

LM6164/LM6264/LM6364 **High Speed Operational Amplifier**

General Description

The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300V per us and 175 MHz GBW (stable to a gain of +5) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V.

These amplifiers are built with National's new VIP™ (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High Slew Rate
- High GBW Product Low Supply Current
- Fast settling
- Low differential gain
- Low differential phase
- Wide Supply Range
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Step Response; $A_V = +5$

Gain & Phase; $A_V = +300$

300 V/µs

175 MHz

100 ns to 0.1%

4.75V to 32V

TL/H/9153-2

5 mA

< 0.1%

<0.1°

PRELIMINARY

Absolute Maximum Ratings

If Military/Aerospace speci contact the National Sem Distributors for availability a	niconductor Sales Office/
Supply Voltage (V $^+$ – V $^-$)	36V
Differential Input Voltage (Note	±8V ±8V
CM Input Voltage	$(V^+ - 0.7V)$ to $(V^ 7V)$
Output Short Circuit to Gnd (No	ote 1) Continuous
Lead Temp. (Soldering, 10 sec	.) 260°C

Storage Temperature Range	-65°C to +150°C
Operating Temperature Range (Note 2)	
LM6164	-55°C to +125°C
LM6264	-25°C to +85°C
LM6364	0°C to +70°C
Max Junction Temperature (Note 2)	150°C
ESD Tolerance (Notes 8 & 9)	± 700V

DC Electrical Characteristics (Note 3)

Parameter	Conditions	Тур	LM6164		LME	264	LM6364			
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Units	
Input Offset Voltage		2	4 6		4	6	9	11	mV max	
Input Offset Voltage Average Drift		6	}						μV/°(
Input Bias Current		2.5	3 6		3	5	5	6	μA max	
Input Offset Current		150	350 800		350	600	1500	1900	nA max	
Input Offset Current Average Drift		0.3							nA/°(
Input Resistance	Differential	100							kΩ	
Input Capacitance		3.0							pF	
Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L = 2 k\Omega$ (Note 11)	2.5	1.8 0.9		1.8	1.2	1.3	1.1	V/mV min	
	$R_L = 10 k\Omega$	9								
Input Common-Mode Voltage Range	Supply = $\pm 15V$	+ 14.0	+ 13.9 + 13.8		+ 13.9	+ 13.8	+ 13.8	+ 13.7	V min	
		- 13.5	13.3 13.1		- 13.3	- 13.1	- 13.2	- 13.1	V min	
	Supply = +5V (Note 6)	4.0	3.9 3.8		3.9	3.8	3.8	3.7	V min	
		1.5	1.7 1.9		1.7	1.9	1.8	1.9	V max	
Common-Mode Rejection Ratio	$-10V \le V_{CM} \le +10V$	105	86 80		86	82	80	78	dB min	
Power Supply Rejection Ratio	$\pm 10V \le V \pm \le \pm 16V$	96	86 80		86	82	80	78	dB min	
Output Voltage Swing	Supply = $\pm 15V$ and R _L = 2 k Ω	+ 14.2	+ 13.5 + 13.3		+ 13.5	+ 13.3	+ 13.4	+ 13.3	V min	
		- 13.4	13.0 12.7		- 13.0	- 12.8	- 12.9	- 12.8	V min	
	Supply = $+5V$ and R _L = 2 k Ω (Note 6)	4.2	3.5 3.3		3.5	3.3	3.4	3.3	V min	
		1.3	1.7 2.0		1.7	1.9	1.8	1.9	V max	

DC Electrical Characteristics (Note 3)

Parameter Con			LM6164		LMG	5264	LMe		
	Conditions	Тур	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Units
Output Short Circuit Current	Source	65	30 20		30	25	30	25	mA min
	Sink	65	30 20		30	25	30	25	mA min
Supply Current		5.0	6.5 6.8		6.5	6.7	6.8	6.9	mA max

AC Electrical Characteristics (Notes 3 & 7)

Parameter	Conditions	Тур	LM6164		LM	6264	LM6364			
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Units	
Gain-Bandwidth Product	@ F = 20 MHz	175	140 100		140	120	120	100	MHz	
	$V + = \pm 5V$	120								
Slew Rate	A _V = +20 (Note 10)	300	225 200		225	210	200	180	V/μs min	
	$V + = \pm 5V$	200								
Power Bandwidth	$V_{OUT} = 20 V_{PP}$	4.5							MHz	
Setting Time	10V Step to 0.1% $A_V = -4$, $R_L = 2 k\Omega$	100							ns	
Phase Margin	A _V = +5	45							Deg	
Differential Gain	NTSC, $A_V = +10$	<0.1							%	
Differential Phase	NTSC, $A_V = +10$	<0.1							Deg	
Input Noise Voltage	F = 10 kHz	8							nV/√Hz	
Input Noise Current	F = 10 kHz	1.5							pA/√Hz	

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/Watt, the molded plastic SO (M) package is 155°C/Watt, the cerdip (J) package is 155°C/Watt, and the TO-5 (H) package is 155°C/Watt. All numbers apply for packages soldered directly into a printed circuit board. Note 3: Unless otherwise specified, all limits guranteed for $T_A = T_J = 25°C$ with supply voltage = ±15V, $V_{CM} = 0V$, and $R_L \ge 100 \text{ k}\Omega$. Boldface limits apply over the range listed under "Operating Temperature Range".

Note 4: Guaranteed and 100% production tested. These limits are used to calculate outgoing AQL levels.

Note 5: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.

Note 6: For single supply operation, the following conditions apply: V + = 5V, V - = 0V, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (V_{OS} Adjust) are each connected to Pin 4 (V -) to realize maximum output swing. This connection will degrade V_{OS} .

Note 7: C_L ≤ 5 pF.

Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially V_{OS}, I_{OS}, and Noise).

Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500 Ω.

Note 10: $V_{IN} = 4V$ step. For $V + = \pm 5V$, $V_{IN} = 1V$ step.

Note 11: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

