

LS256

TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE

ADVANCE DATA

- PRESENTS THE PROPER DC PATH FOR THE LINE CURRENT
- HANDLES THE VOICE SIGNAL, PERFORMING THE 2/4 WIRES INTERFACE AND CHANGING THE GAIN ON BOTH SENDING AND RECEIVING AMPLIFIERS TO COMPEN-SATE FOR LINE ATTENUATION BY SENSING THE LINE LENGTH THROUGH THE LINE CUR-RENT
- ACTS AS LINEAR INTERFACE FOR MF, SUP-PLYING A STABILIZED TO THE DIGITAL CHIP AND DELIVERING TO THE LINE THE MF TONE GENERATED BY THE DIALER

DESCRIPTION

The LS256 is a monolithic integrated circuit in 16lead dual in-line plastic package to replace the hybrid circuit in telephone set. It works with the same type of transdurcers for both transmitter and receiver (typically piezoceramic capsules, but the device can work also with dynamic ones). Many of its electrical characteristics can be controlled by means of external components to meet different specifications.

In addition to the speech operation, the LS256 acts as an interface for the MF tone signal.

PIN CONNECTION (top view)

April 1989

This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice

LS256

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vi	Line Voltage (3ms pulse duration)	22	V	
IL.	Forward Line Current	150	mA	
IL.	Reverse Line Current	- 150	mA	
Ptot	Total Power Dissipation at Tamb = 70°C	1	W	
T _{op}	Operating Temperature	- 45 to 70	°C	
T _{stg} , T _i	Storage and Junction Temperature	- 65 to 150	°C	

THERMAL DATA

Rth i-amb	Thermal Resistance Junction-ambient	Max	80	°C/W
till I-amb				

TEST CIRCUITS

Figure 2.

LS256

ELECTRICAL CHARACTERISTICS

(refer to the test circuits, S1, S2 in (a), $T_{amb} = -25$ to $+50^{\circ}$ C, f = 200 to 3400Hz, unless otherwise specified)

SPEECH OPERATION

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit	Fig.
VL	Line Voltage	T _{amb} = 25°C	I _L = 12mA I _L = 20mA I _L ≈ 80mA	3.9		4.7 5.5 12.2	V	
CMRR	Common Mode Rejection	f = 1KHz	$I_L = 12 \text{ to } 80\text{mA}$	50			dB	1
Gs	Sending Gain	$T_{amb} = 25^{\circ}C$ f = $V_{MI} = 2mV$	1KHz $I_L = 52mA$ $I_L = 25mA$	44 48	45 49	46 50	dB	2
	Sending Gain Flatness	V _{MI} = 2mV	$f_{ref} = 1KHz$ $I_L = 12 \text{ to } 80mA$			± 1	dB	2
	Sending Distortion	f = 1KHz L = 16 to 80mA				2 10	%	2
	Sending Noise	V _{MI} = 0V	I _L = 40mA			- 68.5	dBmp	2
	Microphone Input Impedance Pin 1-16	V _{MI} = 2mV	I _L = 12 to 80mA	40			ΚΩ	
	Sending Loss in MF Operation	$V_{MI} = 2mV$ S ₂ in (b)	I _L = 52mA I _L = 25mA	- 30 - 30			dB	2

ELECTRICAL CHARACTERISTICS (continued)

SPEECH	OPERATION	(continued)
--------	-----------	-------------

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
GR	Receiving Gain		2.5 7	3.5 8	4.5 9	dB	3
	Receiving Gain Flatness	V _{RI} = 0.3V f _{ref} = 1KHz I _L = 12 to 80)mA		± 1	dB	3
	Receiving Distortion	$ f = 1 KHz I_L = 12mA V_{RO} = \\ I_L = 12mA V_{RO} = \\ I_L = 50mA V_{RO} = \\ I_L = 50mA V_{RO} = $	1.9V 1.8V		2 10 2 10	%	3
	Receiving Noise	V _{RI} = 0V I _L = 12 to 80)mA	100	500	μV	3
	Receiver Output Impedance Pin 12-13	$V_{RO} = 50 \text{mV}$ $I_{L} = 40 \text{mA}$			100	Ω	
	Sidetone	$ F = 1 KHZ \qquad I_L = 52 mA \\ T_{amb} = 25^{\circ}C \\ S_1 \text{ in (b)} \qquad I_L = 25 mA $			36 36	dB	2
Z _{ML}	Line Matching Impedance	V _{RI} = 0.3V f = 1KHz I _L = 12 to 80	500 0mA	600	700	Ω	3

MULTIFREQUENCY SYNTHESIZER INTERFACE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
V _{DD}	MF Supply Voltage (standby and operation)	I _L = 12 to 80mA	2.35	2.5		V	
IDD	MF Supply Current Stand by Operation	$I_{L} = 12 \text{ to } 80\text{mA}$ $I_{L} = 12 \text{ to } 80\text{mA} \text{ ; } S_{2} \text{ in (b)}$	0.5 2			mA	
	MF Amplifier Gain	I _L = 12 to 80mA f _{MF} in = 1KHz V _{MF} in = 80mV	15		17	dB	4
Vi	DC Input Voltage Level (pin 14)	V _{M Fin} = 80mV		.3V _{DD}		V	
Ri	Input Impedance (pin 14)	V _{M Fin} = 80mV	40			ΚΩ	
d	Distortion	V _{M Fin} = 110mV I _L = 16 to 80mA			2	%	4
	Starting Delay Time	I _L = 12 to 80mA			5	ms	
	Muting Threshold Voltage (pin 3)	Speech Operation			1	V	
		MF Operation	1.6			V	
	Muting Stand by Current (pin 3)	I _L = 12 to 80mA			- 10	μA	
	Muting Operating Current (pin 3)	$I_{L} = 12 \text{ to } 80 \text{mA} \text{ S}_{2} \text{ in (b)}$			+ 10	μA	

