LMC555

National Semiconductor

PRELIMINARY

R. C. A. Bart

LMC555 CMOS Timer

General Description

The LMC555 is a CMOS version of the industry standard 555 series general purpose timers. It offers the same capability of generating accurate time delays and frequencies but with much lower power dissipation and supply current spikes. When operated as a one-shot, the time delay is precisely controlled by a single external resistor and capacitor. In the astable mode the oscillation frequency and duty cycle are accurately set by two external resistors and one capacitor. The use of National Semiconductor's LMCMOSTM process extends both the frequency range and low supply capability.

Features

- Less than 1 mW typical power dissipation at 5V supply
- 3 MHz astable frequency capability
- 1.5V supply operating voltage guaranteed
- Output fully compatible with TTL and CMOS logic at 5V supply
- Tested to -10 mA, +50 mA output current levels
- Reduced supply current spikes during output transitions
- Extremely low reset, trigger, and threshold currents
- Excellent temperature stability
- Pin-for-pin compatible with 555 series of timers

Block and Connection Diagrams

LMC555

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V8	15V
Input Voltages, V2, V4, V5, V6	-0.3V to V _S + 0.3V
Output Voltages, V3, V7	15V
Output Current 13, 17	100 mA
Operating Temperature Range (Note 1) -40°C to +85°C*
Storage Temperature Range	-65°C to +150°C

Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	260°C
Small Outline Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	- 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics Test Circuit, T = 25°C, all switches open, RESET to V_S unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units (Limits)
18	Supply Current	$V_{S} = 1.5V$ $V_{S} = 5V$ $V_{S} = 12V$		50 100 150	150 250 400	μA
V5	Control Voltage	$V_{S} = 1.5V$ $V_{S} = 5V$ $V_{S} = 12V$	0.8 2.9 7.4	1.0 3.3 8.0	1.2 3.8 8.6	v
V7	Discharge Saturation Voltage	$V_{S} = 1.5V, I_{7} = 1 \text{ mA}$ $V_{S} = 5V, I_{7} = 10 \text{ mA}$		75 150	150 300	mV
V3L	Output Voltage (Low)	$V_{S} = 1.5V$, $I_{3} = 1 \text{ mA}$ $V_{S} = 5V$, $I_{3} = 8 \text{ mA}$ $V_{S} = 12V$, $I_{3} = 50 \text{ mA}$		0.2 0.3 1.0	0.4 0.6 2.0	v
V3 _H	Output Voltage (High)	$V_{S} = 1.5V$, $I_{3} = -0.25 \text{ mA}$ $V_{S} = 5V$, $I_{3} = -2 \text{ mA}$ $V_{S} = 12V$, $I_{3} = -10 \text{ mA}$	1.0 4.4 10.5	1.25 4.7 11.3		v
V2	Trigger Voltage	$V_{S} = 1.5V$ $V_{S} = 12V$	0.4 3.7	0.5 4.0	0.6 4.3	v
12	Trigger Current	$V_{\rm S} = 5V$		10		pА
V4	Reset Voltage	V _S = 1.5V (Note 2) V _S = 12V	0.4 0.4	0.7 0.75	1.0 1.1	v
14	Reset Current	$V_{S} = 5V$		10		pА
16	Threshold Current	$V_{S} = 5V$		10		pА
17	Discharge Leakage	V _S = 12V		1.0	100	nA
t	Timing Accuracy	SW 2, 4 Closed $V_S = 1.5V$ $V_S = 5V$ $V_S = 12V$	0.9 1.0 1.0	1.1 1.1 1.1	1.25 1.20 1.25	ms
Δt/ΔVs	Timing Shift with Supply	$V_{\rm S} = 5V \pm 1V$		0.3		%/V
Δt/ΔT	Timing Shift with Temperature	$V_{S} = 5V$ -40°C $\leq T \leq +85°C$		75		ppm/°C
f _A	Astable Frequency	SW 1, 3 Closed V _S = 12V	4.0	4.8	5.6	kHz
fmax	Maximum Frequency	Max. Freq. Test Circuit, V _S = 5V		3.0		MHz
t _R , t _F	Output Rise and Fall Times	Max. Freq. Test Circuit $V_S = 5V, C_L = 10 pF$		15		ns
t _{PD}	Trigger Propagation Delay	V _S = 5V, Measure Delay from Trigger to Output		100		ns

* Refer to RETSC555X drawing for specifications of military LMC555H version.

Note 1: For operation at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 111°C/W for the LMC555CN, 167°C/W for the LMC555CH, and 169°C/W for the LMC555CM. Maximum allowable dissipation at 25°C is 1126 mW for the LMC555CN, 755 mW for the LMC555CH, and 740 mW for the LMC555CM.

Note 2: If the RESET pin is to be used at temperatures of -20° C and below V_S is required to be 2.0V or greater.

LMC555

Maximum Frequency Test Circuit

Typical Applications

Monostable (One-Shot)

 $I_H = 1.1 R_AC$ (Gives time that output is high following trigger) **RESET** overrides **TRIGGER**, which can override THRESHOLD. Therefore, the trigger pulse must be shorter than the desired I_H .

The minimum trigger pulse width is 20 ns.

The minimum reset pulse width is 400 ns.

50% Duty Cycle Oscillator

4-226