

HIGH PERFORMANCE DUAL OPERATIONAL AMPLIFIER

- SINGLE OR SPLIT SUPPLY OPERATION
- LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

The LS 204 is a high performance dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth products. The circuit presents very stable electrical characteristics over the entire supply voltage range, and it is particularly intended for professional and telecom applications (active filters, etc.). The LS 204 series is available with hermetic gold chip (8000 series).

ABSO	LUTE MAXIMUM RATINGS	TO-99	Minidip	μpackage
V,	Supply voltage		± 18V	
Vi	Input voltage		±ν,	
V;	Differential input voltage		± (V, ~1)	
Ton	Operating temperature for LS 204		-25 to 85°C	
Οp	LS 204A		-55 to 125°C	
	LS 204C		0 to 70 °C	
Ptot	Power dissipation at $T_{amb} = 70^{\circ}C$	520 mW	665 mW	400 mW
Ti	Junction temperature	150°C	150°C	150°C
T _{stg}	Storage temperature	-65 to 150°C	-55 to 150°C	–55 to 150°C

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAMS AND ORDERING NUMBERS

(top views)

Туре	TO-99	Minidip	SO-8
LS 204	LS 204 T		LS 204 M
LS 204 A	LS 204 AT	—	—
LS 204 C	LS 204 CT	LS 204 CB	LS 204 CM
LS 8204			LS 8204 M
LS 8204 A	_	—	LS 8204 AM
LS 8204 C			LS 8204 CM

SCHEMATIC DIAGRAM (one section)

THERMAL DATA			TO-99	Minidip	SO-8
R _{th j-amb}	Thermal resistance junction-ambient	max	155 °C/W	120 °C/W	200*°C/W

* Measured with the device mounted on a ceramic substrate (25x16x96 mm)

ELECTRICAL CHARACTERISTICS ($V_s = \pm 15V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Parameter		Test conditions	LS	204/LS2	04A		Unit		
	Parameter	Test conditions	Min.	Typ.	Max,	Min.	Typ.	Max.	Unit
۱ _s	Supply current			0.7	1		0.8	1.5	mA
1 _b	Input bias current			50	150		100	300	nA
		T _{min} < T _{op} < T _{max}			300			700	nA
Ri	Input resistance	f = 1 KHz		1			0.5		MΩ
Vos	Input offset voltage	R _g ≤ 10 KΩ		0.5	2.5		0.5	3.5	m٧
					3.5			5	m∨
$\frac{\Delta V_{os}}{\Delta T}$	Input offset voltage drift	$R_g = 10 K\Omega$ $T_{min} < T_{op} < T_{max}$		5			5		µV/°C
los	Input offset current			5	20		12	50	nA
		T _{min} < T _{op} < T _{max}			40			100	nA
ΔI _{os} ΔT	Input offset current drift	$T_{min} < T_{op} < T_{max}$		0.08			0.1		nA °C
I _{sc}	Output short circuit current			23			23		mA
Gv	Large signal open loop voltage gain	$\begin{array}{c} {T_{\min}} < {T_{op}} < {T_{max}} \\ {R_{L}}^{=} 2 {K} \Omega \ {V_{S}}^{=} \pm 15 {V} \\ {V_{S}}^{=} \pm \ 4 {V} \end{array}$	90	100 95		86	100 95		dB
В	Gain-bandwidth product	f = 20 KHz	1.8	3	Ì	1.5	2.5		MHz
eN	Total input noise voltage	f = 1 KHz R _g = 50Ω R _g = 1 KΩ R _g = 10 KΩ		8 10 18	15		10 12 20		nV √Hz
d	Distortion	$G_v = 20 \text{ dB } R_L = 2K\Omega$ V _o = 2 Vpp f = 1 KHz		0.03	0.1		0.03	0.1	%
Vo	DC output voltage swing	$R_{L} = 2K\Omega V_{s} = \pm 15V \\ V_{s} = \pm 4V$	±13	±3		±13	±3		v
Vo	Large signal voltage swing	R _L = 10 KΩ f = 10 KHz		28			28		Vpp
SR	Slew rate	unity gain R _L = 2KΩ	0.8	1.5			1		V/µs
CMR	Common mode rejection	V _i = 10V T _{min} < T _{op} < T _{max}	90			86			dB
SVR	Supply voltage rejection	$V_i = 1V$ f = 100 Hz T _{min} < T _{op} < T _{max}	90			86			dB
CS	Channel separation	f = 1 KHz	100	120			120		dB

Note:

	LS 204	LS 204A	LS 204C
T _{min}	~25°C	-55° C	0° C
T _{max.}	+85°C	+125°C	+70° C

Fig. 1 - Supply current vs. supply voltage

Fig. 2 - Supply current vs. ambient temperature

Is (mA)

1.0

0.8

06

0,4

02

-50 0 50 100 Tamb(*C)

G-3643

Vs = ± 15V

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 4 - Open loop frequency and phase response 6-3648 y. G, (dB) Vs = ±15V 100 200 R1 = 2k0 160 80 G, 120 60 80 40 20 40 0 0 10² 10³ 104 105 106 f (Hz) 10

Fig. 5 - Open loop gain vs.

Fig. 6 - Supply voltage rejection vs. frequency

Fig. 7 - Large signal frequency response

Fig. 8 - Output voltage swing vs. load resistance

Fig. 9 - Total input noise vs. frequency

APPLICATION INFORMATION

Active low-pass filter: BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering.

The cutoff frequency, f_c , is the frequency at which the amplitude response is down 3 dB. The attenuation rate beyond the cutoff frequency is -n6 dB per octave of frequency where n is the order (number of poles) of the filter.

- Other characteristics:
- Flattest possible amplitude response.
- Excellent gain accuracy at low frequency end of passband

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.

The maximum phase shift is $\frac{-n\pi}{2}$ radians where n is the order (num-

ber of poles) of the filter. The cutoff frequency, f_c , is defined as the frequency at which the phase shift is one half of this value. For accurate delay, the cutoff frequency should be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter.

ſ		2 pole	4 pole	6 pole	8 pole
ſ	-3 dB frequency	0.77 f _c	0.67 f _c	0.57 f _c	0.50 f _c

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth.
- Very little overshoot response to step inputs
- Fast rise time.

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.

Chebyschev filters are normally designed with peak-to-peak ripple values from \pm 0.2 dB to \pm 2 dB.

Increased ripple in the passband allows increased attenuation above the cutoff frequency.

The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band.

Other characteristics: • Greater selectivity

- Greater selectivity
 Very nonlinear phase response
- Very nonlinear phase response
 High overshoot response to step inputs

Av (dB)

0.5

f/fc

0

- 20

-10

- 60

0.1

Fig. 10 – Amplitude response

APPLICATION INFORMATION (continued)

The table below shows the typical overshoot and settling, time response of the low pass filters to a step input.

	NUMBER	PEAK OVERSHOOT	SETTLI	NG TIME (% of	final value)
	OF POLES	% Overshoot	± 1%	± 0.1%	± 0.01%
	2	4	1.1/f _c sec.	1.7/f _c sec.	1.9/f _c sec.
BUTTERWORTH	4	11	1.7/f _c	2.8/f _c	3.8/f _c
BOTTERMONTH	6	14	2.4/f _c	3.9/f _c	5.0/f _c
	8	16	3.1/f _c	5.1 f _c	7.1/f _c
	2	0.4	0.8/f _c	1.4/f _c	1.7/f _c
550051	4	0.8	1.0/f _c	1.8/f _c	2.4/f _c
BESSEL	6	0.6	1.3/f _c	2.1/f _c	2.7/f _c
	8	0.3	1.6/f _c	2.3/f _c	3.2/f _c
	2	11	1.1/f _c	1.6/f _c	-
CHEBYSCHEV	4	18	3.0/f _c	5.4/fc	_
(RIPPLE ± 0.25 dB)	6	21	5.9/f _c	10.4/f _c	-
	8	23	8.4/f _c	16.4/f _c	-
	2	21	1.6/f _c	2.7/f _c	_
CHEBYSCHEV	4	28	4.8/f _c	8.4/f _c	-
(RIPPLE ± 1 dB)	6	32	8.2/f _c	16.3/f _c	-
	8	34	11.6/f _c	24.8/f _c	-

Design of 2nd order active low pass filter (Sallen and Key configuration unity gain op-amp)

Fig. 13 - Filter configuration

$$\frac{V_o}{V_i} = \frac{1}{1+2\xi\frac{S}{\omega_c} + \frac{S^2}{\omega_c^2}}$$

where: $\omega_{\rm c} = 2\pi f_{\rm c}$ with f_c = cutoff frequency

 $\xi = \text{damping factor.}$

APPLICATION INFORMATION (continued)

Three parameters are needed to characterise the frequency and phase response of a 2^{nd} order active filter: the gain (G_v) , the damping factor (ξ) or the Q-factor $(Q=(2\ \xi)^{-1})$, and the cutoff frequency (f_c) .

The higher order responses are obtained with a series of 2^{nd} order sections. A simple RC section is introduced when an odd filter is required.

The choice of ' ξ ' (or Q-factor) determines the filter response (see table).

Filter response	Ę	٥	Cutoff frequency ^f c
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	Frequency at which phase shift is -90°
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$	Frequency at which G _v = -3 dB
Chebyschev	$<\frac{\sqrt{2}}{2}$	$>\frac{1}{\sqrt{2}}$	Frequency at which the amplitude response passes through specified max, ripple band and enters the stop band

Fig. 14 - Filter response vs. damping factor

Fixed R= R₁ = R₂, we have (see fig. 13) C₁= $\frac{1}{R} \frac{\xi}{\omega_c}$ C₂= $\frac{1}{R} \frac{1}{\xi\omega_c}$

Tab I

The diagram of fig. 14 shows the amplitude response for different values of damping factor ξ in 2nd order filters.

EXAMPLE:

Fig. 15 - 5th order low pass filter (Butterworth) with unity gain configuration.

APPLICATION INFORMATION (continued)

In the circuit of fig. 15, for $f_c = 3.4$ KHz and $R_i = R_1 = R_2 = R_3 = R_4 = 10$ K Ω , we obtain:

$$C_{i} = 1.354 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 6.33 \text{ nF}$$

$$C_{1} = 0.421 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 1.97 \text{ nF}$$

$$C_{2} = 1.753 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 8.20 \text{ nF}$$

$$C_3 = 0.309 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_c} = 1.45 \text{ nF}$$

$$C_4 = 3.325 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_c} = 15.14 \text{ nF}$$

The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz.

The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For $f_c = 5$ KHz and $C_i = C_1 = C_2 = C_3 = C_4 = 1$ nF we obtain:

$$R_{i} = \frac{1}{1.354} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 23.5 \text{ K}\Omega$$

Tab. II Damping factor for low-pass Butterworth filters

Order	C,	C1	C2	с ₃	C4	C5	с ₆	C7	C8
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235	_			
6		0.966	1.035	0.707	1.414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125

 $R_{1} = \frac{1}{0.421} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 75.6 \text{ K}\Omega$ $R_{2} = \frac{1}{1.753} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 18.2 \text{ K}\Omega$ $R_{3} = \frac{1}{0.309} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 103 \text{ K}\Omega$

$$R_4 = \frac{1}{3.325} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_c} = 9.6 \text{ K}_{\Omega}$$

Fig. 16 - 5th order high-pass filter (Butterworth) with unity gain configuration.

