LM78S40

LM78S40 Universal Switching Regulator Subsystem

Literature Number: SNVS021

April 1998

LM78S40 Universal Switching Regulator Subsystem

National Semiconductor

LM78S40 Universal Switching Regulator Subsystem

General Description

The LM78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching regulator systems. The device consists of a temperature compensated voltage reference, a duty-cycle controllable oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device can drive external NPN or PNP transistors when currents in excess of 1.5A or voltages in excess of 40V are required. The device can be used for step-down, step-up or inverting switching regulators as well as for series pass regulators. It features wide supply voltage range, low standby power dissipation, high efficiency and low drift. It is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems.

Features

- Step-up, step-down or inverting switching regulators
- Output adjustable from 1.25V to 40V
- Peak currents to 1.5A without external transistors
- Operation from 2.5V to 40V input
- Low standby current drain
- 80 dB line and load regulation
- High gain, high current, independent op amp
- Pulse width modulation with no double pulsing

Block and Connection Diagrams

Ordering Information

Part Number	NS Package	Temperature Range
LM78S40J/883	J16A Ceramic DIP	–55°C to +125°C
LM78S40N	N16E Molded DIP	-40°C to +125°C
LM78S40CN	N16E Molded DIP	0°C to +70°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for availability and spec	fications.	Differential Input Voltage	
Storage Temperature Range		(Note 4)	±30V
Ceramic DIP	-65°C to +175°C	Output Short Circuit	
Molded DIP	-65°C to +150°C	Duration (Op Amp)	Continuous
Operating Temperature Range		Current from V _{REF}	10 mA
Extended (LM78S40J)	–55°C to +125°C	Voltage from Switch	
Industrial (LM78S40N)	-40°C to +125°C	Collectors to GND	40V
Commercial (LM78S40CN)	0°C to +70°C	Voltage from Switch	
Lead Temperature		Emitters to GND	40V
Ceramic DIP (Soldering, 60 sec.)	300°C	Voltage from Switch	
Molded DIP (Soldering, 10 sec.)	265°C	Collectors to Emitter	40V
Internal Power Dissipation (Note 2) (Note	ote 3)	Voltage from Power Diode to GND	40V
16L-Ceramic DIP	1.50W	Reverse Power Diode Voltage	40V
16L-Molded DIP	1.04W	Current through Power Switch	1.5A
Input Voltage from V _{IN} to GND	40V	Current through Power Diode	1.5A
Input Voltage from V ⁺ (Op Amp)		ESD Susceptibility	(to be determined)

to GND

Common Mode Input Range

(Comparator and Op Amp)

LM78S40

Electrical Characteristics (Note 5) T_A = Operating temperature range, V_{IN} = 5.0V, V⁺(Op Amp) = 5.0V, unless otherwise specified. Symbol Parameter Conditions Min Тур Max Units **GENERAL CHARACTERISTICS** Supply Current V_{IN} = 5.0V 1.8 3.5 mΑ I_{CC} $V_{IN} = 40V$ (Op Amp Disconnected) 2.3 5.0 mΑ V_{IN} = 5.0V 4.0 I_{CC} Supply Current mΑ (Op Amp Connected) $V_{IN} = 40V$ 5.5 mΑ REFERENCE SECTION Reference Voltage $I_{REF} = 1.0 \text{ mA}$ Extend $-55^{\circ}C < T_A <$ V_{REF} +125°C, Comm $0 < T_A < +70^{\circ}C$, 1.180 1.245 1.310 V Indus $-40^{\circ}C < T_A < +85^{\circ}C$ $\rm V_{R\ LINE}$ Reference Voltage $V_{IN} = 3.0V$ to $V_{IN} = 40V$, 0.04 0.2 mV/V Line Regulation I_{REF} = 1.0 mA, T_A = 25°C Reference Voltage I_{REF} = 1.0 mA to I_{REF} = 10 mA, 0.2 0.5 mV/mA $V_{R \ LOAD}$ Load Regulation $T_A = 25^{\circ}C$ OSCILLATOR SECTION $V_{IN} = 5.0V, T_A = 25^{\circ}C$ **Charging Current** 20 50 μΑ I_{CHG} I_{CHG} **Charging Current** $V_{IN} = 40V, T_A = 25^{\circ}C$ 20 70 μΑ **Discharge Current** $V_{IN} = 5.0V, T_A = 25^{\circ}C$ 150 250 μA I_{DISCHG} V_{IN} = 40V, T_A = 25°C **Discharge Current** 150 350 μΑ I_{DISCHG} Oscillator Voltage Swing $V_{IN} = 5.0V, T_A = 25^{\circ}C$ ٧ Vosc 0.5 Ratio of Charge/ 6.0 t_{on}/t_{off} µs/µs Discharge Time CURRENT LIMIT SECTION Current Limit Sense $T_A = 25^{\circ}C$ 250 350 m٧ V_{CLS} Voltage OUTPUT SWITCH SECTION Output Saturation Voltage 1 I_{SW} = 1.0A (*Figure 1*) V V_{SAT 1} 1.1 1.3 Output Saturation Voltage 2 I_{SW} = 1.0A (*Figure 2*) 0.45 0.7 V V_{SAT 2}

40V

-0.3 to V+

$I_{\Delta} = 0$	perating temperature rande. V	$_{N}$ = 5.0V, V ⁺ (Op Amp) = 5.0V, unless otherwise	specified.			
Symbol		Conditions	Min	Тур	Max	Units
OUTPUT	SWITCH SECTION					L
h _{FE}	Output Transistor Current Gain	$I_{\rm C}$ = 1.0A, $V_{\rm CE}$ = 5.0V, $T_{\rm A}$ = 25°C		70		
IL.	Output Leakage Current	$V_{O} = 40V, T_{A} = 25^{\circ}C$		10		nA
POWER	DIODE				•	
V _{FD}	Forward Voltage Drop	I _D = 1.0A		1.25	1.5	V
I _{DR}	Diode Leakage Current	V _D = 40V, T _A = 25°C		10		nA
COMPA	RATOR			1		
V _{IO}	Input Offset Voltage	V _{CM} = V _{REF}		1.5	15	mV
I _{IB}	Input Bias Current	V _{CM} = V _{REF}		35	200	nA
I _{IO}	Input Offset Current	V _{CM} = V _{REF}		5.0	75	nA
V_{CM}	Common Mode Voltage Range	$T_A = 25^{\circ}C$	0		V _{IN} -2	V
PSRR	Power Supply Rejection Ratio	$V_{IN} = 3.0V$ to 40V, $T_A = 25^{\circ}C$	70	96		dB
OPERAT					1	L
V _{IO}	Input Offset Voltage	V _{CM} = 2.5V		4.0	15	mV
I _{IB}	Input Bias Current	V _{CM} = 2.5V		30	200	nA
I _{IO}	Input Offset Current	V _{CM} = 2.5V		5.0	75	nA
A _{VS} ⁺	Voltage Gain ⁺	$R_L = 2.0 \text{ k}\Omega$ to GND;	25	250		V/mV
		$V_{O} = 1.0V$ to 2.5V, $T_{A} = 25^{\circ}C$				
A _{VS} ⁻	Voltage Gain ⁻	$R_L = 2.0 \text{ k}\Omega \text{ to V}^+ \text{ (Op Amp)}$	25	250		V/mV
		$V_{O} = 1.0V$ to 2.5V, $T_{A} = 25^{\circ}C$				
V _{CM}	Common Mode Voltage Range	$T_A = 25^{\circ}C$	0		V _{CC} – 2	V
CMR	Common Mode Rejection	$V_{CM} = 0V \text{ to } 3.0V, T_A = 25^{\circ}C$	76	100		dB
PSRR	Power Supply Rejection Ratio	V ⁺ (Op Amp) = 3.0V to 40V, $T_A = 25^{\circ}C$	76	100		dB
l₀⁺	Output Source Current	$T_A = 25^{\circ}C$	75	150		mA
I ₀ -	Output Sink Current	$T_A = 25^{\circ}C$	10	35		mA
SR	Slew Rate	$T_A = 25^{\circ}C$		0.6		V/µs
V _{OL}	Output Voltage LOW	$I_{L} = -5.0 \text{ mA}, T_{A} = 25^{\circ}\text{C}$			1.0	V
V _{OH}	Output Voltage High	$I_L = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$	V + (Op Amp) – 3V			V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when ordering the device beyond its rated operating conditions.

Note 2: $T_{J Max}$ = 150°C for the Molded DIP, and 175°C for the Ceramic DIP.

Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic DIP at 10 mW/°C, and the 16L-Molded DIP at 8.3 mW/°C. Note 4: For supply voltages less than 30V, the absolute maximum voltage is equal to the supply voltage.

Note 5: A military RETS specification is available on request. At the time of printing, the LM78S40 RETS specification complied with the Min and Max limits in this table. The LM78S40J may also be procured as a Standard Military Drawing.

5

Functional Description

SWITCHING FREQUENCY CONTROL

The LM78S40 is a variable frequency, variable duty cycle device. The initial switching frequency is set by the timing capacitor. (Oscillator frequency is set by a single external capacitor and may be varied over a range of 100 Hz to 100 kHz). The initial duty cycle is 6:1. This switching frequency and duty cycle can be modified by two mechanisms—the current limit circuitry ($I_{pk \ sense}$) and the comparator.

The comparator modifies the OFF time. When the output voltage is correct, the comparator output is in the HIGH state and has no effect on the circuit operation. If the output voltage is too high then the comparator output goes LOW. In the LOW state the comparator inhibits the turn-on of the output stage switching transistors. As long as the comparator is LOW the system is in OFF time. As the output current rises the OFF time decreases. As the output current nears its maximum the OFF time approaches its minimum value. The comparator can inhibit several ON cycles, one ON cycle or any portion of an ON cycle. Once the ON cycle has begun the comparator cannot inhibit until the beginning of the next ON cycle.

The current limit modifies the ON time. The current limit is activated when a 300 mV potential appears between lead 13 (V_{CC}) and lead 14 (l_{pk}). This potential is intended to result when designed for peak current flows through R_{SC}. When the peak current is reached the current limit is turned on. The current limit circuitry provides for a quick end to ON time and the immediate start of OFF time.

Generally the oscillator is free running but the current limit action tends to reset the timing cycle.

Increasing load results in more current limited ON time and less OFF time. The switching frequency increases with load current.

USING THE INTERNAL REFERENCE, DIODE, AND SWITCH

The internal 1.245V reference (pin 8) must be bypassed, with 0.1 μF directly to the ground pin (pin 11) of the LM78S40, to assure its stability.

 V_{FD} is the forward voltage drop across the internal power diode. It is listed on the data sheet as 1.25V typical, 1.5V maximum. If an external diode is used, then its own forward voltage drop must be used for $V_{\text{FD}}.$

 V_{SAT} is the voltage across the switch element (output transistors Q1 and Q2) when the switch is closed or ON. This is listed on the data sheet as Output Saturation Voltage.

"Output saturation voltage 1" is defined as the switching element voltage for Q2 and Q1 in the Darlington configuration with collectors tied together. This applies to *Figure 1*, the step down mode.

"Output saturation voltage 2" is the switching element voltage for Q1 only when used as a transistor switch. This applies to *Figure 2*, the step up mode.

For the inverting mode, *Figure 3*, the saturation voltage of the external transistor should be used for V_{SAT} .

FIGURE 1. Typical Step-Down Regulator and Operational Performance ($T_A = 25^{\circ}C$)

Characteristic	Condition	Typical
		Value
Output Voltage	I _O = 200 mA	10V
Line Regulation	$20V \le V_I \le 30V$	1.5 mV
Load Regulation	5.0 mA ≤ I _O	3.0 mV
	I _O ≤ 300 mA	
Max Output Current	V _O = 9.5V	500 mA
Output Ripple	I _O = 200 mA	50 mV
Efficiency	I _O = 200 mA	74%
Standby Current	I _O = 200 mA	2.8 mA

Note 7: For ${\rm I_O} \geq$ 200 mA use external diode to limit on-chip power dissipation.

FIGURE 2. Typical Step-Up Regulator and Operational Performance $(T_A = 25^{\circ}C)$

Characteristic	Condition	Typical
		Value
Output Voltage	I _O = 50 mA	25V
Line Regulation	$5.0V \le V_I \le 15V$	4.0 mV
Load Regulation	5.0 mA ≤ I _O	2.0 mV
	I _O ≤ 100 mA	
Max Output Current	V _O = 23.75V	160 mA
Output Ripple	l _o = 50 mA	30 mV
Efficiency	I _O = 50 mA	79%
Standby Current	I _O = 50 mA	2.6 mA

FIGURE 3. Typical Inverting Regulator and Operational Performance ($T_A = 25^{\circ}C$)

Characteristic	Condition	Typical Value
Output Voltage	I _O = 100 mA	-15V
Line Regulation	$8.0V \le V_I \le 18V$	5.0 mV
Load Regulation	5.0 mA ≤ I _O	3.0 mV
	$I_O \le 150 \text{ mA}$	
Max Output Current	V _O = 14.25V	160 mA
Output Ripple	I _O = 100 mA	20 mV
Efficiency	I _O = 100 mA	70%
Standby Current	I _O = 100 mA	2.3 mA

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
ww.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated