### **MITSUBISHI ICs (TV)**

# PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change. M61130FP

#### DESCRIPTION

The M61130FP is a semiconductor integrated circuit consisting of Tuner signal processing for NTSC color TV sets and VCRs. The circuit includes Mixer circuit in Tuning system, Oscillator circuit, PLL frequency synthesizer and VIF/SIF, which permits a smaller tuner system.

#### **FEATURES**

VIF/SIF Inter carrier type for NTSC Coil-less VCO Adjustment free AFT High-speed IF AGC
PLL Low phase noise and High-speed lock-up Built-in band switch driver (4 port) I<sup>2</sup>C bus control Available for both XO and external reference
Mixer/Oscillator Built in LI8V concillator and mixer

Built-in U&V oscillator and mixer Built-in UV band switch

#### APPLICATION

TV, VTR

#### **RECOMMENDED OPERATING CONDITIONS**

Supply voltage range......4.75 to 5.25V Recommended supply voltage.....5.0V





# PRELIMINARY

Notice ; This is not a final specification.

Some parametric limits are subject to change.

# M61130FP

**TUNER SINGLE CHIP** 





Some parametric limits are subject to change.

#### **TUNER SINGLE CHIP**

#### ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

| Symbol | Parameter             | Raitings    | Unit |
|--------|-----------------------|-------------|------|
| Vcc    | Supply Voltage        | 6.0         | V    |
| Pd     | Power Dissipation     | 658         | mW   |
| Topr   | Operating temperature | -20 to +75  | О°   |
| Tstg   | Storage temperature   | -40 to +150 | °C   |

#### **TYPICAL CHARACTERISTICS**



#### ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted)

| Symbol     | Parameter                   | Measure | Test conditions         |      | Limits |      | Unit  |
|------------|-----------------------------|---------|-------------------------|------|--------|------|-------|
| Symbol     | Falameter                   | Point   | Test conditions         | Min  | Тур    | Max  | Offic |
| IF Icc     | IF Vcc current              | 28      |                         | -    | 70     | 84   | mA    |
| MO Icc     | M/O Vcc current             | 36      |                         | -    | 21     | 25   | mA    |
| Log Icc    | Logic Vcc current           | 32      | Port output off         | -    | 14     | 20   | mA    |
| Log Icc(U) | Logic Vcc current(UHF)      | 32      | lo <sub>BS</sub> =-22mA | -    | 40     | 46   | mA    |
| Log Icc(V) | Logic Vcc current(VHF)      | 32      | lo <sub>bs</sub> =-25mA | -    | 43     | 50   | mA    |
| Log Icc(F) | Logic Vcc current(FM(       | 32      | lo <sub>BS</sub> =-15mA | -    | 32     | 38   | mA    |
|            |                             |         |                         |      |        |      |       |
| Ibavideo   | Video out bias current      | 16      |                         | 1.4  | 1.9    | 2.4  | mA    |
| IbaAudio   | Audio out bias current      | 21      |                         | 1.0  | 1.3    | 1.6  | mA    |
| IbaQIF     | 4.5MHz QIF out bias current | 20      |                         | 0.9  | 1.2    | 1.5  | mA    |
| Vreg       | Regulator voltage           | 12      |                         | 2.65 | 2.8    | 2.95 | V     |
|            |                             |         |                         |      |        |      |       |
| fxosc      | X'tal frequency             | 31      | PLL function range      | 3.0  | 4.0    | 4.8  | MHz   |
| frefin     | Ref. signal frequency       | 31      | PLL function range      | 3.0  | 4.0    | 5.0  | MHz   |
| Vifrefin   | Ref. signal input level     | 31      |                         | 50   | -      | 600  | mVp-p |



### PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

### TUNER SINGLE CHIP

### ELECTRICA CHARACTERISTICS (cont.)

| M/O |
|-----|
|-----|

| Symbol   | Parameter            | Measure  | Test conditions       |             | Limits                                                                                                                               |      |      |
|----------|----------------------|----------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|------|------|
| Symbol   | Farameter            | Point    | Test conditions       | Min Typ Max |                                                                                                                                      | Unit |      |
| Band VHF | Mixer                |          | RL=75                 |             |                                                                                                                                      |      |      |
| GpVHF1   | Conversion gain1     | 26,44    | fRF=57.5MHz           | 16          | 19                                                                                                                                   | 22   | dB   |
| GpVHF2   | Conversion gain2     | 26,44    | fRF=357.5MHz          | 16          | 19                                                                                                                                   | 22   | dB   |
| NFVHF    | Noise figure         | 26,44    | fRf=57.5~357.5MHz     |             | 11                                                                                                                                   |      | dB   |
| CM1VHF   | 1% cross modulation1 | 26,44    | fRF=55.25MHz          | 90          | Min         Typ         Max           16         19         22           16         19         22           11         11         11 |      | dBµV |
| CM2VHF   |                      |          | fRF=361.25MHz         | 90          |                                                                                                                                      |      | dBµV |
| Band UHF | l<br>Mixer           |          | RL=75                 |             |                                                                                                                                      |      |      |
| GpUHF1   | Conversion gain1     | 26,45,46 | fRF=369.5MHz          | 26          | 29                                                                                                                                   | 32   | dB   |
| GpUHF2   | Conversion gain2     | 26,45,46 | fRF=803.5MHz          | 26          | 29                                                                                                                                   | 32   | dB   |
| NFUHF    | Noise figure         | 26,45,46 | fRF=369.5~803.5MHz    |             | 10                                                                                                                                   |      | dB   |
| CM1UHF   | 1% cross modulation1 | 26,45,46 | fRF=367.25MHz         | 80          |                                                                                                                                      |      | dBµV |
| CM2UHF   | 1% cross modulation2 | 26,45,46 | fRF=801.25MHz         | 80          |                                                                                                                                      |      | dBµV |
| Band VHF | l<br>Oscillator      |          |                       |             |                                                                                                                                      |      |      |
| foVHF    | Operation range      | 26       |                       | 101         |                                                                                                                                      | 407  | MHz  |
| fosc(v)  | Supply voltage drift | 26       | Vcc=5%                |             | 100                                                                                                                                  |      | KHz  |
| foV(t)   | SW ON drift          | 26       | 3sec~3min after SW ON |             | 200                                                                                                                                  |      | KHz  |
| Band UHF | l<br>Oscillator      |          |                       |             |                                                                                                                                      |      |      |
| foUHF    | Operation range      | 26       |                       | 413         |                                                                                                                                      | 847  | MHz  |
| fosc(U)  | Supply voltage drift | 26       | Vcc=5%                |             | 100                                                                                                                                  |      | KHz  |
| foU(t)   | SW ON drift          | 26       | 3sec~3min after SW ON |             | 200                                                                                                                                  |      | KHz  |

PLL

| Symbol    | Parameter                                                          | Measure | Test conditions                  |             | Limits |             | Unit |
|-----------|--------------------------------------------------------------------|---------|----------------------------------|-------------|--------|-------------|------|
| Symbol    | Parameter                                                          | Point   | Test conditions                  | Min Typ Max |        | Unit        |      |
| nput term | inals                                                              |         |                                  |             |        |             |      |
| ViH       | Hi input voltage                                                   | 33,34   |                                  | 3.0         | -      | Vcc<br>+0.3 | V    |
| ViL       | Lo input voltage                                                   | 33,34   |                                  | -           | -      | 1.5         | V    |
| liH1      | Hi input current                                                   | 33,34   | Vcc=5.5V,Vi=4.0V                 | -           | -      | 10          | μA   |
| liL1      | Lo input current                                                   | 33,34   | Vcc=5.5V,Vi=0.4V                 | -           | -      | -10         | μA   |
| SDA outpu | ut                                                                 |         |                                  |             |        |             |      |
| VsiL      | Lo output voltage                                                  | 34      | Vcc=5.5V,Io=3mA                  | -           | -      | 0.4         | V    |
| lsLK      | Leakage current                                                    | 34      | Vcc=5.5V,Vo=5.5V                 | -           | -2     | -10         | μA   |
| ADS input | 1                                                                  |         |                                  |             |        |             |      |
| liH2      | Hi input current                                                   | 35      | Vcc=5.5V,Vi=5.0V                 | -           | -      | 10          | μA   |
| liL2      | Lo input current                                                   | 35      | Vcc=5.5V,Vi=1.5V                 | -           | -15    | -30         | μA   |
| Band outp | but                                                                |         |                                  |             |        |             |      |
| VoBS1     | Output voltage1                                                    | 39,40   | Vcc=5.0V,Io=-25mA<br>PVHFL,PVHFH | 4.6         | 4.8    | -           | V    |
| VoBS2     | Output voltage2                                                    | 47      | Vcc=5.0V,Io=-22mA,PUHF           | 4.6         | 4.8    | -           | V    |
| VoBS3     | Output voltage3                                                    | 38      | Vcc=5.0V,Io=-5mA,PFMST           | 4.6         | 4.8    | -           | V    |
| loBSLK    | Output voltage3     3       Leakage current     38,3       4     4 |         | Vcc=5.5V,Output is OFF           |             | -      | 10          | μA   |
| Charge pu | ımp                                                                |         |                                  |             |        |             |      |
| lcpH      | Hi output current                                                  | 7       | Vcc=5.5V,Vo=2.5V,CP=1            | 160         | 270    | 360         | μA   |
| lcpL      | Lo output current                                                  | 7       | Vcc=5.5V,Vo=2.5V,CP=0            | 50          | 70     | 110         | μA   |
| lcpLK     | Leakage current                                                    | 7       | Vcc=5.5V,Vo=5.5V,T2,T1=0         | -           | -      | 50          | nA   |



# PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

**TUNER SINGLE CHIP** 

### ELECTRICA CHARACTERISTICS (cont.)

VIF/SIF

| Symbol | Parameter                 | Measure  | Test conditions              |     | Limits |     | Unit      |
|--------|---------------------------|----------|------------------------------|-----|--------|-----|-----------|
| Symbol | Farameter                 | Point    | Test conditions              | Min | Тур    | Max | Unit      |
| VoDET  | Video output level        | 16       | IF 77.78%, 15.7KHz AM, 90dBµ | 1.1 | 1.3    | 1.5 | Vp-p      |
| Vsync  | Sync tip voltage          | 13       |                              | 1.1 | 1.3    | 1.5 | V         |
| VSN    | Video S/N                 | 13       | with 6MHz LPF, 90dBµV        | 48  | 50     | -   | dB        |
| BW     | Video out freq. response  | 16       | loss 6MHz                    | -   | 3      | 5   | dB        |
| VINMIN | Input sensitivity         | 13,23,24 | -3dB down point              |     | 45     | 49  | dBµV      |
| VINMAX | Max. IF input             | 13,23,24 | +3dB up point                | 101 | 105    | -   | dBµV      |
| GR     | AGC range                 | -        |                              | 54  | 60     | -   | dB        |
| V10    | IF AGC voltage            | 10       |                              | 2.7 | 2.9    | 3.1 | V         |
| V10L   | IF AGC min. voltage       | 10       | 110dBµV                      | 1.9 | 2.1    | 2.3 | V         |
| CL-U   | Capture range U           | 23,24    | 45.75MHz, 90dBµV             | 1.5 | 2.5    | -   | MHz       |
| CL-L   | Capture range L           | 23,24    | 45.75MHz, 90dBµV             | 1.5 | 1.9    | -   | MHz       |
| D/G    | D/G                       | 13       |                              | -   | 3      | 5   | %         |
| D/P    | D/P                       | 13       |                              | -   | 3      | 5   | deg       |
| RINV   | VIF input impedance       | 23,24    | DC                           | -   | 2k     | -   |           |
| CINV   | VIF input capacitance     | 23,24    | 40MHz                        | -   | 5      | -   | pF        |
| foC1   | AFT Center freq. 45.75MHz | 19,23,24 | pin19 voltage = Vcc/2        | -30 | fo     | +30 | KHz       |
| foC2   | AFT Center freq. 58.75MHz | 19,23,24 | pin19 voltage = Vcc/2        | -30 | fo     | +30 | KHz       |
|        |                           |          |                              |     |        |     |           |
| V19H   | Hi output voltage         | 19       | Vcc=5.0V                     | 4.3 | 4.7    | 5.0 | V         |
| V19L   | Lo output voltage         | 19       |                              | 0   | 0.3    | 0.7 | V         |
| V19C   | Center voltage            | 19       | 45.75MHz                     | 2.3 | 2.5    | 2.7 | V         |
| μ      | Sensitivity               | 19       | 360K //360K                  | 10  | 24     | 36  | mV/KHz    |
| VRFH   | RFAGC Hi output voltage   | 37       | open                         | 4.4 | 4.7    | 5.0 | V         |
| VRFLV  | RFAGC Lo output voltage   | 37       | open                         | 0   | 0.3    | 0.6 | V         |
|        |                           |          |                              |     |        |     |           |
| RFDLY  | RFAGC Delay point         | 23,24,37 | @11pin 2V                    | 87  | 90     | 93  | dBµV      |
| VoAF   | Audio out level           | 23,24,37 | 4.5MHz±25kHz 1kHz            | 660 | 770    | 880 | mVrms     |
| VUAF   |                           | 21       |                              | 000 | 110    | 860 | 111111115 |
| THDAF  | Audio out THD             | 21       | 4.5MHz±25kHz 1kHz            | -   | 0.2    | 0.9 | %         |
| AFSN   | Audio out S/N             | 21       | 4.5MHz±25kHz 1kHz            | 54  | 57     | -   | dB        |
| LIM    | Limiting sensitivity      | 11,21    |                              | -   | 50     | 55  | dBµV      |
| AMR    | AMR                       | 21       |                              | 50  | 55     | -   | dB        |
| 7      |                           | 21       |                              |     |        |     |           |
| VoQIF  | QIF output                | 20       |                              | 94  | 100    | -   | dBµV      |



# PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

**CONTROL TABLE** 

VIF frequency select

|       | VIF frequency | 20pin condition  |  |  |  |
|-------|---------------|------------------|--|--|--|
| US    | 45.75 MHz     | none             |  |  |  |
| JAPAN | 58.75 MHz     | pull down (1.5K) |  |  |  |

| Ref input      |                 |
|----------------|-----------------|
| Ref in (31pin) | 31pin condition |
| INT            | none            |
| EXT            | pull down (2K)  |

#### **BUS CONTROL**

1)ELECTRICAL CHARACTERISTICS

| Symbol | Parameter          | Measure | Test conditions |     | Limits |     | Unit |
|--------|--------------------|---------|-----------------|-----|--------|-----|------|
| Symbol | Falametei          | Point   |                 | Min | Тур    | Max | Unit |
| fSCL   | Clock frequency    | 33      |                 | 0   | 100    | 400 | KHz  |
| tBUF   | Bus free time      | 34      |                 | 1.3 | -      | -   | µsec |
| tHDSTA | Data hold time     | 34      |                 | 0.6 | -      | -   | µsec |
| tLOW   | SCL LOW hold time  | 33      |                 | 1.3 | -      | -   | µsec |
| tHIGH  | SCL HIGH hold time | 33      |                 | 0.6 | -      | -   | µsec |
| tSUSTA | Set up time        | 33,34   |                 | 0.6 | -      | -   | µsec |
| tHDDAT | Data hold time     | 33,34   |                 | 0   | -      | -   | µsec |
| tSUDAT | Data set up time   | 33,34   |                 | 100 | -      | -   | nsec |
| tR     | Rise time          | 33,34   |                 | -   | -      | 300 | nsec |
| tF     | Fall time          | 33,34   |                 | -   | -      | 300 | nsec |
| tSUSTO | Set up time        | 33      |                 | 0.6 | -      | -   | µsec |



#### 2)Setting Data

The input information consisting of data of 2 or 4 bytes after chip address is received into I<sup>2</sup>C bus receiver. The definition of bus protocol admitted is shown as below.

| Mode_1 | STA | CA | DB1 | DB2 | CB1 | CB2 | STO |
|--------|-----|----|-----|-----|-----|-----|-----|
| Mode_2 | STA | CA | CB1 | CB2 | DB1 | DB2 | STO |
| Mode_3 | STA | CA | DB1 | DB2 | STO |     |     |
| Mode_4 | STA | CA | CB1 | CB2 | STO |     |     |
|        |     |    |     |     |     |     |     |

STA : Start condition
STO : Stop condition
CA : Chip address
DB1 : Divider data byte 1
DB2 : Divider data byte 2
CB1 : Control data byte 1
CB2 : Band data byte 2

The information of 5 bytes required for circuit operational chip address, control data and band SW data of 2 bytes and divider data of 2 bytes. After the chip address input, 2 or 4 bytes can be received. Function bit is contained in the first and the third data byte to distinguish between divider and 'control data/band SW data', with "0" going ahead of divider data, and "1" going ahead of control data/band SW data'.

The timing of Writing data for bus protocol Mode is shown in the figure below. Divider data uses 15 bits and is read in at the rise of the eighth clock bit of the second byte divider data (D2).

Control data (CB) and band SW-data (BB) are each read in at the rise of their eighth clock bit.

| Timin | ng Chart 2 |         |                |                 |           |              |          |   |
|-------|------------|---------|----------------|-----------------|-----------|--------------|----------|---|
| SDA   |            | address | DB1            | DB2             | CB1       | CB2          |          | _ |
| SCL   |            |         |                | <u></u>         |           |              |          |   |
|       |            |         | Read into late | ch<br>Read into | latchRead | into latch — | <b>_</b> |   |
|       |            |         |                |                 |           |              |          |   |



#### **TUNER SINGLE CHIP**

# PRELIMINARY

Notice ; This is not a final specification.

Some parametric limits are subject to change.

**TUNER SINGLE CHIP** 

Write mode data format

| While mode data format |     |     |     |     |      |       |       |       |   |
|------------------------|-----|-----|-----|-----|------|-------|-------|-------|---|
| Byte                   | MSB |     |     |     |      |       |       | LSB   |   |
| Address Byte (CA)      | 1   | 1   | 0   | 0   | 0    | MA1   | MA0   | R/W=0 | Α |
| Divider Byte1 (DB1)    | 0   | N14 | N13 | N12 | N11  | N10   | N9    | N8    | Α |
| Divider Byte2 (DB2)    | N7  | N6  | N5  | N4  | N3   | N2    | N1    | N0    | Α |
| Control Byte (CB1)     | 1   | CP  | T2  | T1  | TO   | Rsa   | Rsb   | OS    | Α |
| Band Byte (CB2)        | RE  | AFT | X   | Х   | PUHF | PFMST | PVHFH | PVHFL | Α |

#### MA1,MA0 : Programmable Address Bit

| Address input voltage applied to ADS [V] | MA1 | MA0 |
|------------------------------------------|-----|-----|
| 0 to 0.1×Vcc                             | 0   | 0   |
| Always Valid                             | 0   | 1   |
| 0.4×Vcc to 0.6×Vcc                       | 1   | 0   |
| 0.9×Vcc to Vcc                           | 1   | 1   |

N14 to N0 : How to set division ratio of the programmable divider

Division ratio N: N=N14( $2^{14}$ )+N13( $2^{13}$ )+ --- +N0( $2^{0}$ ) Range of division ratio N: N=1,024 to 32,767 Frequency of VCO fvco: fvco=fref × N

CP : Set up the charge pump current

| CP | Charge pump current |  |  |  |  |
|----|---------------------|--|--|--|--|
| 0  | 70µA                |  |  |  |  |
| 1  | 270µA               |  |  |  |  |

In the case of setting current 270 $\mu$ A, when PLL is locked, charge pump current is automatically switched to CP=O (70 $\mu$ A).

T2,T1,T0 : Set up for test mode

| CP | T2 | T1 | T0 | Charge pump               | Test output | Test SW | Mode        |
|----|----|----|----|---------------------------|-------------|---------|-------------|
| 0  | 0  | 0  | Х  | CP switched off           | -           | OFF     | Normal mode |
| 1  | 0  | 0  | Х  | CP switched on            | -           | OFF     | Normal mode |
| Х  | 0  | 1  | Х  | High impedance            | -           | OFF     | Test mode   |
| 0  | 1  | 1  | 0  | Sink, CP current "Low"    | -           | OFF     | Test mode   |
| 1  | 1  | 1  | 0  | Sink, CP current "High"   | -           | OFF     | Test mode   |
| 0  | 1  | 1  | 1  | Source, CP current "Low"  | -           | OFF     | Test mode   |
| 1  | 1  | 1  | 1  | Source, CP current "High" | -           | OFF     | Test mode   |
| 0  | 1  | 0  | 0  | High impedance            | fREF        | OFF     | Test mode   |
| 1  | 1  | 0  | Х  | CP switched on            | -           | ON      | Test mode   |
| 0  | 1  | 0  | 1  | High impedance            | f1/N        | OFF     | Test mode   |

Note : fREF and f1/N is available on pin PFMST

: Test SW is for the mix filter damping switch

Rsa,Rsb : Set up tuning step

| Rsa | Rsb | Division ratio | tuning step frequency |             |
|-----|-----|----------------|-----------------------|-------------|
| 0   | 1   | 1/128          | 31.25KHz              |             |
| 1   | 1   | 1/64           | 62.5KHz               |             |
| Х   | 0   | 1/80           | 50.0KHz               | @4MHz X'tal |

#### OS : Set up drive output

| OS | Drive output  | Mode        |
|----|---------------|-------------|
| 0  | ON            | Normal mode |
| 1  | OFF("L")level | Test mode   |



### PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

#### **TUNER SINGLE CHIP**

#### RE: Select of Reference frequency for automatic adjustment of VIF VCO free-running frequency.

| KE | Reference frequency |
|----|---------------------|
| 0  | 3.58MHz             |
| 1  | 4.00MHz             |

#### AFT:Set up AFT mute

| AFT | AFT mute voltage |  |  |  |
|-----|------------------|--|--|--|
| 0   | Low              |  |  |  |
| 1   | center           |  |  |  |

PFMST, PUHF, PVHFL, PVHFH: PORT

| FMST,PUHF,PVHFL,PVHF | Output |
|----------------------|--------|
| 0                    | OFF    |
| 1                    | ON     |

PNP open collector output. When PUHF is "OFF", Mixer and Oscillator active VHF mode.

Read mode data format

| Byte         | MSB |    |      |   |   |     |     | LSB   |   |
|--------------|-----|----|------|---|---|-----|-----|-------|---|
| Address Byte | 1   | 1  | 0    | 0 | 0 | MA1 | MA0 | R/W=1 | Α |
| Status Byte  | POR | FL | ACPS | Х | Х | Х   | Х   | Х     | Α |

X: 0 or 1 Don't care

POR: Power on reset flag. Output is "1" at power-on

FL: Lock detector flag. Output is "1" at locked, output is "0" at unlocked.

ACPS: Automatic charge pump current flag. Output is "0" at charge pump current automatically switched mode , output is "1" at other mode.

Power on reset

The initial status are shown as below when supply voltage is turned on.

If supply voltage becomes less than about 3.0V, the initial status is set.

| Byte                | MSB |   |   |   |   |   |   | LSB |
|---------------------|-----|---|---|---|---|---|---|-----|
| Divider Byte1 (DB1) | 0   | Х | Х | Х | Х | Х | Х | Х   |
| Divider Byte2 (DB2) | Х   | Х | Х | Х | Х | Х | Х | Х   |
| Control Byte (CB1)  | 1   | 1 | 0 | 1 | Х | 1 | 1 | 1   |
| Band Byte (CB2)     | 0   | 0 | Х | Х | 0 | 0 | 0 | 0   |

\*\*\*\*\*

Purchase of Mitsubishi electric corporation's  $I^2C$  components conveys a license under the Philip  $I^2C$  Patent Rights to use these components in an  $I^2C$  system, provided that the system conform to the  $I^2C$  Standard Specification as defined by Philips



### PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

**TUNER SINGLE CHIP** 

#### **APPLICATION EXAMPLE**



# PRELIMINARY

Notice ; This is not a final specification. Some parametric limits are subject to change.

TUNER SINGLE CHIP

### DETAILED DIAGRAM OF PACKAGE OUTLINE





Keep safety first in your circuit designs!

•Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

#### Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

•All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (<u>http://www.mitsubishichips.com</u>).

•When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

