

LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability

- Bandwidth adjustable from 0 to 14%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

Connection Diagrams

Metal Can Package

TL/H/6975-1

Top View

Order Number LM567H or LM567CH See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View

Order Number LM567CM See NS Package Number M08A Order Number LM567CN See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Pin Power Dissipation (Note 1) 1100 mW ٧8 15V ٧3 -10V ٧3 $V_4 + 0.5V$ -65°C to +150°C

Storage Temperature Range **Operating Temperature Range**

LM567H

LM567CH, LM567CM, LM567CN

-55°C to +125°C 0°C to +70°C Soldering Information

Dual-In-Line Package Soldering (10 sec.)

Infrared (15 sec.)

Small Outline Package Vapor Phase (60 sec.) 260°C

215°C 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics AC Test Circuit, T_A = 25°C, V+ = 5V

Parameters	Conditions	LM567			LM567C/LM567CM			Units
		Min	Тур	Max	Min	Тур	Max	Oille
Power Supply Voltage Range		4.75	5.0	9.0	4.75	5.0	9.0	V
Power Supply Current Quiescent	R _L = 20k		6	8		7	10	mA
Power Supply Current Activated	R _L = 20k		11	13	0	12	15	mA
Input Resistance		18	20		15	20		kΩ
Smallest Detectable Input Voltage	$I_L = 100 \text{ mA}, f_i = f_0$		20	25		20	25	mVrms
Largest No Output Input Voltage	$I_C = 100 \text{ mA}, f_i = f_0$	10	15		10	15		mVrms
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB
Largest Detection Bandwidth		12	14	16	10	14	18	% of fo
Largest Detection Bandwidth Skew			1	2		2	3	% of fo
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage	4.75 — 6.75V		±1	±2		±1	±5	%V
Highest Center Frequency		100	500		100	500		kHz
Center Frequency Stability (4.75–5.75V)	0 < T _A < 70 -55 < T _A < +125		35 ± 60 35 ± 140			35 ±60 35 ± 140		ppm/°C ppm/°C
Center Frequency Shift with Supply Voltage	4.75V 6.75V 4.75V 9V		0.5	1.0 2.0		0.4	2.0 2.0	%/V %/V
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20		
Output Leakage Current	V ₈ = 15V		0.01	25		0.01	25	μА
Output Saturation Voltage	e _i = 25 mV, I ₈ = 30 mA e _i = 25 mV, I ₈ = 100 mA		0.2 0.6	0.4 1.0		0.2 0.6	0.4 1.0	٧
Output Fall Time			30			30		ns
Output Rise Time			150			150		ns

Note 1: The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the Small Outline package, the device must be derated based on a thermal resistance of 160°C/W, junction to

Note 2: Refer to RETS567X drawing for specifications of military LM567H version.

Schematic Diagram ₹ R2 10K R42 ₹ R3 4.7K **≸** R22 ¥ R45 032 Q62 8 **≹**R23 R27**\$** R26 € 039 031 TL/H/6975-3

Typical Performance Characteristics

TL/H/6975-4

Typical Applications (Continued)

Oscillator with Quadrature Output

Oscillator with Double Frequency Output

Connect Pin 3 to 2.8V to Invert Output

TL/H/6975-6

TL/H/6975-7

Precision Oscillator Drive 100 mA Loads

TL/H/6975-8

AC Test Circuit

TL/H/6975-9

 $f_i = 100 \text{ kHz} + 5\text{V}$ *Note: Adjust for $f_0 = 100 \text{ kHz}$.

Applications information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$f_0 \simeq \frac{1}{1.1 R_1 C_1}$$

The bandwidth of the filter may be found from the approximation

BW = 1070
$$\sqrt{\frac{V_i}{f_0 C_2}}$$
 in % of f_0

Where:

 $V_i = Input voltage (volts rms), V_i \le 200 \text{ mV}$

 $C_2 = Capacitance at Pin 2 (\mu F)$