Time		1.3			μs		
3	Clock High Time		600			ns		
4	Setup Time for Repeated START condition		600			ns		
5	Data Hold Time	Output	300		900	ns		
6	Data Setup Time		100			ns		
7	SDA Rise Time				300	ns		
8	SDA Fall Time				300	ns		
9	Setup Time for STOP Condition		600			ns		
10	Bus Free Time Between STOP and START Condition		1.3			μs		

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

(3) Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

(4) Typical values represent most likely parametric norms at $T_A = +25^{\circ}$ C, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

SNAS587-APRIL 2012

I²S Timing Characteristics ^{(1) (2)}

The following specifications apply for $DV_{DD} = 1.8V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Symbol			LM48903			11
	Parameter	Conditions	Min (3)	Тур (4)	Max (3)	Units (Limits)
t _{MCLKL}	MCLK Pulse Width Low		16			ns
t _{MCLKH}	MCLK Pulse Width High		16			ns
t _{MCLKY}	MCLK Period		27			ns
t _{BCLKR}	SCLK rise time				3	ns
t _{BCLKCF}	SCLK fall time				3	ns
t _{BCLKDS}	SCLK Duty Cycle			50		%
T _{DL}	LRC Propagation Delay from SCLK falling edge				10	ns
T _{DST}	DATA Setup Time to SCLK Rising Edge		10			ns
T _{DHT}	DATA Hold Time from SCLK Rising Edge		10			ns

(1) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

R_L is a resistive load in series with two inductors to simulate an actual speaker load. For R_L = 8Ω , the load is 15μ H+ 8Ω + 15μ H. For R_L = (2) $4\overline{\Omega}$, the load is 15μ H+4 Ω +15 μ H.

(3)

Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis. Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the *Recommended Operation Conditions* at the time of (4) product characterization and are not guaranteed.

Typical Performance Characteristics

 $\label{eq:thdef} THD+N $$$$ VS$$$FREQUENCY$$$$$V_{DD} = 3.6V, P_{OUT} = 400mW, R_L = 8\Omega$$$$ Stereo Mode, I^2S Input$$$

 $\label{eq:thdef} THD+N $$$$$ FREQUENCY $$$$$ V_{DD} = 3.6V, P_{OUT} = 500mW, R_L = 4\Omega $$$$ Stereo Mode, I^2S Input $$$

 $\label{eq:thdef} THD+N $$$$$ FREQUENCY $$$$$$V_{DD} = 3.6V, P_{OUT} = 250mW, R_L = 4\Omega $$$$ Stereo Mode, ADC Input $$$$$

SNAS587 - APRIL 2012

www.ti.com

Typical Performance Characteristics (continued)

THD+N vs FREQUENCY V_{DD} = 5V, P_{OUT} = 1.2W, R_L = 4 Ω Stereo Mode, I²S Input THD+N vs FREQUENCY V_{DD} = 5V, P_{OUT} = 800mW, R_L = 8Ω Stereo Mode, I²S Input

THD+N vs FREQUENCY V_{DD} = 5V, P_{OUT} = 550mW, R_L = 4 Ω Stereo Mode, ADC Input

SNAS587 - APRIL 2012

www.ti.com

Typical Performance Characteristics (continued)

 $\label{eq:thdef} THD+N $$$$$ FREQUENCY $$$$$$V_{DD} = 5V, P_{OUT} = 800mW, R_L = 4\Omega $$$ Parallel Mode, I^2S Input $$$

THD+N vs FREQUENCY V_{DD} = 5V, P_{OUT} = 1.7W, R_L = 4Ω Parallel Mode, I²S Input

SNAS587-APRIL 2012

SNAS587 - APRIL 2012

www.ti.com

Typical Performance Characteristics (continued)

 EFFICIENCY vs OUTPUT POWER R_L = 8Ω, f = 1kHz, Stereo Mode, ADC Input

LM48903

SNAS587 - APRIL 2012

Typical Performance Characteristics (continued)

POWER DISSIPATION vs OUTPUT POWER $R_L = 4\Omega$, Per Channel, Stereo Mode, ADC Input

POWER DISSIPATION vs OUTPUT POWER $R_L = 8\Omega, \mbox{ Per Channel, Stereo Mode, ADC Input }$

LM48903

SNAS587 - APRIL 2012

www.ti.com

Typical Performance Characteristics (continued)

OUTPUT POWER vs SUPPLY VOLTAGE $R_L = 4\Omega$, Stereo Mode, ADC Input OUTPUT POWER vs SUPPLY VOLTAGE R_L = 4Ω, Stereo Mode, ADC Input

LM48903

SNAS587 - APRIL 2012

Typical Performance Characteristics (continued)

OUTPUT POWER vs SUPPLY VOLTAGE $R_L = 8\Omega$, Stereo Mode, ADC Input

 $\label{eq:stress} \begin{array}{c} \text{PSRR} \\ \text{VS} \\ \text{FREQUENCY} \\ \text{PV}_{\text{DD}} = 5\text{V}, \ \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}}, \ \text{R}_{\text{L}} = 8\Omega, \\ \text{ADC Input} = \text{AC GND} \end{array}$

LM48903

SNAS587 - APRIL 2012

www.ti.com

Typical Performance Characteristics (continued)

 $\label{eq:psrr} \begin{array}{c} PSRR \\ vs \\ FREQUENCY \\ DV_{DD} = 1.8V, \, V_{RIPPLE} = 200mV_{P-P}, \, R_L = 8\Omega, \\ ADC \, Input = AC \, GND \end{array}$

 $PSRR \\ VS \\ FREQUENCY \\ PV_{DD} = 5V, V_{RIPPLE} = 200mV_{P-P}, R_L = 8\Omega, \\ I^2S input = -120dBFS$

Typical Performance Characteristics (continued) PSRR vs C

vs FREQUENCY $DV_{DD} = 1.8V, V_{RIPPLE} = 200mV_{P-P}, R_{L} = 8\Omega,$ $I^{2}S input = -120dBFS$ $\label{eq:cmr} \begin{array}{c} \text{CMRR} \\ \text{Vs} \\ \text{FREQUENCY} \\ \text{V}_{\text{RIPPLE}} = 200m \text{V}_{\text{P-P}}, \text{R}_{\text{L}} = 8\Omega, \end{array}$

LM48903

SNAS587 - APRIL 2012

LM48903

SNAS587 - APRIL 2012

www.ti.com

Submit Documentation Feedback

22

Typical Performance Characteristics (continued)SHUTDOWN CURRENTDIGITAL SHUTDOWN CURRENTvsvsSUPPLY VOLTAGESUPPLY VOLTAGE

	10				
2	8				
å.	0				
	6				
5					
ş	4		-		
8			-		
BHG	2				
	0				
	1	.6 1	1.7 1	.8 1	.9 2
		,		N TAGE (V	

Application Information

I²C COMPATIBLE INTERFACE

The LM48903 is controlled through an I²C compatible serial interface that consists of a serial data line (SDA) and a serial clock (SCL). The clock and data lines are bi-directional (open drain). The LM48903 communicates at clock rates up to 400kHz. Figure 4 shows the I²C interface timing diagram. Data on the SDA line must be stable during the HIGH period of SCL. The LM48903 is a transmit/receive device, and can act as the I²C master, generating the SCL signal. Each transmission sequence is framed by a START condition and a STOP condition Figure 5.

Due to the number of data registers, the LM48903 employs a page mode scheme. Each data write consists of 7, 8 bit data bytes, device address (1 byte), 16 bit register address (2 bytes), and 32 bit register data (4 bytes). Each byte is followed by an acknowledge pulse Figure 6. Single byte read and write commands are ignored. The LM48903 device address is 0110000X.

Figure 4. I²C Timing Diagram

Figure 5. Start and Stop Diagram

WRITE SEQUENCE

The example write sequence is shown in Figure 6. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, most significant bit (MSB) first, followed by the R/W bit (R/W = 0 indicating the master is writing to the LM48903). The data is latched in on the rising edge of the clock. Each address bit must be stable while SDA is HIGH. After the R/W bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48903 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK).

Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8]. Each data bit should be stable while SCL is HIGH. After the first 8-bit register address is sent, the LM48903 sends another ACK bit. Upon receipt of acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31.24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [31:24], the master issues a STOP bit, allowing SDA to go high while SDA is high.

READ SEQUENCE

The example read sequence is shown in Figure 7. The START signal, the transition of SDA from HIGH to LOW while SDA is HIGH, is generated, altering all devices on the bus that a device address is being written to the bus.

The 7-bit device address is written to the bus, followed by the R/W = 0. After the R/W bit is transmitted, the master device releases SDA, during which time, an acknowledge clock pulse is generated by the slave device. If the LM48903 receives the correct address, the device pulls the SDA line low, generating and acknowledge bit (ACK). Once the master device registers the ACK bit, the first 8-bit register address word is sent, MSB first [15:8], followed by and ACK from the LM48903. Upon receipt of the acknowledge, the second 8-bit register address word is sent [7:0], followed by another ACK bit. Following the acknowledgment of the last register address, the master initiates a REPEATED START, followed by the 7-bit device address, followed by R/W = 1 (R/W = 1 indicating the master wants to read data from the LM48903). The LM48903 sends an ACK, followed by the selected register data. The register data is sent, 8-bits at a time, MSB first in the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed by an ACK, upon receipt of which the successive 8-bit word is sent. Following the acknowledgement of the last register data word [7:0], the master issues a STOP bit, allowing SDA to go high while SDA is high.

Figure 7. Example I²C Read Sequence

I²S DATA FORMAT

The LM48903 supports three I²S formats: Normal Mode Figure 8, Left Justified Mode Figure 9, and Right Justified Mode Figure 10. In Normal Mode, the audio data is transmitted MSB first, with the unused bits following the LSB. In Left Justified Mode, the audio data format is similar to the Normal Mode, without the delay between the LSB and the change in I²S_WS. In Right Justified Mode, the audio data MSB is transmitted after a delay of a preset number of bits.

Figure 8. I²S Normal Input Format

TEXAS INSTRUMENTS

www.ti.com

Figure 9. I²S Left Justified Input Format

SNAS587 - APRIL 2012

Figure 10. I²S Right Justified Input Format

SNAS587-APRIL 2012

MEMORY ORGANIZATION

The LM48903 memory is organized into three main regions: a 32-bit wide Coefficient Space that holds the spatial coefficients, a 32-bit wide Register Space that holds the device configuration settings, and a 48-bit wide Audio Sample Space that holds the current audio data sampled from either the ADCs or the I2S interface, organized as shown in Figure 11.

0X7FFh						
INPUT SAMPLE MEMORY (48-BIT)	0x700h - 0x7FFh: Array Filter Sample Memory 0x600h - 0x67Fh: Pre-Filter Sample Memory 0x600h					
REGISTER SPACE (32-BIT)	0x530h - 0x53Fh: System Control Registers 0x510h - 0x52Fh: Analog Control Registers 0x500h - 0x50Fh: Spatial Array Control Registers					
COEFFICIENT SPACE (32-BIT)	0X500h 0x400h - 0x4FFh: Pre-Filter Coefficients 0x000h - 0x1FFh: Array Coefficients 0X000h					

Figure 11. LM48903 Memory Organization

COEFFICIENT MEMORY

The device must be in Debug mode in order to write to the Coefficient memory. Set Bit 7 (DBG_ENABLE) in Filter Debug Register 1 (0x504h) = 1 to enable Debug mode. The Coefficient Memory Space is organized as follows.

Table 3. Coefficient Memory Space

REGISTER ADDRESS	REGISTER CONTENTS			
	(31:16)	(15:0)		
0x000h - 0x0FFh	256x16 bit Array Taps	256x16 bit Array Taps		
0x000n - 0x0FFh	(Right Input to OUT2)	(Left Input to OUT2)		
0x100h - 0x1FFh	256x16 bit Array Taps	256x16 bit Array Taps		
0x1001 - 0x1FFN	(Right Input to OUT1)	(Left Input to OUT1)		
	C2 128x16 bit Prefilter Taps	C0 128x16 bit Prefilter FIR Taps		
0x400h - 0x47Eh (EVEN)	(Right to Right)	(Left to Left)		
	C3 128x16 bit Prefilter Taps	C1 128x16 bit Prefilter FIR Taps		
0x441h - 0x47Fh (ODD)	(Right to Left)	(Left to Right)		

CONTROL REGISTERS

Table 4. Register Map

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0	
	0x500h [7:0]	0xFFh	ARRAY_TAP								
FILTER	0x500h [15:8]	0x7Fh	UNUSED	UNUSED PRE_TAP							
CONTROL	0x500h [23:16]	0xE4h		UNU	SED		CH2_	SEL	CH1	CH1_SEL	
	0x500h	0.046	ARRAY_ PRE_ ARRAY_ PRE_								
	[31:24]	0xC1h	ENABLE	BLE ENABLE BYPASS BYPASS UNUSED							

Table 4. Register Map (continued)												
Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0		
	0x501h [7:0]	0x98h		G1_GAIN			C	COMP_TH				
FILTER	0x501h [15:8]	0x11h	UNUSED		POST_GAIN	I	UNUSED		COMP_RATIO			
COMP1	0x501h [23:16]	0x00h				ARRAY_CC	MP_SELECT					
	0x501h [31:24]	0x00h				UNI	JSED					
	0x502h [7:0]	0XB8h		G1_GAIN			C	COMP_TH				
FILTER	0x502h [15:8]	0x11h	UNUSED	POST_GAIN			UNUSED		COMP_RATIO			
COMP2	0x502h [23:16]	0XB8h					C	COMP_TH				
	0x502h [31:24]	0x11h	UNUSED	JNUSED POST_GAIN			UNUSED		COMP_RATI	0		
	0x503h [7:0]	0x00h				DBG_D	ATA [7:0]					
FILTER	0x503h [15:8]	0x00h		DBG_DATA [15:8]								
DEBUG0	0x503h [23:16]	0x00h		DBG_DATA [23:16]								
	0x503h [31:24]	0x00h				UNU	JSED					
	0x504h	0x00h	DBG_	STEP_	UNUSED	FILTER_		ACC	ADDR			
	[7:0]	0x0011	ENABLE	ENABLE	UNUSED	SELECT		ACC_	ADDK			
FILTER	0x504h [15:8]	0x00h				UNU	JSED					
DEBUG1	0x504h [23:16]	0x00h				UNU	JSED					
	0x504h [31:24]	0x00h				UNI	JSED					
	0x505h [7:0]	0x00h		PCOUNT	1_MODE			PCH	_SEL			
FILTER	0x505h [15:8]	0x80h	PCLEAR		UNUSED			PCOUNT	2_MODE			
STATS	0x505h [23:16]	0x00h		ACOUNT	1_MODE			ACH	_SEL			
	0x505h [31:24]	0x80h	ACLEAR		UNUSED			ACOUNT	2_MODE			
	0x506h [7:0]	0x00h				DBG_D	ATA [7:0]					
FILTER	0x506h [15:8]	0x00h				DBG_D/	ATA [15:8]					
DEBUG1	0x506h [23:16]	0x00h				DBG_DA	TA [23:16]					
	0x506h [31:24]	0x00h				DBG_DA	TA [31:24]					

Texas INSTRUMENTS

www.ti.com

SNAS587 - APRIL 2012

Table 4. Register Map (continued)

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0		
	0x509h [7:0]	0xXXh				DBG_A	CCL [7:0]					
ACCUML DEBUG	0x509h [15:8]	0xXXh				DBG_AC	CCL [15:8]					
(READ- ONLY)	0x509h [23:16]	0xXXh				DBG_AC	CL [23:16]					
	0x509h [31:24]	0xXXh		DBG_ACCL [31:24]								
	0x50Ah [7:0]	0xXXh				DBG_AC	CC [39:32]					
ACCUMH DEBUG	0x50Ah [15:8]	0xXXh				DBG_AC	CC [47:40]					
(READ- ONLY)	0x50Ah [23:16]	0xXXh	UNUSED									
	0x50Ah [31:24]	0xXXh		UNUSED								
	0x50Bh [7:0]	0xXXh				DBG_S	SAT [7:0]					
DBG SAT	0x50Bh [15:8]	0xXXh				DBG_S	AT [15:8]					
(READ- ONLY)	0x50Bh [23:16]	0xXXh				DBG_SA	AT [23:16]					
	0x50Bh [31:24]	0xXXh		UNUSED								
	0x50Ch [7:0]	0xXXh				COUN	NT [7:0]					
STAT PCNT1	0x50Ch [15:8]	0xXXh				COUN	IT [15:8]					
(READ- ONLY)	0x50Ch [23:16]	0xXXh				COUN	T [23:16]					
	0x50Ch [31:24]	0xXXh				COUN	T [31:24]					
	0x50Dh [7:0]	0xXXh				COUN	NT [7:0]					
STAT PCNT2	0x50Dh [15:8]	0xXXh				COUN	IT [15:8]					
(READ- ONLY)	0x50Dh [23:16]	0xXXh				COUN	T [23:16]					
	0x50Dh [31:24]	0xXXh		COUNT [31:24]								
	0x50Eh [7:0]	0xXXh				COUN	NT [7:0]					
STAT ACNT1	0x50Eh [15:8]	0xXXh	XXh COUNT [15:8]									
(READ- ONLY)	0x50Eh [23:16]	0xXXh	0xXXh COUNT [23:16]									
	0x50Eh [31:24]	0xXXh				COUN	T [31:24]					

LM48903

www	.ti.c	:om

. 1. ... -1\ _ - -

SNAS587-APRIL	2012
	2012

			Та	able 4. Re	gister Ma	p (continu	ed)				
Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0	
	0x50Fh [7:0]	0xXXh				COUN	NT [7:0]				
STAT ACNT2	0x50Fh [15:8]	0xXXh				COUN	IT [15:8]				
(READ- ONLY)	0x50Fh [23:16]	0xXXh				COUN	T [23:16]				
	0x50Fh [31:24]	0xXXh		COUNT [31:24]							
	0x510h [7:0]	0X00h				ADCR_	VOS [7:0]				
ADC	0x510h [15:8]	0X00h	ADCR_VOS [15:8]								
OFFSET											
	0x510h [31:24]	0X00h				ADCL_V	OS [15:8]				
	0x511h [7:0]	0X00h				OUT1_	VOS [7:0]				
CLASS D	0x511h [15:8]	0X00h		OUT1_VOS [15:8]							
OFFSET	0x511h [23:16]	0X00h	OUT2_VOS [7:0]								
	0x511h [31:24]	0X00h		OUT2_VOS [15:8]							
	0x520h [7:0]	0x06h		POWER_UP_DELAY [7:0]							
DELAY	0x520h [15:8]	0x00h				POWER_UP	_DELAY [15:8]			
DELAT	0x520h [23:16]	0x20h				DEGLITO	H_DELAY				
	0x520h [31:24]	0x09h				STATE	_DELAY				
	0x521h [7:0]	0x00h	ADC_SYN C_SEL	ADC_DC_ CORREC T	ADC_DC_ CAL	PWM_DC _CORREC T	VREF_ DELAY	PULSE	FORCE	ENABLE	
ENABLE & CLOCKS	0x521h [15:8]	0x20h	QSA_MBI ST	QSA_ CLK_STO P	HIFI	PCM_ CLK_SEL	I2S_CLK		MCLK_RATE		
	0x521h [23:16]	0x00h		UNUSED	<u> </u>	ADC_HPF _TO_1_4	ADC_HPF_ ENABLE	A	DC_HPF_MO	DE	
	0x521h [31:24]	0x00h			UNUSED		L	OFFSET	_READBACK	_SELECT	
	0x522h [7:0] 0x33h ZERO_ CROSS MUTE ADC_LVL										
DIGITAL	0x522h [15:8]	0x33h	UNU	SED			I2S_LVL				
MIXER	0x522h [23:16]	0x02h		UNL	ISED		I2SA_TX_SEL ADC_DSP I			I2S_DSP	
	0x522h [31:24]	0x05h		UNU	ISED		OUT2	_SEL	OUT1	_SEL	

Texas Instruments

www.ti.com

SNAS587 - APRIL 2012

Table 4. Register Map (continued)

			10	able 4. Re	gister ma		eu)			
Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0
	0x523h [7:0]	0x00h	BYPASS_ MOD	AUTO_SD	ADCTRIM	ZERO_DI G	ZERO_ANA	PARALLE L	ANA	_LVL
ANALOG	0x523h [15:8]	0x10h	UNU	SED	SCAN_TR IG	SE_MOD	PMC_ TEST	TSD_DIS	SCKT_DIS	TST_SHT
ANALOG	0x523h [23:16]	0x00h				UNI	JSED			
-	0x523h [31:24]	0x00h				UNUSED				I2C_ANA_ LEVEL
	0x524h	0x01h	SYNC_	STEREO_ SYNC_	CLOCK_	SYNC_MS	CLK_MS	TX_	RX_	STEREO
	[7:0]	0.0111	MODE	PHASE	PHASE	01110_100	OEI(_MO	ENABLE	ENABLE	OTENEO
-	0x524h [15:8]	0x00h	UNU	SED		I	HALF_CYCL	E_DIVIDER	I	I
	0x524h [23:14]	0x00h		UNL	ISED		SYNTH_ DENOM		SYNTH_NUM	1
	0x524h [31:24]	0x00h	UNU	SED	MOI	NO_SYNC_V	VIDTH		SYNC_RATE	
12S PORT	0x525h [7:0]	0x00h	TX_	BIT		TX_WIDTH	I		RX_WIDTH	
-	0x525h		RX_	RX_						RX_MOD
	[15:8]	0x02h	A/µLAW	COMPAN D						E
	0x525h		TX_	TX_						
	[23:16]	0x02h	h COMPAN TX_MSB_POSITION A/μLAW D					ION		TX_MODE
	0x525h [31:24]	0x00h				UNU	JSED			
	0x526h [7:0]	0x00h			A	DC_COMP_0	COEFF_C0 [7:	:0]		
	0x526h [15:8]	0x00h			A	C_COMP_C	OEFF_C0 [15	:8]		
	0x526h [23:14]	0x00h			А	DC_COMP_0	COEFF_C1 [7:	:0]		
ADC TRIM CO-EF	0x526h [31:24]	0x00h			A	DC_COMP_C	OEFF_C1 [15	i:8]		
FICIENT	0x527h [7:0]	0x00h			A	DC_COMP_(COEFF_C2 [7:	:0]		
	0x527h [15:8]	0x00h			A	DC_COMP_C	OEFF_C2 [15	:8]		
	0x527h [23:16]	0x00h				UNU	JSED			
	0x527h [31:24]	0x00h	0x00h UNUSED							
	0x528h [7:0]	0x00h	UNU	SED	I2SL_LVL	I2SR_LVL	ADCL_LVL	ADCR_LV L	ADCL_	ADCR_
READ					CLIP	CLIP	CLIP	CLIP	CLIP	CLIP
BACK0 (READ-	0x528h [15:8]	0x00h		UNUSED		THERMAL			SHORT2	SHORT1
ONLY)	0x528h [23:14]	0x00h	h SPARE							
	0x528h [31:24]	0x00h		UNUSED						

LM48903

SNAS587 - APRIL 2012

www.ti.com	

Table 4. Register Map (continued)

			10	idie 4. Re	gister ma		caj		1		
Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0	
	0x529h [7:0]	0x00h		OFF_RD_I	BACK [3:0]			CE_S	TATE		
READ BACK1	0x529h [15:8]	0x00h				OFF_RD_	BACK [11:4]				
(READ- ONLY)	0x529h [23:14]	0x00h		OFF_RD_BACK [19:12]							
	0x529h [31:24]	0x00h		SPARE_RD_BACK							
	0x530h [7:0]	0x30h	I2C_MCLK _REQ								
SYS	0x530h [15:8]	0x00h		UNUSED I2C_					USE_22C _ROM_SE L	USE_RAM	
CONFIG	0x530h [23:16]	0x8Ch	W_CLE _EN				UNUSED		I	L	
	0x530h [31:24]	0x00h		UNUSED MBIST1_ MBI ENABLE EN/							
	0x531h [7:0]	0x65h		W2 W1						<u> </u>	
SPEAKER OVER	0x531h [15:8]	0x43h	UNUSED	UNUSED RL_RES				AT_RES			
DRIVE CONTROL	0x531h [23:16]	0x83h		MAX_GAIN					AT_GAIN		
	0x531h [31:24]	0x27h	SODP_EN ABLE	FS	SINP_	MODE	UNUSED		INT_GAIN		
	0x532h [7:0]	0x70h			F	LE	VEL1				
SODP	0x532h [15:8]	0x20h				LE	VEL2				
THRES HOLD	0x532h [23:16]	0x64h				INT	_TH1				
	0x532h [31:24]	0x64h				INT	_TH2				
	0x533h [7:0]	0x00h	UNU	SED	LOW_PW	R_MODE	UNUSED	AUDET	_LEVEL	AUDET _ENABLE	
LOW	0x533h [15:8]	0x09h		ADC_1	⁻ [3:0]			TIMEOUT	_DELAY	ļ	
POWER CONTROL	0x533h [23:16]	0x00h				ADC_1	「H [11:4]				
	0x533h [31:24]	0x00h	OVR_ADC L_ENABL E	OVR_ADC R_ENABL E	OVR_PLL _ENABLE	OVR_VRE F_ENABL E	OVR_OUT1 _ENABLE	OVR_OUT 2_ENABL E	OVR_OUT 1_RST	OVR_OUT 2_RST	
	0x538h [7:0]	0x00h	21	2b0 MBIST_ENABLE				ſ_GO	MBIST_DONE		
SYSTEM	0x538h [15:8]	0x00h							BUS_ERR OR	DEV_EXIS TS	
STATUS	0x538h [23:16]	0x00h				MEM_A	DDR [7:0]				
	0x538h [31:24]	0x00h				MEM_A	DDR [15:8]				

Texas Instruments

www.ti.com

SNAS587 - APRIL 2012

Table 4. Register Map (continued)

Register Name	Register Address	Default Value	7	6	5	4	3	2	1	0		
	0x539h [7:0]	0XA0h		CHIP_ID [7:0]								
DEVICE	0x539h [15:8]	0x3Ah		CHIP_ID [15:8]								
ID	0x539h [23:16]	0x90h	CHIP_ID [23:16]									
	0x539h [31:24]	0x48h	CHIP_ID [31:24]									
	0x53Ah [7:0]					SODP_	INT [7:0]					
SPEAKER OVER	0x53Ah [15:8]					SODP_	INT [15:8]					
DRIVE DEBUG	0x53Ah [23:16]		SODP_INT[23:16]									
0x53Ah [31:24] GAIN_INT_MAG												

FILTER CONTROL REGISTER (0x500h)

Configures the LM48903 Array and Pre-Array filters (Spatial Engine). The Filter Control Register sets the length of the Array and Pre-Array filter taps, and selects the filter channel source for each audio output. Set PRE_BYPASS and ARRAY_BYPASS to 1 to bypass the Spatial Engine, disabling the spatial effect without modifying the coefficients. Set PRE_ENABLE and ARRAY_ENABLE to 1 to enable the Spatial Engine. Set PRE_ENABLE and ARRAY_ENABLE to 0 to disable the spatial engine. Disabling the Spatial Engine does not affect the register contents. Disable the Spatial Engine during coefficient programming.

BIT	NAME	VALUE	DESCRIPTION
7:0	ARRAY_TAP		Array Filter Tap Length
14:8	PRE_TAP		Pre-filter Tap Length. Pre-filter tap length should be less than or equal to the Array filter tap length
15	UNUSED		
			Channel 1 Output Routing Selection
17:16	CH1_SEL	0	Array Filter Channel 0 Output Select
		1	Array Filter Channel 1 Output Select
			Channel 2 Output Routing Selection
19:18	CH2_SEL	0	Array Filter Channel 0 Output Select
		1	Array Filter Channel 1 Output Select
27:20	UNUSED		
28	PRE BYPASS	0	Pre-Array filter not bypassed
20	PRE_DIPASS	1	Pre-Array filter bypassed
29	ARRAY BYPASS	0	Array filter not bypassed
29	ARRAT_BTPASS	1	Array filter bypassed
30	PRE_ENABLE	0	Pre-Array filter disabled. Disable the Pre-Array Filter during filter and coefficient programming. Disabling the Pre-Array Filter does not affect the device memory contents.
		1	Pre-Array filter enabled
31	ARRAY_ENABLE	0	Array filter disabled. Disable the Array Filter during filter and coefficient programming. Disabling the Array Filter does not affect the device memory contents.
		1	Array filter enabled

Table 5. Filter Control Register

SNAS587 - APRIL 2012

www.ti.com

COMPRESSOR CONTROL REGISTER 1 (FILTER COMP1) (0x501h)

BIT	NAME	VALUE	DESCRIPTION
4:0	COMP_TH		Pre-Filter Compressor Threshold
			Pre-Compression Gain
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio
	COMP_RATIO	000	1:1
		001	2:1
		010	2.66:1
10:8		011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		
	POST_GAIN		Post Compression Gain (V/V)
		000	1
14:12		001	1.25
		010	1.5
		011	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		
23:16	ARRAY_COMP_SELECT		Array Filter Compression Control Register Select
31:24	UNUSED		

Table 6. Compressor Control Register

COMPRESSOR CONTROL REGISTER 2 (FILTER COMP2) (0x502h)

Table 7. Compressor Control Register 2

BIT	NAME	VALUE	DESCRIPTION
4:0	COMP_TH		Pre-Filter Compressor Threshold

LM48903

TEXAS INSTRUMENTS

www.ti.com

SNAS587 - APRIL 2012

BIT	NAME	VALUE	DESCRIPTION
			Pre-Compression Gain
		000	2
		001	4
		010	8
7:5	G1_GAIN	011	16
		100	32
		101	64
		110	128
		111	256
			Compression Ratio
	COMP_RATIO	000	1:1
		001	2:1
		010	2.66:1
10:8		011	4:1
		100	5.33:1
		101	8:1
		110	10.66:1
		111	16:1
11	UNUSED		
	POST_GAIN		Post Compression Gain (V/V)
		0	1
		1	1.25
		10	1.5
14:12		11	2
		100	2.5
		101	3
		110	4
		111	8
15	UNUSED		
20:16	COMP_TH		Pre-Filter Compressor Threshold
	G1_GAIN		Pre-Compression Gain
		0	2
		1	4
		10	8
23:21		11	16
		100	32
		101	64
		110	128
		111	256

LM48903

SNAS587-APRIL 2012

www.ti.com

Table 7. Compressor Control Register 2 (continued) BIT NAME VALUE DESCRIPTION **Compression Ratio** 000 1:001 001 2:001 010 2.66:1 24:26 COMP_RATIO 011 4:001 100 5.33:1 101 8:001 110 10.66:1 111 16:1 27 UNUSED Post Compression Gain (V/V) 000 1 001 1.25 010 1.5 30:28 POST_GAIN 011 2 100 2.5 101 3 110 4 8 111 31 UNUSED

FILTER DEBUG REGISTER 0 (FILT_DBG0) (0x503h)

Table 8. Filter Debug Register 0

		-	-
BIT	NAME	VALUE	DESCRIPTION
23:0	DBG_DATA		Audio Data. Common data for both left and right audio channels
31:24	UNUSED		

FILTER DEBUG REGISTER 1 (FILT_DBG1) (0x504h)

Table 9. Filter Debug Register 1

BIT	NAME	VALUE	DESCRIPTION
3:0	ACC_ADDR		Accumulator Address. Selects which accumulator is read during debug mode
4	FILTER SELECT	0	Selects Pre-Filter Accumulators
4	FILTER_SELECT	1	Selects Array Filter Accumulators
5	UNUSED		
0	STEP_ENABLE	0	Single Step Disabled
6		1	Single Step Enabled
7	7 DBG_ENABLE -	0	Debug Mode Disabled
1		1	Debug Mode Enabled
31:8	UNUSED		

Copyright © 2012, Texas Instruments Incorporated

SNAS587 - APRIL 2012

www.ti.com

FILTER STATISTICS CONTROL REGISTER (FILT_STC) (0x505h)

BIT	NAME	VALUE	DESCRIPTION
RE-FILTER Counte	r		
			Channel Select
		000	Channel 0
		001	Channel 1
		010	Channel 2
3:0	PCH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
	-	111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
	-	0010	Frequency Error. Indicates input frequency not sufficient fo given filter length
	-	1000	MAGN[7]
7:4	PCOUNT1_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5]
		1011	MAGN[7:4]
		1100	MAGN[7:3]
		1101	MAGN[7:2]
		1110	MAGN[7:1]
	-	1111	MAGN[7:0]
			Counter 2 Mode Select. Specifies input of Counter 2
	-	0000	Sample Count Mode. Every audio sample is counted
	-	0001	Overflow. Overflow events counted
	-	0010	Frequency Error. Indicates input frequency not sufficient fo given filter length
		1000	MAGN[7]
11:8	PCOUNT2 MODE	1001	MAGN[7:6]
		1010	MAGN[7:5]
		1011	MAGN[7:4}
		1100	MAGN[7:3]
		1101	MAGN[7:2]
		1110	MAGN[7:1]
		1111	MAGN[7:0]
14:12	UNUSED		
15		0	Counter Enabled
15	PCLEAR	1	Counter Cleared

Table 10. Filter Statistics Control Register

LM48903

SNAS587 - APRIL 2012

BIT	NAME	VALUE	DESCRIPTION
			Channel Select
		000	Channel 0
	-	001	Channel 1
	-	010	Channel 2
19:16	ACH_SEL	011	Channel 3
		100	Channel 4
		101	Channel 5
		110	Channel 6
	-	111	Channel 7
			Counter 1 Mode Select. Specifies input of Counter 1
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient fo given filter length
		1000	MAGN[7]
23:20	ACOUNT1_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3]
	-	1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]
			Counter 2 Mode Select. Specifies input of Counter 2
		0000	Sample Count Mode. Every audio sample is counted
		0001	Overflow. Overflow events counted
		0010	Frequency Error. Indicates input frequency not sufficient fo given filter length
		1000	MAGN[7]
27:24	ACOUNT2_MODE	1001	MAGN[7:6]
		1010	MAGN[7:5}
		1011	MAGN[7:4}
		1100	MAGN[7:3]
		1101	MAGN[7:2]
		1110	MAGN[7:1}
		1111	MAGN[7:0]
30:28	UNUSED		
04		0	Counter Enabled
31	ACLEAR	1	Counter Cleared

FILTER DEBUG REGISTER 2 (FILTER DEBUG 2) (0x506h)

Table 11. Filter Debug Register 2

BIT	NAME	VALUE	DESCRIPTION
31:0	DGB_DATA		Debug Data. Read Only

SNAS587 - APRIL 2012

www.ti.com

ACCUMULATOR DEBUG LOWER REGISTER (ACCUML DEBUG) (0x509h)

Table 12. Accumulator Debug Lower Register

BIT	NAME	VALUE	DESCRIPTION
31:0	DBG_ACCL		Accumulator Debug Data. Read Only

ACCUMULATOR DEBUG UPPER REGISTER (ACCUML DEBUG) (0x50Ah)

Table 13. Accumulator Debug Upper Register

BIT	NAME	VALUE	DESCRIPTION
31:0	DBG_ACCL		Accumulator Debug Data. Read Only

COMPRESSOR OUTPUT DATA REGISTER (DBG_SAT) (0x50Bh)

Table 14. Compressor Output Data Register

BIT	NAME	VALUE	DESCRIPTION
23:0	DBG_SAT		24-Bit Compressor Output Data. Read Only
31:24	UNUSED		

FILTER STATISTICS COUNTER (STAT_ACNT) (0x50Ch)

Table 15. Filter Statistics Counter Register

BIT	NAME	VALUE	DESCRIPTION
31:0	COUNT		Statistics of Post-Processed Array and Pre-Filter Data. Read Only

FILTER STATISTICS COUNTER (STAT_ACNT) (0x50Dh)

Table 16. Filter Statistics Counter Register

BIT	NAME	VALUE	DESCRIPTION
31:0	COUNT		Statistics of Post-Processed Array and Pre-Filter Data. Read Only

FILTER STATISTICS COUNTER (STAT_ACNT) (0x50Eh)

Table 17. Filter Statistics Counter Register

BIT	NAME	VALUE	DESCRIPTION
31:0	COUNT		Statistics of Post-Processed Array and Pre-Filter Data. Read Only

FILTER STATISTICS COUNTER (STAT_ACNT) (0x50Fh)

Table 18. Filter Statistics Counter Register

BIT	NAME	VALUE	DESCRIPTION
31:0	COUNT		Statistics of Post-Processed Array and Pre-Filter Data. Read Only

SNAS587 - APRIL 2012

ADC DC OFFSET REGISTER (ADC OFFSET) (0x510h)

Table 19. ADC DC Offset Register

BIT	NAME	VALUE	DESCRIPTION	
15:0	ADCR_VOS	ADC Right Channel Output DC Offset		
31:16	ADCL_VOS	ADC Left Channel Output DC Offset		

CLASS D DC OFFSET REGISTER (CLASS D OFFSET) (0x511h)

Table 20. Class D DC Offset Register

BIT	NAME	VALUE	DESCRIPTION	
15:0	OUT1_VOS		OUT1 Output DC Offset	
31:16	OUT2_VOS		OUT2 Output DC Offset	

DELAY REGISTER (DELAY) (0x520h)

Table 21. Delay Register

BIT	NAME	VALUE	DESCRIPTION	
15:0	POWER_UP_DELAY	Sets I ² C Delay Time. Default 10ms delay.		
23:16	DEGLITCH_DELAY		Sets ENABLE Bit Polling Timeout. Default 32ms delay	
31:24	STATE_DELAY		Sets Delay Between Power Up/Down States	

ENABLE AND CLOCK CONFIGURATION REGISTER (ENABLE & CLOCKS) (0x521h)

Table 22. Enable and Clock Configuration Register

BIT	NAME	VALUE	DESCRIPTION	
	NAME			
0	ENABLE	0	Device Disabled in Manual Mode	
		1	Device Enabled in Manual Mode	
1	FORCE	0	Device Enabled Via SHDN Pin	
I	TORCE	1	Device Enabled Via I ² C	
2	PULSE	0	SHDN Requires a Stable Logic Level	
2	PULSE	1	SHDN Accepts a Pulse Input	
3	RELY_ON_VREF	0	Device waits for delay time determined by STATE_DELAY enable.	
		1	Device waits for stable VREF	
4	PWM DC CORRECT	0	Disable Class D Offset Correction	
4	PWW_DC_CORRECT	1	Enable Class D Offset Correction	
5	ADC_DC_CAL	0	Disable ADC Offset Calibration	
5		1	Enable ADC Offset Calibration	
6		0	Disable ADC Offset Correction	
6	ADC_DC_CORRECT	1	Enable ADC Offset Correction	
7	ADC_SYNC_SEL -	0	Normal Operation	
		1	Invert SYNC Signal. Increases timing margin at low supplies	

TEXAS INSTRUMENTS

SNAS587 - APRIL 2012

www.ti.com

BIT	NAME	VALUE	DESCRIPTION
			Selects PLL Input Divider
		000	32fs (1.536MHz)
		001	64fs (3.072MHz)
		010	128fs (6.114MHz)
10:8	MCLK_RATE	011	256fs (12.288MHz)
		100	512fs (24.576MHz)
		101	UNUSED
		110	UNUSED
		111	UNUSED
11		0	MCLK Input to PLL
11	I2S_CLK	1	I ² S_CLK Input to PLL
		0	Oscillator Clock Input to Power Management Circuitry
12	PMC_CLK_SEL	1	MCLK or I ² S_CLK Input to Power Management Circuitry. Clock source depends on the state of I ² S_CLK
13	HIFI	0	HiFi Mode Disabled
13	HIFI	1	HiFi Mode Enabled. PLL always produces a 4096fs clock.
4.4		0	SAP Clock Enabled
14	SAP_CLK_STOP	1	SAP Clock Disabled Following Device Configuration
15		0	Disable MBIST
15	SAP_MBIST	1	Enable MBIST
			ADC High Pass Filter Mode
		000	
		001	
		010	
18:16	ADC_HPF_MODE	011	
		100	
		101	
		110	
		111	
19	ADC_HPF_ENABLE	0	ADC High Pass Filter Disabled
13		1	ADC High Pass Filter Enabled
31:20	UNUSED		

Table 22. Enable and Clock Configuration Register (continued)

DIGITAL MIXER CONTROL REGISTER (DIGITAL MIXER) (0x522h)

Table 23	. Digital	Mixer	Control	Register
----------	-----------	-------	---------	----------

BIT	NAME	VALUE	DESCRIPTION
			Sets the Gain of the ADC Path (dB)
		000000	-76.5
		000001	-75
	ADC_LVL	-	1.5dB steps
5:0		110010	-1.5
		110011	0
		110100	1.5
		-	1.5dB Steps
		111111	18
6	MUTE	0	Normal Operation
6		1	Mute

LM48903

SNAS587 - APRIL 2012

	Table 23. Di	gital Mixer Cont	rol Register (continued)	
BIT	NAME	VALUE	DESCRIPTION	
7		0	Zero Crossing Detection Enabled	
7	ZXD_DISABLE	1	Zero Crossing Detection Disabled	
			Sets the Gain of the I ² S Path (dB)	
		000000	-76.5	
		000001	-75	
		-	1.5dB steps	
13:8	I2S_LVL	110010	-1.5	
		110011	0	
		110100	1.5	
		-	1.5dB Steps	
		111111	18	
15:14	UNUSED			
		0	I ² S Data Not Passed to DSP	
16	I2S_DSP	1	I ² S Data Passed to DSP	
		0	ADC Output Not Passed to DSP	
17	ADC_DSP	1	ADC Output Passed to DSP	
			Selects Input of Primary I ² S Transmitter	
		00	None	
19:18	ISA_TX_SEL	01	ADC	
		10	DSP	
		11	UNUSED	
23:20	UNUSED			
			Selects OUT1 Amplifier Input Source	
		00	OUT1 Disabled	
25:24	OUT1_SEL	01	DSP	
		10	l ² S	
		11	ADC	
			Selects OUT2 Amplifier Input Source	
27:26		00	OUT2 Disabled	
	OUT2_SEL	01	DSP	
		10	I ² S	
		11	ADC	
31:28	UNUSED			

ANALOG CONFIGURATION REGISTER (ANALOG) (0x523h)

BIT	NAME	VALUE	DESCRIPTION
			Sets ADC Preamplifier Gain (dB)
		00	0
1:00	ANA_LVL	11	2.4
		10	3.5
		11	6
2	PARALLEL -	0	Normal Operation. OUT1 and OUT2 operate as separate amplifiers.
2		1	Parallel Operation. OUT1 and OUT2 operate in parallel as a single amplifier.

SNAS587-APRIL 2012

Table 24	Analog	Configuration	Register	(continued)
	Analog	ooninguration	Register	(continuca)

BIT	NAME	VALUE	DESCRIPTION
		0	Normal Operation
3	ZERO_ANA	1	Auto-Shutdown Mode. Automatically disables the amplifiers when no analog input is detected.
		0	Normal Operation
4	ZERO_DIG	1	Auto-Shutdown Mode. Automatically disables the amplifiers when there is no I ² S input.
		0	ADC Trim Disabled
5	ADCTRIM	1	ADC Trim Enabled. Use ADC_COMP_COEFF_C0-C2 to trim ADC.
6		0	Normal Operation
6	AUTO_SD	1	Fault Conditions Disable the Amplifiers
		0	Normal Operation
7	7 BYPASS_MOD	1	Pulse Correction Bypass. Amplifier output stages act as a buffer, passing PWM signal without correction to output.
		0	Normal Operation
8	8 TST_SHT	1	Short Amplifier Inputs. Sets amplifier outputs to 50% duty cycle, minimizing click and pop during power up/down.
0		0	Normal Operation
9	SCKT_DIS	1	Output Short Circuit Protection Disabled
10		0	Normal Operation
10	TSD_DIS	1	Thermal Shutdown Disabled
11	PMC_TEST	0	Normal Operation
11	PINC_TEST	1	PMC uses PLL Source Clock
12	SE MOD	0	Normal Operation
١٢		1	Single Edge Modulation Mode
23:13	UNUSED		
24	I2C_ANA_LVL	0	External ADC Gain Control. ADC gain set by G0 and G1
24		1	Internal ADC Gain Control. ADC gain set by ANA_LVL.
31:25	UNUSED		

I²S PORT CONFIGURATION REGISTER (I²S PORT) (0x524h/0x525h)

Table 25. I²S Port Configuration Register

BIT	NAME	VALUE	DESCRIPTION		
	0x524h				
0	STEREO	0	Mono Mode		
0	SIEREU	1	Stereo Mode		
4		0	Receive Mode Disabled		
I	RX_ENABLE	1	Receive Mode Enabled		
2		0	Transmit Mode Disabled		
2	TX_ENABLE	1	Transmit Mode Enabled		
2		0	I ² S Clock Slave. Device requires an external SCLK for proper operation.		
3	3 CLK_MS	1	I^2S Clock Master. Device generates SCLK and transmits when either RX or TX mode are enabled.		
		0	I ² S WS Slave. Device requires an external WS for proper operation.		
4	SYNC_MS	1	$\rm I^2S$ WS Master. Device generates WS and transmits when either RX or TX mode are enabled.		

www.ti.com

LM48903

www.ti.com

SNAS587 – APRIL 2012

BIT	NAME	VALUE	DESCRIPTION
F		0	I ² S Clock Phase. Transmit on falling edge, receive on rising edge.
5	CLOCK_PHASE	1	PCM Clock Phase. Transmit on rising edge, receive on falling edge.
6	STEREO_SYNC	0	I ² S Data Format: Left, Right
6	_PHASE	1	I ² S Data Format: Right, Left
		Mono	Rising edge indicates start of data word.
7	SYNC_MODE	0	SYNC low = Left, SYNC high = Right
		1	SYNC low = Right, SYNC high = left
			Configures the I ² S port master clock half-cycle divider. Program the half-cycle divider by: (ReqDiv*2) 1
		000000	BYPASS
		000001	1
	HALF CYCLE	000010	1.5
13:8	_DIVIDER	000011	2
		-	-
		111101	31
		111110	31.5
		111111	32
15:14	UNUSED		
			Sets the Clock Generator Numerator
		000	SYNTH_DENOM (1/)
		001	100/SYNTH_DENOM
		010	96/SYNTH_DENOM
18:16	SYNTH_NUM	011	80/SYNTH_DENOM
		100	72/SYNTH_DENOM
		101	64/SYNTH_DENOM
		110	48/SYNTH_DENOM
		111	0/SYNTH_DENOM
19	SYNTH_DENOM	0	Clock Generator Denominator = 128
19	STNTE_DENOM	1	Clock Generator Denominator = 125
23:20	UNUSED		

46

			MONO MODE
		000	8
		001	12
		010	16
		011	18
		100	20
		101	24
		110	25
26:24	SYNC_RATE	111	32
			STEREO MODE
		000	16
		001	24
		010	32
		011	36
		100	40
		101	48
		110	50
		111	64
			Sets SYNC symbol width in Mono Mode
29:27 MONO_SYNC_WIDT		000	1
		001	2
		010	4
	MONO_SYNC_WIDTH	011	7
		100	8
		101	11
		110	15
		111	16
31:30	UNUSED		
		0x52	25h
			Sets number of valid RECEIVE bits.
		000	24
		001	20
		010	18
2:0	RX_WIDTH	011	16
		100	14
		101	13
		110	12
		111	8

SNAS587 - APRIL 2012

BIT

LM48903

VALUE

NAME

DESCRIPTION

Sets number of clock cycles before SYNC pattern repeats.

www.ti.com

LM48903

SNAS587 - APRIL 2012

www.ti.com

Table 25. I²S Port Configuration Register (continued) VALUE BIT NAME DESCRIPTION Sets number of TRANSMIT bits. 000 24 001 20 010 18 5:3 TX_WIDTH 011 16 100 14 101 13 110 12 111 8 Sets number of pad bits after the valid Transmit bits. 00 0 7:6 TX_BIT 01 1 10 High-Z 11 High-Z 0 MSB Justified Receive Mode 8 RX_MODE 1 LSB Justified Receive Mode

SNAS587 - APRIL 2012

www.ti.com

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
	-	00001	1 (I ² S/PCM SHORT)
	-	00010	2
	-	00011	3
	-	00100	4
	-	00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
	-	01110	14
13:9	RX_MSB_POSITION	01111	15
	-	10000	16
	-	10001	17
		10010	18
	-	10011	19
		10100	20
		10101	21
		10110	22
		10111	23
	-	11000	24
	-	11001	25
	-	11010	26
	-	11011	27
	-	11100	28
	-	11101	29
	-	11110	30
		11111	31
		0	Normal Operation
14	RX_COMPAND	1	Audio Data Companded
		0	µLaw Compand Mode
15	RX_A/µLAW	1	A-Law Compand Mode
-	_ · · r	0	MSB Justified Transmit Mode
16	TX_MODE	1	LSB Justified Transmit Mode

Table 25. I²S Port Configuration Register (continued)

SNAS587	-APRII	2012
014/10007	/	2012

BIT	NAME	VALUE	DESCRIPTION
			MSB location from the frame start (MSB Justified) or LSB location from the frame end (LSB Justified)
		00000	0 (DSP/PCM LONG)
		00001	1 (I ² S/PCM SHORT)
		00010	2
		00011	3
		00100	4
		00101	5
		00110	6
		00111	7
		01000	8
		01001	9
		01010	10
		01011	11
		01100	12
		01101	13
		01110	14
21:17	TX_MSB_POSITION	01111	15
		10000	16
		10001	17
		10010	18
		10011	19
		10100	20
		10101	21
		10110	22
		10111	23
		11000	24
		11001	25
		11010	26
		11011	27
		11100	28
		11101	29
		11110	30
		11111	31
22	TY COMPAND	0	Normal Operation
22	TX_COMPAND	1	Audio Data Companded
00		0	µLaw Compand Mode
23	TX_A/µLAW	1	A-Law Compand Mode
31:24	UNUSED		

Table 25. I²S Port Configuration Register (continued)

ADC TRIM COEFFICIENT REGISTER (ADC_TRIM) (0x526h/0x527)

Table 26. ADC Trim Coefficient Register

BIT	NAME	VALUE	DESCRIPTION		
	0x526h				
15:0	ADC_COMP_COEFF_C0		Sets ADC Trim Coefficient C0		
31:16	ADC_COMP_COEFF_C1		Sets ADC Trim Coefficient C1		
	0x527h				

Copyright © 2012, Texas Instruments Incorporated

SNAS587 - APRIL 2012

 Table 26. ADC Trim Coefficient Register (continued)

BIT	NAME	VALUE	DESCRIPTION
15:0	ADC_COMP_COEFF_C2		Sets ADC Trim Coefficient C2
31:16	UNUSED		

READBACK REGISTER 0(READBACK0) (0x528h) READ-ONLY

Table 27. Readback Register 0

BIT	NAME	VALUE	DESCRIPTION	
0	ADCR_CLIP	1	Right Channel ADC Input Clipped	
1	ADCL_CLIP	1	Left Channel ADC Input Clipped	
2	ADCR_LVLCLIP	1	Right Channel ADC Output Clipped	
3	ADCL_LVLCLIP	1	Left Channel ADC Output Clipped	
4	I2SR_LVLCLIP	1	Right Channel I ² S Output Clipped	
5	I2SL_LVLCLIP	1	Left Channel I ² S Output Clipped	
7:6		UNUSED		
8	SHORT1	1	OUT1 Output Short Circuit	
9	SHORT2	1	OUT2 Output Short Circuit	
11:10		UNUSED		
12	THERMAL	1	Thermal Shutdown Threshold Exceeded	
23:13	SPARE			
31:24	UNUSED			

READBACK REGISTER 1(READBACK1) (0x528h) READ-ONLY

Table 28. Readback Register 1

BIT	NAME	VALUE	DESCRIPTION
		0000	Wait for supply
		0001	Wait For I ² C CLK REQ
		0010	Enable I ² C CLOCK
		0011	Power up delay
		0100	Standby
		0101	Enable REF
		0110	Enable Inputs
3.0	CE_STATE	0111	Enable Outputs
		1000	Unmute
		1001	Enabled
		1010	Off Deglitch
		1011	Mute
		1100	Disable Outputs
		1101	Disable Inputs
		1111	UNUSED
31:4	UNUSED		

SYSTEM CONFIGURATION REGISTER (SYS_CONFIG) (0x530h)

Table 29. System Configuration Register

BIT	NAME	VALUE	DESCRIPTION
6:0	DEVICE_ID		Sets LM48903 Device ID in slave mode. Default is 0x30h.

SNAS587 - APRIL 2012

www.ti.com

BIT	NAME	VALUE	DESCRIPTION
7		0	I ² C does not require MCLK
1	I2C_MCLK_REQ	1	I ² C requires MCLK
8	USE RAM	0	Disable RAM Memory Usage
0	USE_RAW	1	Enable RAM Memory Usage
0		0	MODE0, MODE1, Selects SPATIAL mode
9	USE_I2C_ROM_SEL	1	I ² C_SP_MD, Selects Spatial mode
			ROM mode spatial effects select. Selects which ROM page is loaded into coefficient memory.
		00	4.5cm speaker spacing
11:10	I2C_SP_MD	01	6cm speaker spacing
		10	11.5cm speaker spacing
		11	DSP bypassed, stereo mode
22	UNUSED		
23		0	Write clock disabled
23	W_CLE_EN	1	Write clock enabled
0.4		0	Memory BIST Controller 0 Disabled
24	MBIST0_ENABLE	1	Memory BIST Controller 0 Enabled.
25		0	Memory BIST Controller 1 Disabled
25	MBIST1_ENABLE	1	Memory BIST Controller 1 Enabled.
31:26	UNUSED		

SPEAKER OVERDRIVE CONTROL REGISTER (SPEAKER OVERDRIVE) (0x531h)

BIT	NAME	VALUE	DESCRIPTION
			Window 1. Sets the sample window time the device uses to estimate audio energy for samples between LEVEL1 and LEVEL2 (0x532h)
		0000	5ms
		0001	10ms
		0010	20ms
	W1	0011	50ms
		0100	100ms
3:0		0101	200ms
		0110	500ms
		0111	800ms
		1000	1s
		1001	2s
		1010	5s
		1011	10s
		1100-1111	UNUSED

BIT	NAME	VALUE	DESCRIPTION
			Window 2. Sets the sample window time the device uses to estimate audio energy for samples above INT_TH1 (0x532h)
		0000	5ms
		0001	10ms
		0010	20ms
		0011	50ms
		0100	100ms
7:4	W2	0101	200ms
		0110	500ms
		0111	800ms
		1000	1s
		1001	2s
		1010	5s
		1011	10s
		1100-1111	UNUSED
			Attack Time Resolution
		000	1ms
		001	2ms
		010	5ms
10:8	AT_RES	011	10ms
		100	20ms
		101	50ms
		110	100ms
		111	200ms
11	UNUSED		
	0110020		Release Time Resolution
		000	1ms
		001	2ms
		010	5ms
14:12	RL_RES	010	10ms
		100	20ms
		101	50ms
		110	100ms
		111	200ms
15	UNUSED		200113
10			Attack Mode Gain Reduction
		000	0dB. No gain reduction
		001	3dB
19:16	AT_GAIN		3dB steps
		110	18dB
		110	21dB
		111	Maximum Gain
		000	0dB
		000	3dB
23:17	MAX_GAIN	001	30B 3dB steps
		110	18dB
		111	21dB

LM48903

SNAS587 - APRIL 2012

Table 30. Speaker Overdrive Protection Register (continued)

www.ti.com

SNAS587-APRIL 2012

BIT	NAME	VALUE	DESCRIPTION
			Integrator Gain
		000	0dB
26:24		001	6dB
26:24	INT_GAIN	_	6dB steps
		110	36dB
		111	42dB
27	UNUSED		
			SODP Input Mode
		00	No Signal Applied
29:28	SINP_MODE	01	OUT1 Input to SODP
		10	OUT2 Input to SODP
		11	Average (OUT1+OUT2/2)
30	FS	0	48ksps
30	гъ	1	44.1ksps
24		0	Speaker Overdrive protection Disabled
31	SODP_EN	1	Speaker Overdrive protection Enabled

Table 30. Speaker Overdrive Protection Register (continued)

SPEAKER OVERDRIVE PROTECTION THRESHOLD REGISTER (SODP_THRESHOLD) (0x532h)

BIT	NAME	VALUE	DESCRIPTION
7:0	LEVEL1		Output Level Threshold. Set LEVEL1 such that signals above LEVEL1 increase die temperature. Signal levels above LEVEL1 are added to the estimated audio energy in a given time window.
15:8	LEVEL2		Output Level Threshold. Set LEVEL2 such that signals below LEVEL2 reduce die temperature. Signal levels below LEVEL2 are subtracted from the estimated audio energy in a given time window.
23:16	INT_TH1		Attack Threshold. Integrator level above INT_TH1 enables the SOPD, reducing device gain.
31:24	INT_TH2		Release Threshold. Integrator level below INT_TH2 disables the SOPD, increasing device gain.

Table 31. Filter Debug Register 1

LOW POWER CONTROL REGISTER (0x533h)

Table 32. Low Power Configuration Register

BIT	NAME	VALUE	DESCRIPTION
0		0	Disable Wake up On Audio Signal
0	AUDET_EN	1	Enable Wake up On Audio Signal
	AUDET_LEVEL		Wake Up Detection Threshold
		00	25mV
2:1		01	50mV
		10	75mV
		11	100mV
3	UNUSED		

LM	489	03

SNAS587-APRIL 2012

Table 32. Low Power Configuration Register (continued)

BIT	NAME	VALUE	DESCRIPTION
			Low Power Mode
		00	Normal Mode. No power saving modes enabled
5:4	LPWR_MODE	01	Analog Audio Detect Mode. Input signal compared to AUDET_LEVEL.
		10	ADC Audio Detect Mode
		11	Digital Audio Detect Mod. Rising edge on I2S WS enables the device.
7:6	UNUSED		
			Time Out Delay. Delay time between no audio detected and the device entering low power mode.
		0000	10ms
		0001	20ms
		0010	50ms
		0011	100ms
		0100	200ms
		0101	500ms
		0110	1s
11:8	TIMEOUT_DLY	0111	2s
		1000	5s
		1001	10s
		1010	20s
		1011	50s
		1100	60s
		1101	80s
		1110	100s
		1111	200s
23:12	ADC_TH		ADC Audio Detection Threshold
24	OVR_OUT2_RST	1	Override OUT2 Reset
25	OVR_OUT1_RST	1	Override OUT1 Reset
26	OVR_OUT1_EN	1	Override OUT1 Enable
27	OVR_OUT2_EN	1	Override OUT2 Enable
28	OVR_VREF_EN	1	Override Reference Enable
29	OVR_PLL_EN	1	Override PLL Enable
30	OVR_ADCR_EN	1	Override Right Channel ADC Enable
31	OVR_ADCL_EN	1	Override Left Channel ADC Enable

SYSTEM STATUS REGISTER (SYS_STAT) (0x538h) READ ONLY

Table 33. MBIST Status Register

BIT	NAME	VALUE	DESCRIPTION
1:0	MBIST_DONE		Logic HIGH indicates memory test complete
3:2	MBIST_GO		Logic Low indicates memory fault when MBIST_DONE is HIGH
5.4		0	MBIST Read-back Disabled
5:4	MBIST_EN	1	MBIST Read-back Enabled
8:6	UNUSED		
9	DEV_EXISTS		Logic HIGH indicates the presence of an EEPROM
10	BUS_ERR		Logic HIGH indicates an I ² C bus error during EEPROM read
11	CL_ACTIVE		Logic HIGH indicates the I^2C master is active and loading from the EEPROM

ISTRUMENTS

Texas

Table 33. MBIST Status Register (continued)

BIT	NAME	VALUE	DESCRIPTION
16:12	UNUSED		
31:16	MEM_ADDR		Memory Address

DEVICE ID REGISTER (0x539h) READ ONLY

Table 34. Device ID Register

BIT	NAME	VALUE	DESCRIPTION
31:0	CHIP_ID	4890_3AA0h	32-bit Device ID

SPEAKER OVERDRIVE PROTECTION DEBUG REGISTER (0x53Ah) READ ONLY

BIT	NAME	VALUE	DESCRIPTION
23:0	SODP_INT		Current Integrator Value
31:24	GAINED_INT_MAG		Integrator Magnitude. 8 most significant bits of the integrator magnitude

Table 35. Speaker Overdrive Debug Register

DEVICE ADDRESS

The 0110000X is the defaultLM48903 I²C address hard coded into the device. An alternate device address can be programmed, via the SYS CONFIG (0x530h) Register. Use the default address during initial device configuration.

GENERAL AMPLIFIER FUNCTION

Class D Amplifier

The LM48903 features stereo efficiency Class D audio power amplifiers that utilizes Texas Instruments' filterless modulation scheme external component count, conserving board space and reducing system cost. The Class D outputs transition from V_{DD} to GND with a 384kHz switching frequency. With no signal applied, the outputs switch with a 50% duty cycle, in phase, causing the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the idle state.

With the input signal applied, the duty cycle (pulse width) of the LM48903 outputs changes. For increasing output voltage, the duty cycle of OUT_+ increases while the duty cycle of OUT_- decreases. For decreasing output voltages, the converse occurs. The difference between the two pulse widths yield the differential output voltage.

Edge Rate Control (ERC)

The LM48903 features Texas Instruments' advanced edge rate control (ERC) that reduces EMI, while maintaining high quality audio reproduction and efficiency. The LM48903 ERC greatly reduces the high frequency components of the output square waves by controlling the output rise and fall times, slowing the transitions to reduce RF emissions, while maximizing THD+N and efficiency performance. The overall result of the E²S system is a filterless Class D amplifier that passes FCC Class B radiated emissions standards with 24in of twisted pair cable, with excellent 0.08% THD+N and high 91% efficiency.

POWER DISSIPATION AND EFFICIENCY

The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48903 is attributed to the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.

SNAS587-APRIL 2012

www.ti.com

ANALOG INPUT

The LM48903 features a stereo, 18-bit, differential ADC for systems without a digital audio source. The ADC front end includes a variable gain preamplifier with 4 gain settings, 0dB, 2.4dB, 3.5dB, and 6dB. The preamplifier gain is controlled by bits 0 and 1 (ANA_LVL) of the Analog Configuration Register (0x523h). The analog inputs can be configured as either differential or single ended inputs. The differential configuration SNR is 6dB higher than single-ended configuration. The differential input configuration also offers improved common mode rejection (CMRR). The increased CMRR reduces sensitivity to ground offset related noise injection. Configure the LM48903 for single-ended inputs as shown in Figure 12.

The ADC input range is dependent on AV_{DD} . The maximum input swing of each single ADC input, ie INL+, referenced to GND is 0.7^*AV_{DD} . This gives a maximum differential input of $7V_{P-P}$ when $AV_{DD} = 5V$.

SNAS587 - APRIL 2012

Figure 12. ADC Input Configurations

POWER SUPPLY REQUIREMENTS

At power up, sequence the LM48903 power supplies in the following order:

- 1) PV_{DD}
- 2) AV_{DD}/PLLV_{DD}
- 3) DV_{DD}/IOV_{DD}

Ensure PV_{DD} is higher or equal to AV_{DD} /PLLV_{DD}, and PV_{DD} is always higher than DV_{DD} .

MODULATOR POWER SUPPLY

The AV_{DD1} powers the class D modulators. For maximum output swing, set AV_{DD1} and PV_{DD} to the same voltage. Table 36 shows the output voltage for different AV_{DD1} levels.

AV _{DD1} (V)	V _{OUT} (V _{RMS}) @PV _{DD} = 5V, THD+N = 1%	V _{OUT} (V _{RMS}) @PV _{DD} = 3.6V, THD+N = 1%
5	3.3	—
4.5	3.1	—
4.2	2.9	—
4	2.7	—
3.6	2.5	2.4
3.3	2.3	2.2
3	2.1	2.1
2.8	1	1.9

Table 36. Amplifier Output Voltage with variable AV_{DD1} Voltage

PARALLEL MODE

In Parallel mode, channels OUT1 and OUT2 are driven from the same audio source, allowing the two channels to be connected in parallel, increasing output power to 3.3W into 4Ω at 10% THD+N. Set bit 2 (PARALLEL) of the Analog Configuration Register (0x532h) = 1 to configured the device in Parallel mode. After the device is set to Parallel mode, make an external connection between OUT1+ and OUT2+, and a connection between OUT1- and OUT2- Figure 13. In Parallel mode, the combined channels are driven from the OUT1 source. Signal routing, mixing, filtering, and equalization are done through the Spatial Engine.

Make sure the device is configured in Parallel mode, before connecting OUT1 and OUT2 and enabling the outputs. Do not make a connection between OUT1 and OUT2 together while the outputs are enabled. Disable the outputs first, then make the connections between OUT1 and OUT2.

SNAS587-APRIL 2012

Figure 13. Parallel Mode

GAIN SETTING

PC Gain Setting

The LM48903 has three gain stages, the ADC preamplifier, and two independent volume controls in the Digital Mixer, one for the ADC path and one for the I²S path. The ADC preamplifier has four gain settings (0dB, 2.4dB, 3.5dB, and 6dB). The preamplifier gain is set by bits 0 and 1 (ANA_LVL) of the Analog Configuration Register (0x523h). The Digital Mixer has two 64 step volume controls. The ADC path volume control is set by bits 5:0 (ADC_LVL) in the Digital Mixer Control Register (0x522h). The I²S path volume control is set by bits 13:8 (I2S_LVL) in the Digital Mixer Control Register (0x522h). Both volume controls have a range of -76.5dB to 18dB in 1.5dB increments.

GAIN1 and GAIN0 Gain Setting

For systems without I2C control, the ADC preamplifier gain is set by GAIN1 and GAIN0. The gain settings are shown in Table 37. The I²C preamplifier gain settings override GAIN1 and GAIN0.

Copyright © 2012, Texas Instruments Incorporated

SNAS587-APRIL 2012

Table 37. Hardware Gain Setting

GAIN1	GAIN0	GAIN (dB)
0	0	0
0	1	2.4
1	0	3.5
1	1	6

ROM MODE

The LM48903 features a ROM with four preset operating modes; three spatial modes, and a stereo mode. The spatial modes are designed for three different speaker distances, 4.5cm, 6cm and 11.5cm. Due to the spatial processing, there may be a perceived Left/Right channel swap when switching between Stereo and the three preset spatial configurations in ROM mode.

The ROM modes are selected through both the l^2C interface and by MODE1/MODE0. For systems without l^2C , MODE1 and MODE0 select the ROM mode as shown in Table 38. For systems with l^2C , bits 11:10 ($l^2C_SP_MD1$ and $l^2C_SP_MD0$) of the SYS_CONFIG register (0x530h) select the ROM mode as shown in Table 39. Set bit 9 ($USE_l^2C_SP_MD0$) of the SYS_CONFIG register = 1 to select the ROM mode through l^2C . Set bit 8 (USE_RAM) of the SYS_CONFIG register = 0 (default) to use the preset ROM modes. Set $USE_RAM = 1$ to use custom spatial coefficients. The LM48903 only accepts analog inputs in ROM mode, l^2S inputs are ignored.

Table 38. ROM Settings, Hardware Mode (USE_I2C_SP_MD = 0)

MODE1	MODE0	DESCRIPTION
0	0	4.5cm Speaker Spacing
0	1	6cm Speaker Spacing
1	0	11.5 Speaker Spacing
1	1	DSP Bypassed, Stereo Mode

USE_RAM	I2C_SP_MD1	I2C_SP_MD0	DESCRIPTION
0	0	0	4.5cm Speaker Spacing
0	0	1	6cm Speaker Spacing
0	1	0	11.5 Speaker Spacing
0	1	1	DSP Bypassed, Stereo Mode
1	x	x	Custom Spatial Mode. The device bypasses the ROM and loads coefficients from an external source.

Table 39. ROM Settings, I²C Mode (USE_I2C_SP_MD = 1)

SPEAKER OVERDRIVE PROTECTION

Speaker overdrive protection (SODP) monitors the DSP outputs and adjusts the signal path gain to prevent speaker overheating. SODP monitors two levels, LEVEL1, the output amplitude above which the voice coil temperature rises, and LEVEL2 the output amplitude below which the voice coil temperature falls. Speaker Overdrive Protection Threshold Register (0x532h) bits 7:0 set LEVEL1. Bits 15:8 set LEVEL2.

The difference between LEVEL1 and LEVEL2 is the amplitude where the voice coil temperature remains stable. The device integrates the difference between the output signal and LEVEL1 for signals above LEVEL1, and the difference between the output signal and LEVEL2 for signals below LEVEL2. There are two integration time windows. Bits 3:0, (W1), of the Speaker Overdrive Control Register (0x531h), set the duration of Window 1. Window 1 is integration time when during normal operation. Bits 7:4 (W2) set the duration of Window 2. Window 2 is the integration time when the SODP is active, and the device gain is reduced.

At the end of Window 1, the device compares the integrator output the INT_TH1 (0x532h, bits 23:16), or the attack threshold. Bits 19:16, (AT_GAIN), of register 0x531h, set the gain reduction step. Bits 10:8 (AT_RES) set the attack time. For example, if AT_GAIN = 6dB and AT_RES = 5ms, once the integrator output exceeds INT_TH1, the signal path gain is reduced by 6dB in 1.5dB steps over 5ms. Following the gain reduction, the device switches to integrator Window 2. If the integrator output exceeds INT_TH1 again, the gain reduction is repeated until the integrator output no longer exceeds INT_TH1.

The device remains in the reduced gain state until the integrator output falls below INT_TH2 (0x532h, bits 31:24), or the release threshold. Once the integrator output falls below INT_TH2, the device gain is increased to the original gain setting in 1.5dB steps. The release time set by bits 14:12 (RL_RES). Following the gain release, the device switches back to integrator Window 1.

Set register 0x531h bit 21 (SODP_EN) = 1 to enable the speaker overdrive protection.

DSP Output Selection

The DSP outputs to the Digital Mixer can be selected from either of the two Array Filter signal paths. This allows the left and right inputs to be swapped or mixed before being output to the Class Ds. Filter Control Register (0x500h) bits 17:16 (CH1_SEL) the select the Array filter source for DSP1. Bits 19:18 (CH2_SEL) select the Array filter source for DSP2. Use channel routing to correct the perceived left/right channel swap that can occur with certain spatial configurations.

Low Power Mode

The LM48903 features three low power modes that enable and disable the device based on the presence of an input signal. Mode 1 monitors the ADC input signal. Mode 2 monitors the ADC output, and offers a faster wake up time (<10ms) compared to Mode 1. Mode 3 monitors the I²S interface and enables the device on the rising edge of WS.

The low power mode is configured through the Low Power Control Register (0x533h) (Table 29). Bit 0 (AUDET_EN) enables the automatic signal detection. Bits 2:1 (AUDET_LEVEL) set the ADC input threshold. Bits 5:4 (LPWR_MODE) select the operating mode. Bits 11:8 (TIMEOUT_DLY) sets the delay time between loss of audio signal/WS clock to device disable. Bits 23:12 (ADC_TH) sets the ADC output threshold.

DIGITAL MIXER

The digital mixer Figure 14 is responsible for routing the digital audio signals within the LM48903. The digital mixer is configured through the Digital Mixer register (0x522h). There are six inputs to the digital mixer, left and right ADC data, left and right I²S RX data, and two DSP output channels. ADC and I²S RX data can be routed to the DSP inputs (DSP_L and DSP_R), the class D amplifiers (OUT1-OUT2), and the I²S TX buses. The DSP output data can be routed to the class D amplifiers, and the I²S TX bus.

The digital mixer includes independent digital gain blocks for the ADC and I²S RX data. The gain range is - 76.5dB to 18dB in 1.5dB steps. The ADC gain is set by bits 5:0 (ADC_LVL) of the Digital Mixer Control Register (0x522h). The I²S gain is set by bits 13:8 (I2S_LVL) of the Digital Mixer Control Register. With a 0dBFS input and I2S_LVL = 110011 (0dB), the output voltage is $3.36V_{RMS}$.

For additional output routing flexibility, use the digital mixer in conjunction with the Array filter channel routing. The Array filter channel routing control selects which filter channel is output on each DSP output. The DSP must be active to use the Array filter channel routing, however, no coefficients are required. With no spatial effect, Array filter channel contains left channel audio data, channel contains right channel audio data. The Array filter channel routing is controlled by bits 19:16 in the Filter Control Register (0X500h). See DSP Output Selection section.

SNAS587-APRIL 2012

www.ti.com

SPATIAL ENGINE (DSP)

The LM48903 Spatial Engine is a specialized DSP that is optimized for TI's proprietary spatial audio algorithm. The Spatial Engine consists of two processing stages, the Pre Filter and Array Filter (Figure 14). The filters perform different portions of the spatial processing, and are configured and controlled independent of each other. The Pre Filter uses virtual speaker positioning to set the width of the sound stage. The Array Filter is responsible for equalization and positioning the audio content within the virtual sound stage created by the Pre Filter.

Figure 15. DSP Routing

SNAS587-APRIL 2012

www.ti.com

Filter Enable and Filter Bypass

The Pre Filter and Array Filter are enabled independently. Filter Control Register (0x500h) bit 30 (PRE_ENABLE) enables the Pre Filter, bit 31 (ARRAY_ENABLE) enables the Array Filter. The independent filter enables maximize power savings when only a portion of the LM48903's DSP processing is required.

The filter bypass allows audio data to pass through the DSP without any processing. The Pre Filter and Array Filter can be independently bypassed. Filter Control Register (0x500h) bit 28 (PRE_BYPASS) bypasses the Pre Filter, bit 29 (ARRAY_BYPASS) bypasses the Array Filter. When using a portion of the DSP path, bypass the filter that is not in use. Audio data will not pass through the disabled filter. For example, if the Pre Filter is disabled while the Array Filter is enabled, bypass the Pre Filter.

Compressor

The Pre filter and Array filter each have a compressor that monitors the filter output and maintains the amplitude below the set threshold (Figure 15). The compressors have four user configurable settings, compressor threshold (COMP_TH), pre-compression gain (G1_GAIN), compression ratio (COMP_RATIO), and post compression gain (POST_GAIN). COMP_TH sets the threshold above which the compression is applied to the filter output signal. G1_GAIN sets the gain applied before compression. COMP_RATIO sets the linear compression ratio applied to the filter output signal. POST_GAIN sets the post compression gain, increasing the compressor output signal when either COMP_TH is low or COMP_RATIO is high.

Compressor Control Register 1 (0x501h) configures the Pre Filter compressor. Bits 4:0 (COMP_TH) set the Pre Filter compressor threshold. Bits 7:5 (G1_GAIN set the Pre Filter pre-compression gain. Bits 10:8 (COMP_RATIO) set the Pre Filter compression ratio. Bits 14:12 (POST_GAIN) set the post compression gain.

The Array Filter outputs can be routed through one of two compressors, allowing different signal paths to have different compression profiles. This feature is useful if the LM48903 outputs are driving different speakers, for example, two tweeters and two subwoofers. One compression profile is applied to the tweeter channels, while the second compression profile is applied to the subwoofer channels. Bits 19:16 of Compressor Control Register 1 and Compressor Control Register 2 (0x502h) configure the Array Filter. Bits 14:0 of the Compressor Control Register 2 configure the Array Filter compressor 0. Bits 30:16 configure the Array Filter compressor 1. The Compressor Control Register 1 bits 17:16 (ARRAY_COMP_SELECT) selects the compressor setting used by each Array Filter channel. Bit 16 controls DSP channel 1, bit 17 controls DSP channel 2. Set the desired channel ARRAY_COMP_SELECT bit = 0 to select compressor 0, set the desired channel ARRAY_COMP_SELECT bit = 1 to select compressor 1.

Figure 16. DSP Core Diagram

SNAS587 - APRIL 2012

DSP Output Selection

CLOCK REQUIREMENTS

The LM48903 requires an external clock source for proper operation, regardless of input source or device configuration. The device derives the ADC, digital mixer, DSP, I²S port, and PWM clocks from the external clock. The clock can be derived from either MCLK or SCLK inputs. Set bit 11 (I²S_CLK) of the Enable and Clock configuration register (0x521h) to 0 to select MCLK, set I²S_CLK to 1 to select SCLK. The LM48903 accepts five different clock frequencies, 1.536, 3.072, 6.114, 12.288, and 24.576MHz. Set bits 10:8 (MCLK_RATE) of the Enable and Clock Configuration Register to the appropriate clock frequency. In systems where both MCLK and SCLK are available, choose the lower frequency clock for improved power consumption.

SHUTDOWN FUNCTION

There are two ways to shutdown the LM48903, hardware mode, and software mode. The default is hardware mode.

Set bit 1 (FORCE) of the Enable and Clock Configuration Register (0x521h) to 0 to enable hardware shutdown mode. In hardware mode, the device is enabled and disabled through SHDN. Connect SHDN to V_{DD} for normal operation. Connect SHDN to GND to disable the device. Hardware shutdown mode supports a one shot, or momentary switch SHDN input. When bit 2 (PULSE) of the Enable and Clock Configuration Register (0x521h) is set to 1, the LM48903 responds to a rising edge on SHDN to change the device state. When PULSE = 0, the device requires a stable logic level on SHDN.

Set FORCE = 1 to enable software shutdown mode. In software shutdown mode, the device is enabled and disabled through bit 0 (ENABLE) of the Enable and Clock Configuration Register (0x512h). Set ENABLE = 0 to disable the LM48903. Set ENABLE = 1 to enable the LM48903.

In either hardware or software mode, the content of the LM48903 memory registers is retained after the device is disabled, as long as power is still applied to the device. Minimize power consumption by disabling the PMC clock oscillator when the LM48903 is shutdown. Set bit 12 (PMC_CLK_SEL) and bit 14 (QSA_CLK_STOP) of the Enable and Clock configuration Register (0x521h) = 1 to disable the PMC clock oscillator.

EXTERNAL CAPACITOR SELECTION

Power Supply Bypassing and Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with 10µF and 0.1µF bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM48903 supply pins. A 1µF capacitor is recommended for IOV_{DD} , $PLLV_{DD}$, DV_{DD} , and AV_{DD} . A 2.2µF capacitor is recommended for PV_{DD} .

REF and BYPASS Capacitor Selection

For best performance, bypass REF with a 4.7µF ceramic capacitor.

INPUT CAPACITOR SELECTION

The LM48903 analog inputs require input coupling capacitors. Input capacitors block the DC component of the audio signal, eliminating any conflict between the DC component of the audio source and the bias voltage of the LM48903. The input capacitors create a high-pass filter with the input resistors R_{IN} . The -3dB point of the high pass filter is found using Equation (1) below.

$$f = 1 / 2\pi R_{IN}C_{IN}$$

66

(1)

Where the value of R_{IN} is $20k\Omega$.

The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce, and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM48903 is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR and PSRR.

PCB LAYOUT GUIDELINES

As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load, and power supply create a voltage drop. The voltage loss due to the traces between the LM48903 and the load results in lower output power and decreased efficiency. Higher trace resistance between the supply and the LM48903 has the same effect as a poorly regulated supply, increasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power supply should be as wide as possible to minimize trace resistance.

The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of power planes creates parasitic capacitors that help to filter the power supply line.

The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to GND and V_{DD} in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other components in the system and cause interference. In is essential to keep the power and output traces short and well shielded if possible. Use of ground planes beads and micros-strip layout techniques are all useful in preventing unwanted interference.

As the distance from the LM48903 and the speaker increases, the amount of EMI radiation increases due to the output wires or traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM48903 outputs may be needed to reduce EMI radiation.

Revision History

Rev	Date	Description
1.0	04/12/12	Initial WEB released.

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
LM48903TLE/NOPB	ACTIVE	DSBGA	YZR	30	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
LM48903TLX/NOPB	ACTIVE	DSBGA	YZR	30	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM48903TLE/NOPB	DSBGA	YZR	30	250	178.0	12.4	2.87	3.39	0.76	8.0	12.0	Q1
LM48903TLX/NOPB	DSBGA	YZR	30	1000	178.0	12.4	2.87	3.39	0.76	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Nov-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM48903TLE/NOPB	DSBGA	YZR	30	250	203.0	190.0	41.0
LM48903TLX/NOPB	DSBGA	YZR	30	1000	206.0	191.0	90.0

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated