

# LMH6672 Dual, High Output Current, High Speed Op Amp

Check for Samples: LMH6672

# FEATURES

- High Output Drive
  - 19.2 V<sub>PP</sub> differential output voltage, R<sub>L</sub> =  $50\Omega$
  - 9.6 V<sub>PP</sub> single-ended output voltage, R<sub>L</sub> =  $25\Omega$
- High Output Current
  - ±200 mA @ V<sub>o</sub> = 9 V<sub>PP</sub>, V<sub>s</sub> = 12V
- Low Distortion
  - 105 dB SFDR @ 100 kHz,  $V_0$  = 8.4  $V_{PP}$ ,  $R_L$  = 25Ω
  - 98 dB SFDR @ 1MHz,  $V_0 = 2 V_{PP}$ ,  $R_L = 100\Omega$
- High Speed

- 90 MHz 3 dB bandwidth (G = 2)
- 135 V/µs slew rate
- Low Noise
  - 3.1 nV//Hz: input noise voltage
  - 1.8 pA//Hz: input noise current
  - Low supply current: 7.2mA/amp
- Single-supply operation: 5V to 12V
- Available in 8-pin SOIC and PSOP

## **APPLICATIONS**

- ADSL PCI modem cards
- xDSL external modems
- Line drivers

# DESCRIPTION

The LMH6672 is a low cost, dual high speed op amp capable of driving signals to within 1V of the power supply rails. It features the high output drive with low distortion required for the demanding application of a single supply xDSL line driver.

When connected as a differential output driver, the LMH6672 can drive a  $50\Omega$  load to 16.8 V<sub>PP</sub> swing with only -98 dBc distortion, fully supporting the peak upstream power levels for upstream full-rate ADSL. The LMH6672 is fully specified for operation with 5V and 12V supplies. Ideal for PCI modem cards and xDSL modems.

## **Connection Diagram**

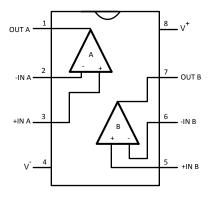
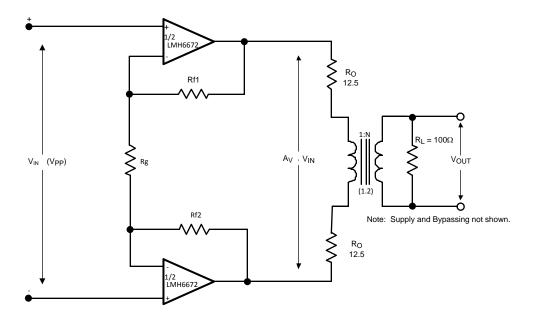




Figure 1. 8-Pin SOIC/PSOP (Top View)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.



## **Typical Application**





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## Absolute Maximum Ratings (1)

| (2)                                        |
|--------------------------------------------|
| 2kV                                        |
| 200V                                       |
| ±1.2V                                      |
| (3)                                        |
| 13.2V                                      |
| V <sup>+</sup> +0.8V, V <sup>−</sup> −0.8V |
| −65°C to +150°C                            |
| +150°C <sup>(4)</sup>                      |
|                                            |
| 235°C                                      |
| 260°C                                      |
|                                            |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

(2) Human body model,  $1.5k\Omega$  in series with 100pF. Machine model,  $200\Omega$  in series with 100pF.

(3) Shorting the output to either supply or ground will exceed the absolute maximum  $T_J$  and can result in failure.

(4) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $\theta_{JA}$  and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly onto a PC board.

## **Operating Ratings** <sup>(1)</sup>

| Supply Voltage (V <sup>+</sup> - V <sup>-</sup> ) | ±2.5V to ±6.5V |
|---------------------------------------------------|----------------|
| Junction Temperature Range                        | −40°C to 150°C |
| Package Thermal Resistance $(\theta_{JA})$        |                |
| 8-pin SOIC                                        | 172°C/W        |
| 8-pin PSOP                                        | 58.6°C/W       |

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.



### **Electrical Characteristics**

 $T_J = 25^{\circ}C$ , G = +2,  $V_S = \pm 2.5$  to  $\pm 6V$ ,  $R_F = R_{IN} = 470\Omega$ ,  $R_L = 100\Omega$ ; Unless otherwise specified.

| Symbol           | Parameter                           | Conditions                                                                                                           | Min<br>(1) | Тур<br>(2)  | Max<br>(1) | Units  |
|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|--------|
| Dynamic I        | Performance                         |                                                                                                                      | 1          | - I         |            |        |
|                  | -3dB Bandwidth                      |                                                                                                                      |            | 90          |            | MHz    |
|                  | 0.1dB Bandwidth                     | $V_{S} = \pm 6V$                                                                                                     |            | 12          |            | MHz    |
|                  | Slew Rate                           | V <sub>S</sub> = ±6V, 4V Step, 10-90%                                                                                |            | 135         |            | V/µs   |
|                  | Rise and Fall Time                  | V <sub>S</sub> = 6V, 4V Step, 10-90%                                                                                 |            | 23.5        |            | ns     |
| Distortion       | and Noise Response                  |                                                                                                                      |            |             |            |        |
|                  | 2 <sup>nd</sup> Harmonic Distortion | $V_{O} = 8.4 V_{PP}$ , f = 100 kHz, R <sub>L</sub> = 25 $\Omega$                                                     |            | -105        |            | dBc    |
|                  |                                     | $V_{O} = 8.4 V_{PP}, f = 1 MHz, R_{L} = 100\Omega$                                                                   |            | -90         |            | dBc    |
|                  | 3 <sup>rd</sup> Harmonic Distortion | $V_0 = 8.4 V_{PP}$ , f = 100 kHz, R <sub>L</sub> = 25 $\Omega$                                                       |            | -110        |            | dBc    |
|                  |                                     | $V_0 = 8.4 V_{PP}, f = 1 MHz, R_L = 100\Omega$                                                                       |            | -87         |            | dBc    |
|                  | Input Noise Voltage                 | f = 100 kHz                                                                                                          |            | 3.1         |            | nV√Hz  |
|                  | Input Noise Current                 | f = 100 kHz                                                                                                          |            | 1.8         |            | pA/√Hz |
| Input Cha        | racteristics                        |                                                                                                                      | 1          |             |            |        |
| V <sub>OS</sub>  | Input Offset Voltage                | $T_{\rm J} = -40^{\circ}$ C to 125°C                                                                                 | -5.5       | 0.1         | 5.5        |        |
|                  |                                     |                                                                                                                      | -4         | -0.2        | 4          | mV     |
| I <sub>B</sub>   | Input Bias Current                  | $T_{J} = -40^{\circ}C$ to 125°C                                                                                      |            | 8           | 16         | μA     |
| los              | Input Offset Current                | $T_{\rm J} = -40^{\circ}$ C to 125°C                                                                                 | -2.1       | 0           | 2.1        | μA     |
| CMVR             | Common Voltage Range                | $V_{S} = \pm 6V$                                                                                                     | -6.0       | -5.7 to 4.5 | 4.5        | V      |
| CMRR             | Common-Mode Rejection Ratio         | $V_{S} = \pm 6V, T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$                                                      | 150        | 7.5         |            | μV/V   |
| Transfer (       | Characteristics                     |                                                                                                                      |            |             |            | -      |
| A <sub>VOL</sub> | Voltage Gain                        | $R_{L} = 1k, T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$                                                          | 1.0        | 5           |            | V/mV   |
|                  |                                     | $R_{L} = 25\Omega$ , $T_{J} = -40^{\circ}C$ to $125^{\circ}C$                                                        | 0.67       | 3.4         |            | V/mV   |
| Vo               | Output Swing                        | $R_{L} = 25\Omega, V_{S} = \pm 6V$                                                                                   | -4.5       | ±4.8        | 4.5        |        |
|                  |                                     | $ \begin{array}{l} R_{L} = 25\Omega,  T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C, \\ V_{S} = \pm 6V \end{array} $ | -4.4       | ±4.8        | 4.4        | V      |
| Vo               | Output Swing                        | $R_L = 1k, V_S = \pm 6V$                                                                                             | -4.8       | ±4.8        | 4.8        |        |
|                  |                                     | $R_L = 1k$ , $T_J = -40^{\circ}C$ to 125°C,<br>$V_S = \pm 6V$                                                        | -4.7       | ±4.8        | 4.7        | V      |
| I <sub>SC</sub>  | Output Current <sup>(3)</sup>       | $V_{O} = 0, V_{S} = \pm 6V$                                                                                          | 350        | 525         |            | mA     |
|                  |                                     | $V_{O} = 0$ , $V_{S} = \pm 6V$ ,<br>$T_{J} = -40^{\circ}$ C to 125°C                                                 | 260        | 600         |            | mA     |
| Power Su         | pply                                |                                                                                                                      |            | ·           |            |        |
| I <sub>S</sub>   | Supply Current/Amp                  | $V_{S} = \pm 6V$                                                                                                     |            |             | 8          |        |
|                  |                                     | $V_{\rm S} = \pm 6V$ , $T_{\rm J} = -40^{\circ}$ C to 125°C                                                          |            | 7.2         | 9          | mA     |
| PSRR             | Power Supply Rejection Ratio        | $V_S = \pm 2.5V$ to $\pm 6V$ ,<br>$T_J = -40^{\circ}C$ to $125^{\circ}C$                                             | 72         | 88.5        |            | dB     |

(1)

All limits are guaranteed by testing, characterization or statistical analysis. Typical values represent the most likely parametric norm. Shorting the output to either supply or ground will exceed the absolute maximum T<sub>J</sub> and can result in failure. (2) (3)

TRUMENTS

EXAS

www.ti.com

### ±2.5V Electrical Characteristics

 $T_J = 25^{\circ}C$ , G = +2,  $V_S = \pm 2.5$  to  $\pm 6V$ ,  $R_F = R_{IN} = 470\Omega$ ,  $R_L = 100\Omega$ ; Unless otherwise specified.

| Symbol           | Parameter                           | Conditions                                                   | Min<br>(1) | Тур<br>(2) | Max<br>(1) | Units |  |
|------------------|-------------------------------------|--------------------------------------------------------------|------------|------------|------------|-------|--|
| Dynamic I        | Performance                         |                                                              | 1          |            | 1          |       |  |
|                  | −3 dB Bandwidth                     |                                                              |            | 80         |            | MHz   |  |
|                  | 0.1 dB Bandwidth                    |                                                              |            | 12         |            | MHz   |  |
|                  | Slew Rate                           | 2V Step, 10-90%                                              |            | 15         |            | V/µs  |  |
|                  | Rise and Fall Time                  | 2V Step, 10-90%                                              |            | 14         |            | ns    |  |
| Distortion       | and Noise Response                  |                                                              |            |            |            |       |  |
|                  | 2 <sup>nd</sup> Harmonic Distortion | $V_O = 2 V_{PP}$ , f = 100 kHz, R <sub>L</sub> = 25 $\Omega$ |            | -96        |            | dBc   |  |
|                  |                                     | $V_O = 2 V_{PP}$ , f = 1 MHz, R <sub>L</sub> = 100 $\Omega$  |            | -85        |            | dBc   |  |
|                  | 3 <sup>rd</sup> Harmonic Distortion | $V_O = 2 V_{PP}$ , f = 100 kHz, R <sub>L</sub> = 25 $\Omega$ |            | -98        |            | dBc   |  |
|                  |                                     | $V_{O}$ = 2 $V_{PP}$ , f = 1 MHz, $R_{L}$ = 100 $\Omega$     |            | -87        |            | dBc   |  |
| Input Cha        | racteristics                        |                                                              |            |            |            |       |  |
| V <sub>OS</sub>  | Input Offset Voltage                | $T_J = -40^{\circ}C$ to 125°C                                | -5.5       |            | 5.5        | — mV  |  |
|                  |                                     |                                                              | -4.0       | 0.02       | 4.0        |       |  |
| I <sub>B</sub>   | Input Bias Current                  | $T_J = -40^{\circ}C$ to $125^{\circ}C$                       |            | 8.0        | 16         | μA    |  |
| CMVR             | Common-Mode Voltage Range           |                                                              | -2.5       |            | 1.0        | V     |  |
| CMRR             | Common-Mode Rejection Ratio         | $T_J = -40^{\circ}C$ to $125^{\circ}C$                       | 150        | 8          |            | μV/V  |  |
| Transfer C       | Characteristics                     |                                                              |            |            |            |       |  |
| A <sub>VOL</sub> | Voltage Gain                        | $R_L = 25\Omega$ , $T_J = -40^{\circ}C$ to $125^{\circ}C$    | 0.67       | 3          |            | V/mV  |  |
|                  |                                     | $R_{L} = 1k, T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$  | 1.0        | 4          |            | v/mv  |  |
| Output Ch        | aracteristics                       |                                                              |            |            |            |       |  |
| Vo               | Output Voltage Swing                | $R_L = 25\Omega$                                             | 1.20       | 1.45       |            |       |  |
|                  |                                     | $R_L = 25\Omega$ , $T_J = -40^{\circ}C$ to $125^{\circ}C$    | 1.10       | 1.35       |            | V     |  |
|                  |                                     | $R_L = 1k$                                                   | 1.30       | 1.60       |            |       |  |
|                  |                                     | $R_{L} = 1k, T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$  | 1.25       | 1.50       |            |       |  |
| Power Su         | pply                                |                                                              |            |            |            |       |  |
| ls               | Supply Current/Amp                  |                                                              |            |            | 8.0        | - mA  |  |
|                  |                                     | $T_J = -40^{\circ}C$ to 125°C                                |            | 6.7        | 9.0        | IIIA  |  |

All limits are guaranteed by testing, characterization or statistical analysis.
 Typical values represent the most likely parametric norm.





85°C

85°C

5

6 7

 $V_S = \pm 6V$ 

250

200

4

 $\pm V_{SUPPLY}(V)$ +V<sub>OUT</sub> vs.

ILOAD

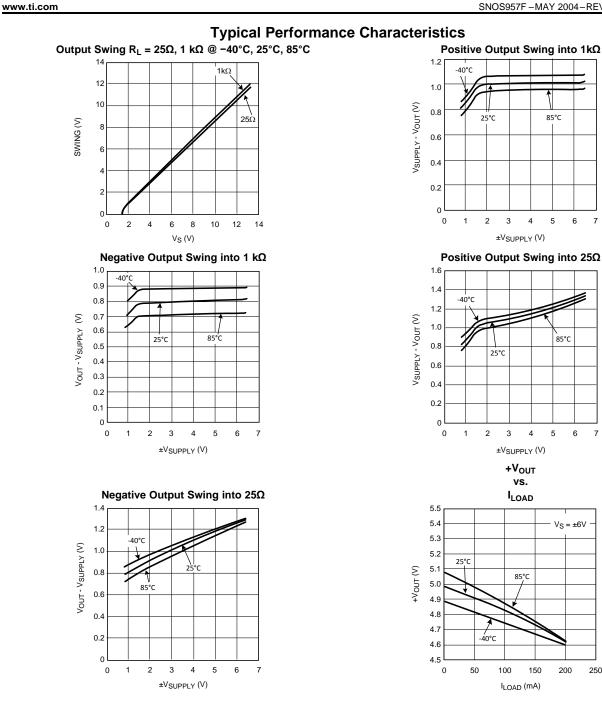
85°C

25°C

2 3 4 5 6 7

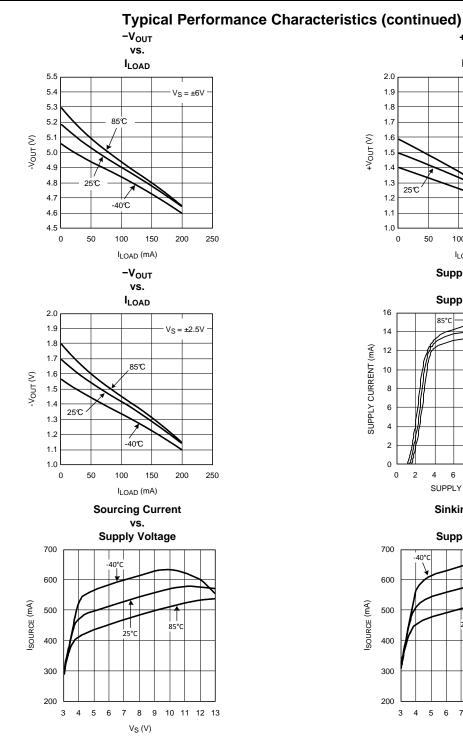
25°C

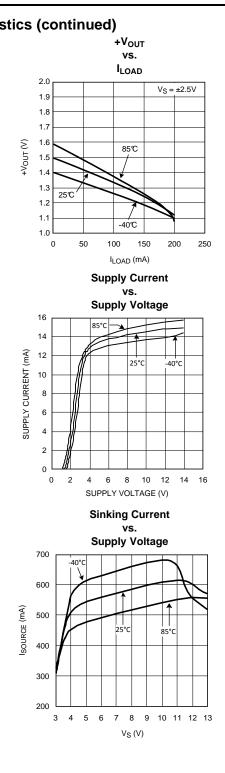
2 3


40°C

100

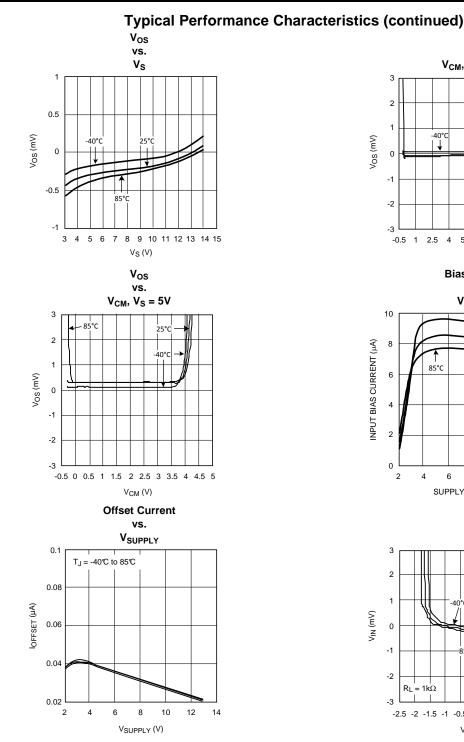
150

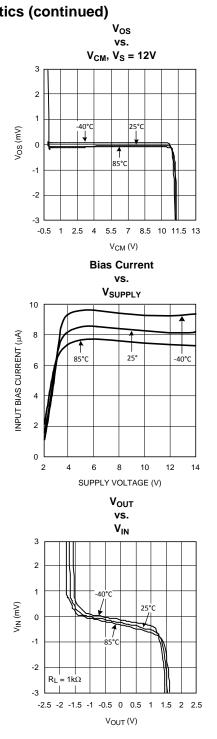

I<sub>LOAD</sub> (mA)


±V<sub>SUPPLY</sub> (V)












SNOS957F-MAY 2004-REVISED MAY 2004





3

2

1

0

-1

-2

-3

-45

-55

-65

-75

-85

-95

-105

-115

-35

-45

-55

-65

-75

-85

-95

-105

HARMONIC DISTORTION (dBc)

0

HARMONIC DISTORTION (dBc)

 $R_L = 25\Omega$ 

 $V_{S} = \pm 2.5 V$ 

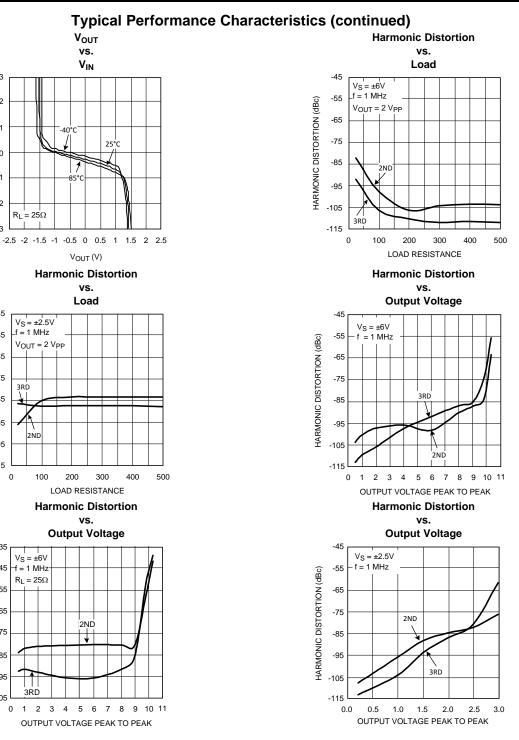
V<sub>OUT</sub> = 2 V<sub>PP</sub>

f = 1 MHz

3RD

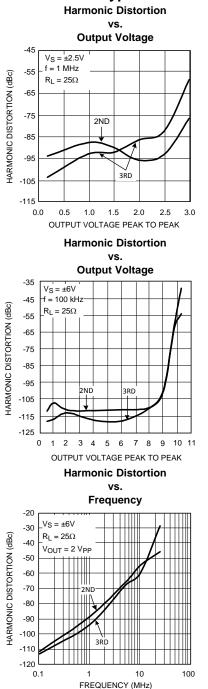
2ND

100

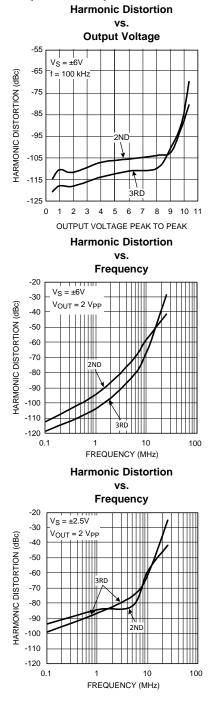

 $V_{S} = \pm 6V$ 

f = 1 MHz

 $R_L = 25\Omega$ 


3RD

VIN (mV)














6.8

6.7

6.6

6.5

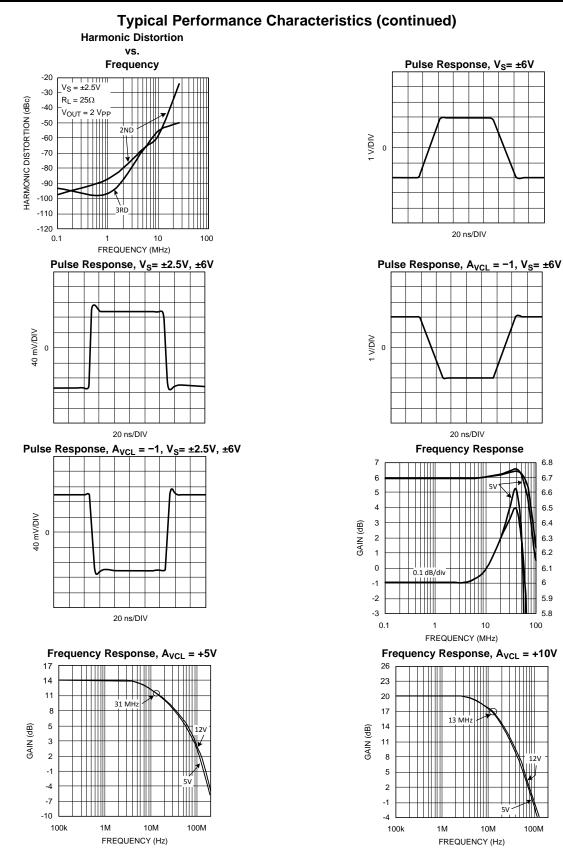
6.4

6.3

6.2

6.1

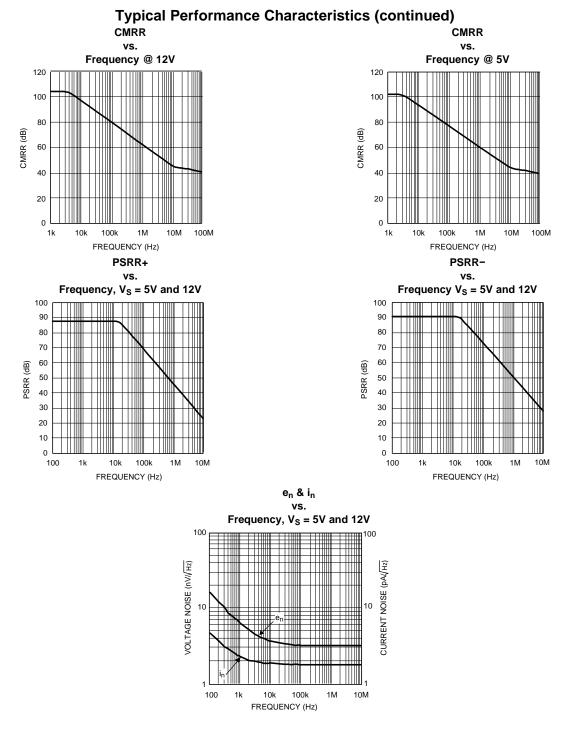
6


5.9

5.8

100

www.ti.com


#### SNOS957F-MAY 2004-REVISED MAY 2004



10



#### SNOS957F-MAY 2004-REVISED MAY 2004



### **Application Notes**

#### THERMAL MANAGEMENT

The LMH6672 is a high-speed, high power, dual operational amplifier with a very high slew rate and very low distortion. For ease of use, it uses conventional voltage feedback. These characteristics make the LMH6672 ideal for applications where driving low impedances of 25-100 $\Omega$  such as xDSL and active filters.

Copyright © 2004, Texas Instruments Incorporated

#### SNOS957F-MAY 2004-REVISED MAY 2004

www.ti.com

A class AB output stage allows the LMH6672 to deliver high currents to low impedance loads with low distortion while consuming low quiescent supply current. For most op-amps, class AB topology means that internal power dissipation is rarely an issue, even with the trend to smaller surface mount packages. However, the LMH6672 has been designed for applications where high levels of power dissipation may be encountered.

Several factors contribute to power dissipation and consequently higher junction temperatures. These factors need to be well understood if the LMH6672 is to perform to specifications in all applications. This section will examine the typical application that is shown on the front page of this data sheet as an example. () Because both amplifiers are in a single package, the calculations will for the total power dissipated by both amplifiers.

There are two separate contributors to the internal power dissipation:

- 1. The product of the supply voltage and the quiescent current when no signal is being delivered to the external load.
- 2. The additional power dissipated while delivering power to the external load.

The first of these components appears easy to calculate simply by inspecting the data sheet. The typical quiescent supply current for this part is 7.2 mA per amplifier, therefore, with a  $\pm 6$  volt supply, the total power dissipation is:

 $P_D = V_S \times 2 \times I_Q = 12 \times (14.4 \times 10^{-3}) = 173 \text{ mW}$ 

 $(V_{S} = V_{CC} + V_{EE})$ 

With a thermal resistance of  $172^{\circ}$ C/W for the SOIC package, this level of internal power dissipation will result in a junction temperature (T<sub>J</sub>) of 30°C above ambient.

Using the worst-case maximum supply current of 18 mA and an ambient of 85°C, a similar calculation results in a power dissipation of 216 mW, or a  $T_J$  of 122°C.

This is approaching the maximum allowed T<sub>J</sub> of 150°C before a signal is applied. Fortunately, in normal operation, this term is reduced, for reasons that will soon be explained.

The second contributor to high  $T_J$  is the power dissipated internally when power is delivered to the external load. This cause of temperature rise is more difficult to calculate, even when the actual operating conditions are known.

To maintain low distortion, in a Class AB output stage, an idle current,  $I_Q$ , is maintained through the output transistors when there is little or no output signal. In the LMH6672, about 4.8 mA of the total quiescent supply current of 14.4 mA flows through the output stages.

Under normal large signal conditions, as the output voltage swings positive, one transistor of the output pair will conduct the load current, while the other transistor shuts off, and dissipates no power. During the negative signal swing this situation is reversed, with the lower transistor sinking the load current while the upper transistor is cut off. The current in each transistor will approximate a half wave rectified version of the total load current.

Because the output stage idle current is now routed into the load, 4.8 mA can be subtracted from the quiescent supply current when calculating the quiescent power when the output is driving a load.

The power dissipation caused by driving a load in a DSL application, using a 1:2 turns ratio transformer driving 20 mW into the subscriber line and 20 mW into the back termination resistors, can be calculated as follows:

 $P_{DRIVER} = P_{TOT} - (P_{TERM} + P_{LINE})$  where

P<sub>DRIVER</sub> is the LMH6672 power dissipation

P<sub>TOT</sub> is the total power drawn from the power supply

 $\mathsf{P}_{\mathsf{TERM}}$  is the power dissipated in the back termination resistors

P<sub>LINE</sub> is the power sent into the subscriber line

At full specified power,  $P_{TERM} = P_{LINE} = 20 \text{ mW}$ ,  $P_{TOT} = V_S \times I_S$ .

In this application,  $V_S = 12V$ .

 $I_{\rm S} = I_{\rm Q} + A_{\rm VG} |I_{\rm OUT}|.$ 

 $I_Q$  = the LMH6672 quiescent current minus the output stage idle current.



#### $I_Q = 14.4 - 4.8 = 9.6 \text{ mA}$

 $A_{VG} |I_{OUT}|$  for a full-rate ADSL CPE application, using a 1:2 turns ratio transformer, is  $\sqrt{(40 \text{ mW}/50\Omega)}$  = 28.28 mA RMS.

For a Gaussian signal, which the DMT ADSL signal approximates,  $A_{VG} |I_{OUT}| = \sqrt{2/\pi} \times I_{RMS} = 22.6$  mA. Therefore,  $P_{TOT} = (22.6 \text{ mA} + 9.6 \text{ mA}) \times 12V = 386 \text{ mW}$  and  $P_{DRIVER}$  is 40 = 346 mW.

In the SOIC package, with a  $\theta_{JA}$  of 172°C/W, this causes a temperature rise of 60°C. With an ambient temperature at the maximum recommended 85°C, the T<sub>J</sub> is at 145°C, well below the specified 150°C maximum.

Even if we assume the absolute maximum  $I_S$  over temperature of 18 mA, when we scale up the  $I_Q$  proportionally to 7 mA, the  $P_{DRIVER}$  only goes up by 41 mW causing a 62°C rise to 147°C.

Although very few CPE applications will ever operate in an environment as hot as 85°C, if a lower T<sub>J</sub> is desired or the LMH6672 is to be used in an application where the power dissipation is higher, the PSOP package provides a much lower  $\theta_{JA}$  of only 58.6°C/W.

Using the same  $P_{DRIVER}$  as above, we find that the temperature rise is only 19° and 21°C, resulting in  $T_J$ 's in an 85°C ambient of 104°C and 106°C respectively.



### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing |   | Package Qty | Eco Plan<br>(2)            | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Top-Side Markings | Samples |
|------------------|---------------|--------------|--------------------|---|-------------|----------------------------|------------------|---------------------|--------------|-------------------|---------|
| LMH6672MA        | ACTIVE        | SOIC         | D                  | 8 | 95          | TBD                        | CU SNPB          | Level-1-235C-UNLIM  | -40 to 85    | LMH66<br>72MA     | Samples |
| LMH6672MA/NOPB   | ACTIVE        | SOIC         | D                  | 8 | 95          | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM  | -40 to 85    | LMH66<br>72MA     | Samples |
| LMH6672MAX       | ACTIVE        | SOIC         | D                  | 8 | 2500        | TBD                        | CU SNPB          | Level-1-235C-UNLIM  | -40 to 85    | LMH66<br>72MA     | Samples |
| LMH6672MAX/NOPB  | ACTIVE        | SOIC         | D                  | 8 | 2500        | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-1-260C-UNLIM  | -40 to 85    | LMH66<br>72MA     | Samples |
| LMH6672MR/NOPB   | ACTIVE        | SO PowerPAD  | DDA                | 8 | 95          | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 85    | LMH66<br>72MR     | Samples |
| LMH6672MRX/NOPB  | ACTIVE        | SO PowerPAD  | DDA                | 8 | 2500        | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 85    | LMH66<br>72MR     | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> Only one of markings shown within the brackets will appear on the physical device.

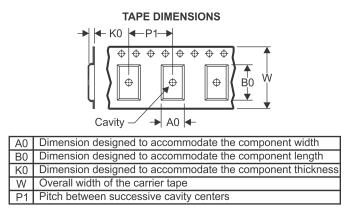
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and



24-Jan-2013

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

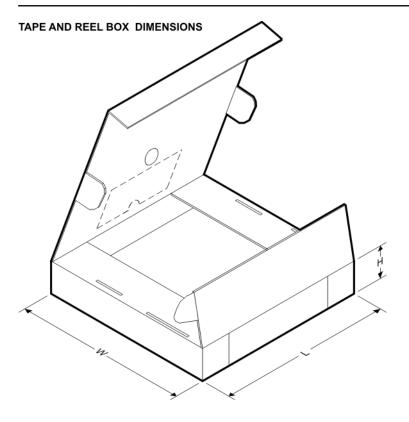
## TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



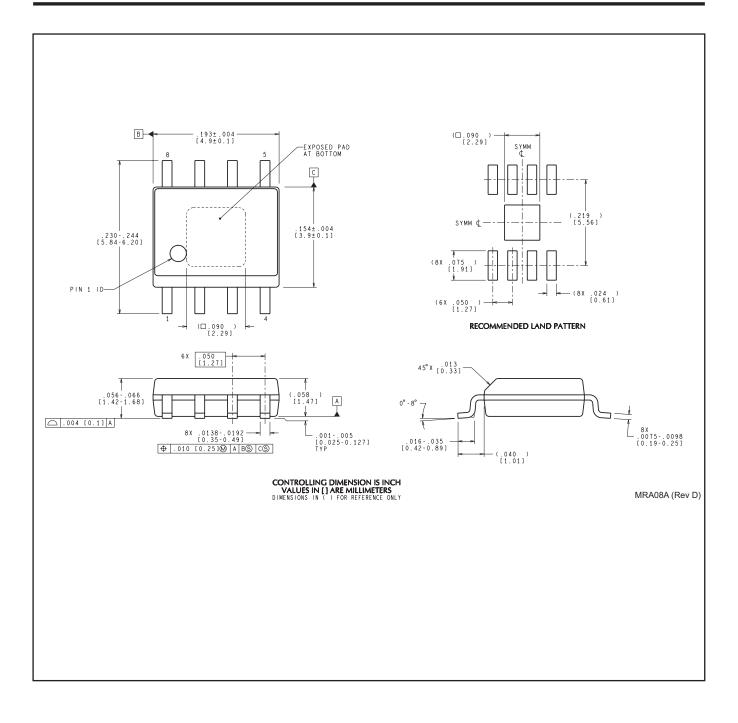

| *All dimensions are nominal Device | Package<br>Type    | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------------------------|--------------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| LMH6672MAX                         | SOIC               | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.5        | 5.4        | 2.0        | 8.0        | 12.0      | Q1               |
| LMH6672MAX/NOPB                    | SOIC               | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.5        | 5.4        | 2.0        | 8.0        | 12.0      | Q1               |
| LMH6672MRX/NOPB                    | SO<br>Power<br>PAD | DDA                | 8 | 2500 | 330.0                    | 12.4                     | 6.5        | 5.4        | 2.0        | 8.0        | 12.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

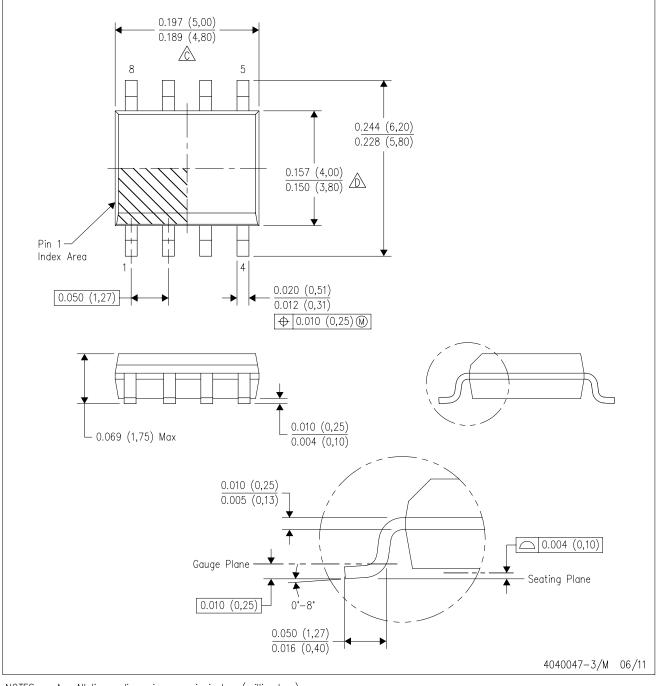
26-Jan-2013




\*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LMH6672MAX      | SOIC         | D               | 8    | 2500 | 349.0       | 337.0      | 45.0        |
| LMH6672MAX/NOPB | SOIC         | D               | 8    | 2500 | 349.0       | 337.0      | 45.0        |
| LMH6672MRX/NOPB | SO PowerPAD  | DDA             | 8    | 2500 | 358.0       | 343.0      | 63.0        |

# **MECHANICAL DATA**


# DDA0008A





D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated