

LM7001J, 7001JM

Direct PLL Frequency Synthesizers for Electronic Tuning

Features

- The LM7001J and LM7001JM are PLL frequency synthesizer LSIs for tuners, making it possible to make up high-performance AM/FM tuners easily.
- These LSIs are software compatible with the LM7000, but do not include an IF calculation circuit.
- The FM VCO circuit includes a high-speed programmable divider that can divide directly.
- Seven reference frequencies: 1, 5, 9, 10, 25, 50, and 100 kHz
- Band-switching outputs (3 bits)
- Controller clock output (400 kHz)
- Clock time base output (8 Hz)
- Serial input circuit for data input (using the CE, CL, and DATA pins)

Package Dimensions

unit: mm

3006B-DIP16

unit: mm

3036B-MFP20

Pin Assignments

Note: * NC pins must be left open.

Specifications

Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2	-0.3 to +7.0	V
	V _{IN} 1 max	CE, CL, DATA	-0.3 to +7.0	V
Maximum input voltage	V _{IN} 2 max	Input pins other than V _{IN} 1	-0.3 to V _{DD} + 0.3	V
	V _{OUT} 1 max	SYC	-0.3 to +7.0	V
Maximum output voltage	V _{OUT} 2 max	BO1 to BO3	-0.3 to +13	V
	V _{OUT} 3 max	Output pins other than V_{OUT} 1 and V_{OUT} 2	-0.3 to V _{DD} + 0.3	V
Maximum output current	I _{OUT} max	BO1 to BO3	0 to 3.0	mA
Allowable newer discinction	Pd max	Ta = 85°C: LM7001J (DIP16)	300	mW
Allowable power dissipation	Pumax	Ta = 85°C: LM7001JM (MFP20)	180	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at Ta = -40 to +85°C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD} 1	V _{DD} 1, PLL circuit operating	4.5 to 6.5	V
Supply voltage	V _{DD} 2	V _{DD} 2, crystal oscillator time base	3.5 to 6.5	V
Input high-level voltage	VIH	CE, CL, DATA	2.2 to 6.5	V
Input low-level voltage	ow-level voltage V _{IL} CE, CL, DATA		0 to 0.7	V
Output veltogo	V _{OUT} 1	SYC	0 to 6.5	V
Output voltage	V _{OUT} 2	BO1 to BO3	0 to 13	V
Output current	Itput current I_{OUT} $\overline{BO1}$ to $\overline{BO3}$, $V_{DD} = 4.5$ to 6.5 V		0 to 3.0	mA
	f _{IN} 1	XIN, sine wave, capacitor coupled	1.0 to 7.2 typ to 8.0	MHz
Input frequency	f _{IN} 2	FMIN, sine wave, capacitor coupled*1, s*3 = 1	45 to 130	MHz
input nequency	f _{IN} 3	FMIN, sine wave, capacitor coupled*2, s*3 = 1	5 to 30	MHz
	f _{IN} 4	AMIN, sine wave, capacitor coupled, $s^{*3} = 0$	0.5 to 10	MHz
Crystal element for guaranteed oscillation	Xtal	XIN to XOUT, CI \leq 30 Ω	5.0 to 7.2 typ to 8.0	MHz
	V _{IN} 1	XIN, sine wave, capacitor coupled	0.5 to 1.5	Vrms
Input amplitude	V _{IN} 2	FMIN, sine wave, capacitor coupled	0.1 to 1.5	Vrms
	V _{IN} 3	AMIN, sine wave, capacitor coupled	0.1 to 1.5	Vrms

Note: 1. f_{ref} = 25, 50, or 100 kHz 2. f_{ref} = Reference frequencies other than those for *1. 3. "s" refers to the control bit in the serial data.

Parameter Symbol Con		Conditions	min	typ	max	Unit
	R _{f1}	XIN		1.0		MΩ
Built-in feedback resistance	R _{f2}	FMIN		500		kΩ
	R _{f3}	AMIN		500		kΩ
Input high-level current	IIH	CE, CL, DATA: V _{IN} = 6.5 V			5.0	μA
Input low-level current	IIL.	CE, CL, DATA: V _{IN} = 0 V			5.0	μA
	V _{OL} 1	FMIN, AMIN: I _{OUT} = 0.5 mA			3.5	V
Output low-level voltage	V _{OL} 2	<u>SYC</u> : I _{OUT} = 0.1 mA, *1	0.02		0.3	V
Output low-level voltage	V _{OL} 3	$\overline{\text{BO1}}$ to $\overline{\text{BO3}}$: I _{OUT} = 2.0 mA			1.0	V
	V _{OL} 4	$P_D 1, P_D 2: I_{OUT} = 0.1 \text{ mA}$			0.3	V
Output off looks of an and	I _{OFF} 1	<u>SYC</u> : V _{OUT} = 6.5 V			5.0	μA
Output off leakage current	I _{OFF} 2	$\overline{\text{BO1}}$ to $\overline{\text{BO3}}$: V _{OUT} = 13 V			3.0	μA
Output high-level voltage	V _{OH}	$P_D 1, P_D 2: I_{OUT} = -0.1 \text{ mA}$	0.5 V _{DD}			V
High-level 3-state off leakage current	I _{OFFH}	$P_D1, P_D2: V_{OUT} = V_{DD}$		0.01	10.0	nA
Low-level 3-state off leakage current	IOFFL	P _D 1, P _D 2: V _{OUT} = 0 V		0.01	10.0	nA
0	I _{DD} 1	V _{DD} 1 + V _{DD} 2: *2		25	40	mA
Current drain	I _{DD} 2	V _{DD} 2: PLL block stopped		2.0	3.5	mA
Input capacitance	CIN	FMIN	1	2	3	pF

Electrical Characteristics in the Allowable Operating Ranges

Note: 1. V_{DD} = 3.5 to 6.5 V

2. With a 7.2 MHz crystal connected between XIN and XOUT, f_{IN}2 = 130 MHz, V_{IN}2 = 100 mVrms, other input pins at V_{SS}, output pins open.

Oscillator Circuit Example

Kinseki, Ltd. HC43/U: 2114-84521 (1): CL = 10 pF, C1 = 15 (10 to 22) pF, C2 = 15 pF HC43/U: 2114-84521 (2): CL = 16 pF, C1 = 22 (15 to 33) pF, C2 = 33 pF

Nihon Denpa Kogyou, Ltd. NR-18: LM-X-0701: CL = 10 pF, C1 = 15 pF, C2 = 15 pF

Since the circuit constants in the crystal oscillator circuit depend on the crystal element used and the printed circuit board pattern, we recommend consulting with the manufacturer of the crystal element concerning this circuit.

Equivalent Circuit Block Diagram

Pin Functions

Symbol	Description
SYC	Controller clock (400 kHz)
XIN, XOUT	Crystal oscillator (7.2 MHz)
FMIN, AMIN	Local oscillator signal input
CE, CL, DATA	Data input
BO1 to BO3	Band data output. BO1 can be used as a time base output (8 Hz).
V _{DD} 1, V _{DD} 2, V _{SS}	Power supply (Apply power to both V_{DD} 1 and V_{DD} 2 when the PLL circuit is operating. V_{DD} 2 is the crystal oscillator and time base power supply. Internal data cannot be maintained on V_{DD} 2 only.)
P _D 1, P _D 2	Charge pump output

Data Input Timing

 V_{IH} = 2.2 to 6.5 V, V_{IL} = 0 to 0.7 V, Xtal = 5.00 to 7.20 (typ) to 8.00 MHz

Data acquisition: On the CL rising edge

Note: Data transfers must be started only after the crystal oscillator is operating normally, i.e., after a proper input signal has been supplied to XIN.

A04896

Parameter	Symbol	Xtal: 7.20 MHz	Xtal: for frequencies other than 7.2 MHz	Example: XIN = 2.048 MHz
Enable setup time	t _{ES}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Enable hold time	t _{EH}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Data setup time	t _{SU}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Data hold time	t _{HD}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Clock low-level time	t _{LO}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Clock high-level time	t _{HI}	At least 1.5 µs	At least $\left[\frac{1 \times 8}{f \text{ Xtal}}\right] \times 1.35$	At least 5.27 µs
Rise time	t _R	Up to 1 µs	Up to 1 µs	Up to 1 µs
Fall time	t _F	Up to 1 µs	Up to 1 µs	Up to 1 µs

Data Input

Input			Output			
B0	B1	B2	TB	BO1	BO2	BO3
0	0	0	0	*	*	*
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	0	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	1	1
0	0	0	1	ТВ	*	*
×	1	0	1	ТВ	1	0
×	0	1	1	ТВ	0	1
×	1	1	1	ТВ	1	1
1	0	0	1	ТВ	0	0
X: Don't care						

TB: 8 Hz

(4) R0 to R2: Reference frequency data

R0	R1	R2	f _{ref} [kHz]	BO1	BO2	BO3
0	0	0	100	1	1	0
0	0	1	50	1	1	0
0	1	0	25	1	1	0
0	1	1	5	0	0	1
1	0	0	10	1	0	1
1	0	1	9	1	0	1
1	1	0	1	0	1	1
1	1	1	5	0	0	1

Note: The values listed for BO1, BO2, and BO3 are for the case when the B0 to B2 data is set to all zeros.

(5) S: Divider selection data

1: FMIN, 0: AMIN

Notes on PLL IC Usage

1. PLL IC printed circuit board patterns

① Power supply pins

A capacitor must be inserted between the V_{DD} and V_{SS} power supply pins for noise exclusion. This capacitor must be located as close as possible to these pins.

- ② FMIN and AMIN pins The coupling capacitors must be located as close as possible to these pins.
- ③ PD pins, low-pass filter Since those are high-impedance pins, they are susceptible to noise. Therefore, the pattern should be kept as short as possible and the area around this circuit should be covered by the ground pattern.
- 2. Initial states of the output ports ($\overline{BO1}$ to $\overline{BO3}$)

The initial states of the output ports after power is applied are undefined until data has been transferred. In particular, it is possible for the $\overline{BO1}$ and $\overline{BO3}$ pins to output the internal clock, so data must be transferred as soon as possible.

However, note that the LSI cannot accept data until the crystal oscillator is operating normally.

3. VCO

The VCO circuit is designed so that it does not stop oscillating even if the control voltage (Vtune) becomes 0 V. (This is because the PLL circuit could become deadlocked if the VCO stopped.)

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.