

LINEAR INTEGRATED CIRCUITS

HIGH PERFORMANCE QUAD OPERATIONAL AMPLIFIERS

- SINGLE OR SPLIT SUPPLY OPERATION
- VERY LOW POWER CONSUMPTION
- SHORT CIRCUIT PROTECTION
- LOW DISTORTION, LOW NOISE
- HIGH GAIN-BANDWIDTH PRODUCT
- HIGH CHANNEL SEPARATION

The LS 404 is a high performance quad operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage range, and it is particularly intended for professional and telecom applications (active filters, etc.).

The patented input stage circuit allows small input signal swings below the negative supply voltage and prevents phase inversion when the input is over driven.

The LS 404 is available with hermetic gold chip (8000 series).

ABSOLUTE MAXIMUM RATINGS

v,	Supply voltage		± 18	v
Vi	Input voltage	(positive) (negative)	$+ V_{s}$ $-V_{s} - 0.5$	v
Vi	Differential input voltag	e	± (V _s - 1)	
Top	Operating temperature	LS 404 LS 404C	-25 to + 85 0 to + 70	°C ℃
P _{tot}	Power dissipation	$(T_{amb} = 70^{\circ}C)$	400	mŴ
T _{stg}	Storage temperature		-55 to + 150	°C

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM AND ORDERING NUMBERS

(top view)

Туре	DIP 14	SO-14
LS 404 LS 404C	LS 404CB	LS 404M LS 404CM
LS 8404 LS 8404C	1	LS 8404M LS 8404CM

SCHEMATIC DIAGRAM (one section)

THERMAL DATA

				SO-14	
R _{thj-amb}	Thermal resistance junction-ambient	max	200°C/W	200°C/W*	

(*) Measured with the device mounted on a ceramic substrate (25 \times 16 \times 0.6 mm.)

LS 404 LS 404 C

	•	Test conditions		LS 404			LS 404C			
	Parameter			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _s	Supply current				1.3	2		1.5	3	mA
1 _b	Input bias current		<u></u>		50	200		100	300	nA
Ri	Input resistance	f = 1KHz			0.7			0.5		MΩ
V _{os}	Input offset voltage	R _g = 10KΩ			1	2.5		1	5	mV
$\frac{\Delta V_{os}}{\Delta T}$	Input offset voltage drift	R _g = 10KΩ T _{min} < T _{op}	, < T _{max}		5			5		μV/°C
l _{os}	Input offset current				10	40		20	80	nA
ΔI _{os} ΔT	Input offset current drift	T _{min} < T _{op}	< T _{max}		0.08			0.1		nA °C
I _{sc}	Output short circuit current				23			23		mA
Gv	Large signal open loop voltage gain	R _L = 2KΩ	$V_s = \pm 12V$ $V_s = \pm 4V$	90	100 95		86	100 95		dB
В	Gain-bandwidth product	f = 20KHz		1.8	3		1.5	2.5		MHz
еN	Total input noise voltage	f = 1KHz R _g = 50Ω R _g = 1KΩ R _g = 10KΩ			8 10 18	15		10 12 20		nV √Hz
d	Distortion	unity gain R _L = 2KΩ V _o = 2Vpp	f = 1 KHz f = 20 KHz		0.01 0.03	0.04		0.01 0.03		%
vo	DC output voltage swing	R _L = 2KΩ	$V_s = \pm 12V$ $V_s = \pm 4V$	± 10	± 3		± 10	± 3		v
Vo	Large signal voltage swing	f = 10KHz	R _L = 10 KΩ R _L = 1 KΩ		22 20			22 20		Vpp
SR	Slew rate	unity gain R _L = 2KΩ	.	0.8	1.5			1		V/µs
CMR	Comm, mode rejection	V ₁ = 10V		90	94		80	90		dB
SVR	Supply voltage rejection	V _i = 1V	f = 100Hz	90	94		86	90		dB
cs	Channel separation	f = 1KHz		100	120			120		dB

Fig. 1 - Supply current vs.

Fig. 2 - Supply current vs. ambient temperature

Fig. 3 - Output short circuit current vs. ambient temperature

Fig. 6 - Supply voltage re-

G-3649/

Vs = ± 12V

RL=2kQ

Fig. 4 - Open loop frequency and phase response

Gv Vs = ±12V RL=2KΩ

100

95

90

-50

0 50

Tamb(°C)

100

Fig. 7 - Large signal frequency response

Fig. 8 - Output voltage swing vs. load resistance

Fig. 9 - Total input noise vs. frequency

Fig. 5 – Open loop gain vs. ambient temperature

2

APPLICATION INFORMATION

Active low-pass filter:

BUTTERWORTH

The Butterworth is a "maximally flat" amplitude response filter. Butterworth filters are used for filtering signals in data acquisition systems to prevent aliasing errors in sampled-data applications and for general purpose low-pass filtering.

The cutoff frequency, f_c , is the frequency at which the amplitude response in down 3 dB. The attenuation rate beyond the cutoff frequency is -n6 dB per octave of frequency where n is the order (number of poles) of the filter.

Other characteristics:

- Flattest possible amplitude response.
- Excellent gain accuracy at low frequency end of passband.

BESSEL

The Bessel is a type of "linear phase" filter. Because of their linear phase characteristics, these filters approximate a constant time delay over a limited frequency range. Bessel filters pass transient waveforms with a minimum of distortion. They are also used to provide time delays for low pass filtering of modulated waveforms and as a "running average" type filter.

The maximum phase shift is $\frac{-n\pi}{2}$ radians where n is the order

(number of poles) of the filter. The cutoff frequency, f_c , is defined as the frequency at which the phase shift is one half to this value. For accurate delay, the cutoff frequency should be twice the maximum signal frequency. The following table can be used to obtain the -3 dB frequency of the filter.

	2 pole	4 pole	6 pole	8 pole
~3 dB frequency	0.77 f _c	0.67 f _c	0.57 f _c	0.50 f _c

Other characteristics:

- Selectivity not as great as Chebyschev or Butterworth.
- Very small overshoot response to step inputs
- Fast rise time.

CHEBYSCHEV

Chebyschev filters have greater selectivity than either Bessel or Butterworth at the expense of ripple in the passband.

Chebyschev filters are normally designed with peak-to-peak ripple values from 0.2 dB to 2 dB.

Increased ripple in the passband allows increased attenuation above the cutoff frequency.

The cutoff frequency is defined as the frequency at which the amplitude response passes through the specified maximum ripple band and enters the stop band. Other characteristics:

- Greater selectivity
- Very nonlinear phase response
- High overshoot response to step inputs.

Fig. 10 - Amplitude response

Fig. 11 - Amplitude response

Fig. 12 - Amplitude response (± 1 dB ripple)

The table below shows the typical overshoot and settling time response of the low pass filter to a step input.

	NUMBER OF POLES	PEAK OVERSHOOT	SETTLIN	NG TIME (% of fi	nal value)
	OFFOLLS	% Overshoot	± 1%	± 0.1%	± 0.01%
BUTTERWORTH	2 4 6 8	4 11 14 16	1.1/f _c sec. 1.7/f _c 2.4/f _c 3.1/f _c	1.7/f _c sec. 2.8/f _c 3.9/f _c 5.1/f _c	1.9/f _c sec. 3.8/f _c 5.0/f _c 7.1/f _c
BESSEL	2 4 6 8	0.4 0.8 0.6 0.3	0.8/f _c 1.0/f _c 1.3/f _c 1.6/f _c	1.4/f _c 1.8/f _c 2.1/f _c 2.3/f _c	1.7/f _c 2.4/f _c 2.7/f _c 3.2/f _c
CHEBYSCHEV (RIPPLE ± 0.25 dB)	2 4 6 8	11 18 21 23	1.1/f _c 3.0/f _c 5.9/f _c 8.4/f _c	1.6/f _c 5.4/f _c 10.4/f _c 16.4/f _c	- - - -
CHEBYSCHEV (RIPPLE ± 1 dB)	2 4 6 8	21 28 32 34	1.6/f _c 4.8/f _c 8.2/f _c 11.6/f _c	2.7/f _c 8.4/f _c 16.3/f _c 24.8/f _c	- - - -

Design of 2nd order active low pass filter (Sallen and Key configuration unity gain op-amp)

Fig. 13 - Filter configuration

where: $\omega_c = 2\pi f_c$ with $f_c = cutoff$ frequency $\xi = damping factor.$

Three parameters are needed to characterize the frequency and phase response of a 2nd order active filter: the gain (G_v), the damping factor (ξ) or the Q-factor (Q= (2 ξ)⁻¹), and the cutoff frequency (f_c).

The higher order responses are obtained with a series of 2^{nd} order sections. A simple RC section is introduced when an odd filter is required. The choice of ' ξ ' (or Q-factor) determines the filter response (see table).

<u>TAB. 1</u>			
Filter response	ξ	٥	Cutoff frequency f _c
Bessel	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	Frequency at which phase shift is -90°
Butterworth	$\frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}}$	Frequency at which G _v = -3 dB
Chebyschev	$<\frac{\sqrt{2}}{2}$	$>\frac{1}{\sqrt{2}}$	Frequency at which the amplitude response passes through specified max, ripple band and enters the stop band

Fig. 14 - Filter response vs. damping factor

Fixed R= R₁ = R₂, we have (see fig. 13) $C_1 = \frac{1 \xi}{R \omega_c}$ $C_2 = \frac{1}{R} \frac{1}{\xi \omega_c}$

The diagram of fig. 14 shows the amplitude response for different values of damping factor ξ in 2^{nd} order filters.

EXAMPLE:

Fig. 15 - 5th order low pass filter (Butterworth) with unity gain configuration.

In the circuit of fig. 15, for $f_c = 3.4$ KHz and $R_i = R_1 = R_2 = R_3 = R_4 = 10$ K Ω , we obtain:

$$C_{i} = 1.354 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 6.33 \text{ nF}$$

$$C_{1} = 0.421 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 1.97 \text{ nF}$$

$$C_{2} = 1.753 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 8.20 \text{ nF}$$

$$C_{3} = 0.309 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_{c}} = 1.45 \text{ nF}$$

$$C_4 = 3.325 \cdot \frac{1}{R} \cdot \frac{1}{2\pi f_c} = 15.14 \text{ nF}$$

The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz.

The same method, referring to Tab. II and fig. 16, is used to design high-pass filter. In this case the damping factor is found by taking the reciprocal of the numbers in Tab. II. For $f_c = 5$ KHz and $C_i = C_1 = C_2 = C_3 = C_4 = 1$ nF we obtain:

$$R_{i} = \frac{1}{1.354} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 23.5 \text{ K}\Omega$$

Tab. II					
Damping	factor	for	low-pass	Butterworth	filters

Order	ci	C1	c ₂	C3	C4	C5	с ₆	C7	с ₈
2		0.707	1.41						
3	1.392	0.202	3.54						
4		0.92	1.08	0.38	2.61				
5	1.354	0.421	1.75	0.309	3.235				
6		0.966	1.035	0.707	1,414	0.259	3.86		
7	1.336	0.488	1.53	0.623	1.604	0.222	4.49		
8		0.98	1.02	0.83	1.20	0.556	1.80	0.195	5.125

$$R_{1} = \frac{1}{0.421} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 75.6 \text{ K}\Omega$$

$$R_{2} = \frac{1}{1.753} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 18.2 \text{ K}\Omega$$

$$R_{3} = \frac{1}{0.309} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 103 \text{ K}\Omega$$

$$R_{4} = \frac{1}{3.325} \cdot \frac{1}{C} \cdot \frac{1}{2\pi f_{c}} = 9.6 \text{ K}\Omega$$

Fig. 16 - 5th order high-pass filter (Butterworth) with unity gain configuration.

Fig. 17 - Multiple feedback 8-pole bandpass filter.

 $f_c = 1.180 Hz; A = 1; C_2 = C_3 = C_5 = C_6 = C_8 = C_9 = C_{10} = C_{11} = 3.300 \text{ pF}; \\ R_1 = R_6 = R_9 = R_{12} = 160 \text{ K} \Omega; R_5 = R_8 = R_{11} = R_{14} = 330 \text{ K} \Omega; R_4 = R_7 = R_{10} = R_{13} = 5.3 \text{ K} \Omega$

