

DESCRIPTION

The M5G1400P is a serial input/output 1400-bit electrically erasable and reprogrammable ROM organized as 100 words of 14 bits, and fabricated using MNOS technology. Data and addresses are transferred serially via a one-bit bidirectional bus.

FEATURES

- Word-by-word electrically alterable
- Non-volatile data storage: 10 years (min)
- Write/erase time: ----- 20ms/word
- Single 35V power supply
- Number of erase-write cycles: 10⁵ times (min)
- Number of read access unrefreshed:---- 10⁹ times (min)

APPLICATION

Non-volatile channel memories for electronic tuning systems and field-reprogrammable read-only memory systems

FUNCTION

The address is designated by two consecutive one-of-tencoded digits. Seven modes—accept address, accept data, shift data output, erase, write, read, and standby—are all selected by a 3-bit code applied to C_1 , C_2 , and C_3 . Data is stored by internal negative writing pulses that selectively tunnel charges into the $SiO_2-Si_3N_4$ interface of the gate insulators of the MNOS memory transistors.

PIN DESCRIPTION

Pin	Name	Functions					
1/0	1/0	In the accept address and accept data modes, used for input. In the shift data output mode, used for output. In the standby, read, erase and write modes, this pin is in a floating state.					
VM	Test	Used for testing purposes only. It should be left unconnected during normal operation					
Vss	Chip substrate voltage	Normally connected to ground.					
V _{GG}	Power supply voltage	Normally connected to -35V.					
CLK	Clock input	14kHz timing reference. Required for all operating modes. High-level input is possible during standby mode					
$C_1 - C_3$	Mode control input	Used to select the operation mode.					

OPERATION MODES

C1	Cz	C3	Functions
н	н	н	Standby mode. The contents of the address registers and the data register remain unchanged. The output buffer is held in the floating state.
н	H	L	Not used
н	L	н	Erase mode. The word stored at the addressed location is erased. The data bits after erasing are all low-level
н	L	L	Accept address mode: Data presented at the I/O pin is shifted into the address registers one bit with each clock pulse. The address is designated by two one-of-ten-coded digits.
L	н	н	Read mode. The addressed word is read from the memory into the data register.
L	н	L	Shift data output mode. The output driver is enabled and the contents of the data register are shifted to the I/O pin one bit with each clock pulse.
L	L	н	Write mode: The data contained in the data register is written into the location designated by the address registers.
L	ι	L	Accept data mode. The data register accepts serial data from the I/O pin one bit with each clock pulse. The address registers remain unchanged

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vgg	Supply voltage	age		V
VI	Input voltage	With respect to VSS	0.3~-20	
Vo	Output voltage		0.3~-20	V
Tstg	Storage temperature		-65~150	τ
Topr	Operating temperature		10 70	τ

RECOMMENDED OPERATING CONDITIONS (Ta = - 10 ~ 70°C. unless otherwise noted.)

Symbol			Limits			
	Parameter	Min	Nom	Max	Unit	
V _{GG}	Supply voltage	- 32.2	- 35	- 37.8	v	
Vss	Supply voltage (GND)		0		v	
ViH	High-level input voltage	Vss-1		V _{SS} +0.3	V	
VIL	Low-level input voltage	V _{SS} -15		V _{SS} -8	v	

Note 1: The order of Vss Vgg with on or off.

With on, V_{GG} is turned on after V_{SS} is done. With off, V_{SS} is turned off after V_{GG} is done.

ELECTRICAL CHARACTERISTICS ($T_a = -10 - 70 \degree$, $V_{GG} = -35V \pm 8 \%$, unless otherwise noted.)

Symbol				Unit		
	Parameter	Test conditions	Min	Тур	Max	Onit
ViH	High-level input voltage		V _{SS} - 1		V _{SS} + 0.3	v
VIL	Low-level input voltage		V _{SS} –15		V _{SS} -8	v
 ار	Low-level input current	V _I = - 15V '			± 10	μA
lozL	Off-state output current, low-level voltage applied	$V_0 = -15V$			± 10	μA
Voн	High-level output voltage	$I_{OH} = -200 \mu A$	V _{SS} - 1			v
VoL	Low-level output voltage	$I_{OL} = 10 \mu A$			V _{SS} - 12	V
lgg	Supply current from VGG	$l_0 = 0\mu A$		5.5	8.8	mA

Note 2: Typical values are at Ta=25°C and nominal supply voltage.

TIMING REQUIREMENTS (Ta = $-10 \sim 70$ °C, V_{GG} = $-35V \pm 8$ %, unless otherwise noted.)

Symbol	Parameter	Alternative	_		Limits			
		symbols	Test conditions	Min	Тур	Max	Unit	
f(ø)	Clock frequency	fø		11.2	14	16.8	kHz	
D(<i>φ</i>)	Clock duty cycle	Dø		30	50	55	%	
tw(w)	Write time	tw		16	20	24	ms	
tw(E)	Erase time	te		16	20	24	ms	
tr. tf	Risetime, falltime	tr, tf				1	μs	
$tsu(c-\phi)$	Control setup time before the fall of the clock pulse	tcs		0			ns	
$th(\phi - c)$	Control hold time after the rise of the clock pulse	tсн		0			ns	

SWITCHING CHARACTERISTICS (Ta = $-10 \sim 70$ °C. V_{GG} = $-35V \pm 8$ %, unless otherwise noted.)

Symbol	Parameter	Alternative	Test conditions	Limits			- Unit
		symbols		Min	Тур	Max	
ta(c)	Read access time	tew	$C_L = 100 \text{pF}$ $V_{OH} = V_{SS} - 2V$ $V_{OL} = V_{SS} - 8V$			20	μs
ts	Unpowered nonvolatile data retention time	Τs	$N_{EW} = 10^4$, $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	10			Year
		Ts	$N_{EW} = 10^5$, $t_{W(W)} = 20 ms$ $t_{W(E)} = 20 ms$	1			
NEW	Number of erase/write cycles	Nw		105			Times
NRA	Number of read access unrefreshed	NRA		10*			Times
tdv	Data valid time	tew				20	μs

TIMING DIAGRAM

Note 3 The address is designated by two one-of-ten-coded digits. The figure shows designation of the address 99.

Shift Data Output Mode

Write Mode

Erase Mode

Accept Data Mode

