

M14256 M14128 Memory Card IC

256/128 Kbit Serial I²C Bus EEPROM

DATA BRIEFING

- Compatible with I²C Extended Addressing
- Two Wire I²C Serial Interface Supports 400 kHz Protocol
- Single Supply Voltage (2.5 V to 5.5 V)
- Hardware Write Control
- BYTE and PAGE WRITE (up to 64 Bytes)
- BYTE, RANDOM and SEQUENTIAL READ Modes
- Self-Timed Programming Cycle
- Automatic Address Incrementing
- Enhanced ESD/Latch-Up Behaviour
- 100,000 Erase/Write Cycles (minimum)
- 40 Year Data Retention (minimum)
- 5 ms Programming Time (typical)

DESCRIPTION

Each device is an electrically erasable programmable memory (EEPROM) fabricated with STMicroelectronics's High Endurance, Double Polysilicon, CMOS technology. This guarantees an endurance typically well above 100,000 Erase/ Write cycles, with a data retention of 40 years. The memory operates with a power supply as low as 2.5 V for the M14xxx-W version.

The M14256 and M14128 are available in micromodule form only. For availability of the M14256 or

Table 1. Signal Names

SDA	Serial Data/Address Input/ Output
SCL	Serial Clock
WC	Write Control
Vcc	Supply Voltage
GND	Ground

September 1998

Complete data available on Data-on-Disc CD-ROM or at www.st.com

Figure 1. Logic Diagram

M14128 in wafer form, please contact your ST sales office.

Each memory is compatible with the I^2C extended memory standard. This is a two wire serial interface that uses a bi-directional data bus and serial clock. The memory carries a built-in 7-bit unique Device Type Identifier code (1010000) in accordance with the I^2C bus definition. Only one memory can be attached to each I^2C bus.

The memory behaves as a slave device in the I^2C protocol, with all memory operations synchronized by the serial clock. Read and write operations are initiated by a START condition, generated by the bus master. The START condition is followed by the Device Select Code which is composed of a stream of 7 bits (1010000), plus one read/write bit (R/W) and is terminated by an acknowledge bit.

When writing data to the memory, the memory inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a STOP condition after an Ack for WRITE, and after a NoAck for READ.

Figure 2. D22 Contact Connections

Table 2. Ordering Information Scheme

Devices are shipped from the factory with the memory content set at all '1's (FFh). For a list of available options (speed, package, etc...) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

57