

4 Mbit (512K x8) 3.0V Asynchronous SRAM

FEATURES SUMMARY

- SUPPLY VOLTAGE: 2.7 to 3.6V
- 512K x 8 bits SRAM with OUTPUT ENABLE
- EQUAL CYCLE and ACCESS TIMES: 55ns
- LOW STANDBY CURRENT
- LOW V_{CC} DATA RETENTION: 1.5V
- TRI-STATE COMMON I/O
- LOW ACTIVE and STANDBY POWER

Figure 1. Packages

TABLE OF CONTENTS

SUMMARY DESCRIPTION	3
Figure 2. Logic Diagram	
Figure 3. TSOP and SO Connections	
Figure 4. Block Diagram	
MAXIMUM RATING	5
Table 2. Absolute Maximum Ratings	5
DC AND AC PARAMETERS.	6
Table 3. Operating and AC Measurement Conditions.	6
Figure 5. AC Measurement I/O Waveform	6
Figure 6. AC Measurement Load Circuit	
Table 4. Capacitance.	
Table 5. DC Characteristics.	7
OPERATION	8
Table 6. Operating Modes.	8
Read Mode	
Figure 7. Address Controlled, Read Mode AC Waveforms.	
Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.	
Table 7. Read and Standby Mode AC Characteristics 1	
Write Mode 1 Figure 10. Write Enable Controlled, Write AC Waveforms 1	
Figure 10. White Enable Controlled, White AC Waveforms	
Table 8. Write Mode AC Characteristics 12	
Figure 12. Low V _{CC} Data Retention AC Waveforms	
Table 9. Low V _{CC} Data Retention Characteristics. 13	
PACKAGE MECHANICAL	4
TSOP 32 Type II - 32 lead Plastic Thin Small Outline Type II, Package Outline	4
TSOP 32 Type II - 32 lead Plastic Thin Small Outline Type II, Package Mechanical Data1	
SO32 - 32 lead Plastic Small Outline, Package Outline	5
SO32 - 32 lead Plastic Small Outline, Package Mechanical Data	5
PART NUMBERING	6
Table 12. Ordering Information Scheme 10	6
REVISION HISTORY	7
Table 13. Document Revision History 1	7

SUMMARY DESCRIPTION

The M68AW511AL is a 4 Mbit (4,194,304 bit) CMOS SRAM, organized as 524,288 words by 8 bits. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single 2.7 to 3.6V supply.

Figure 2. Logic Diagram

This device has an automatic power-down feature, reducing the power consumption by over 99% when deselected.

The M68AW511AL is available in a 32 lead TSOP Type II and 32 lead SO packages.

Table 1. Signal Names

A0-A18	Address Inputs		
DQ0-DQ7	Data Input/Output		
Ē	Chip Enable		
G	Output Enable		
W	Write Enable		
Vcc	Supply Voltage		
V _{SS}	Ground		

Figure 4. Block Diagram

MAXIMUM RATING

Stressing the device above the rating listed in the Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Symbol	Parameter	Value	Unit
I _O ⁽¹⁾	Output Current	20	mA
T _A	Ambient Operating Temperature	-55 to 125	°C
T _{STG}	Storage Temperature	–65 to 150	°C
Vcc	Supply Voltage	–0.5 to 4.6	V
V _{IO} ⁽²⁾	Input or Output Voltage	–0.5 to V _{CC} +0.5	V
PD	Power Dissipation	1	W

Table 2. Absolute Maximum Ratings

Note: 1. One output at a time, not to exceed 1 second of duration.

2. Up to a maximum operating V_{CC} of 3.6V only.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure-

ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 3. Operating and AC Measurement Conditions

Parameter		M68AW511AL
V _{CC} Supply Voltage	V _{CC} Supply Voltage	
Ambient Operating Temperature	Range 1	0 to 70°C
	Range 6	–40 to 85°C
Load Capacitance (CL)		100pF
Output Circuit Protection Resistance (R1)		3.0kΩ
Load Resistance (R ₂)		3.1kΩ
Input Rise and Fall Times		1ns/V
Input Pulse Voltages		0 to V _{CC}
Input and Output Timing Ref. Voltages		V _{CC} /2
Input and Output Transition Timing Ref. Voltages		$V_{OL} = 0.3 V_{CC}; V_{OH} = 0.7 V_{CC}$

Figure 5. AC Measurement I/O Waveform

Figure 6. AC Measurement Load Circuit

Table 4. Capacitance

Symbol	Parameter ^(1,2)	Test Conditio n	Min	Мах	Unit
C _{IN}	Input Capacitance on all pins (except DQ)	$V_{IN} = 0V$		6	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$		8	pF

Note: 1. Sampled only, not 100% tested. 2. At $T_A = 25^{\circ}C$, f = 1MHz, $V_{CC} = 3.0V$.

Table 5. DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
I _{CC1} ^(1,2)	Operating Supply Current	$V_{CC} = 3.6V, f = 1/t_{AVAV}, \\ I_{OUT} = 0mA$			30	mA
I _{CC2} ⁽³⁾	Operating Supply Current	$V_{CC} = 3.6V, f = 1MHz,$ $I_{OUT} = 0mA$			5	mA
Ι _{LI}	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	-1		1	μΑ
I _{LO} ⁽⁴⁾	Output Leakage Current	$0V \leq V_{OUT} \leq V_{CC}$	-1		1	μΑ
I _{SB}	Standby Supply Current CMOS	$\label{eq:VCC} \begin{split} V_{CC} &= 3.6 V, \overline{E} \geq V_{CC} - 0.2 V, \\ f &= 0 \end{split}$		5	10	μΑ
VIH	Input High Voltage		2.2		V _{CC} + 0.3	V
VIL	Input Low Voltage		-0.3		0.6	V
V _{OH}	Output High Voltage	I _{OH} = -1mA	2.4			V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA			0.4	V

OPERATION

The M68AW511AL has a Chip Enable power down feature which invokes an automatic standby mode whenever Chip Enable is de-asserted (\overline{E} = High). An Output Enable (G) signal provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the common I/O data bus. Operational modes are determined by device control inputs W and E as summarized in the Operating Modes table (Table 6).

	-		
Table	6.	Operating N	lodes
1 albio	•••	oporating it	0000

Operation	Iω	W	G	DQ0-DQ7	Power
Read	VIL	Х	VIH	IH Hi-Z Active (I _C	
Read	VIL	VIH	VIL	Data Output	Active (I _{CC})
Write	VIL	VIL	Х	Data Input	Active (I _{CC})
Deselect	VIH	Х	Х	Hi-Z	Standby (I _{SB})

Note: $X = V_{IH}$ or V_{IL} .

Read Mode

The M68AW511AL is in the Read mode whenever Write Enable (W) is High with Output Enable (G) Low, and Chip Enable (E) is asserted. This provides access to data from eight of the 4,194,304 locations in the static memory array, specified by the 19 address inputs. Valid data will be available at the eight output pins within t_{AVQV} after the last stable address, providing \overline{G} is Low and \overline{E} is Low. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{ELQV} or t_{GLQV}) rather than the address. Data out may be indeterminate at t_{ELQX} and t_{GLQX}, but data lines will always be valid at t_{AVQV}.

Figure 7. Address Controlled, Read Mode AC Waveforms

Note: $\overline{E} = Low, \overline{G} = Low, \overline{W} = High.$

Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.

Note: Write Enable (\overline{W}) = High.

Figure 9. Chip Enable Controlled, Standby Mode AC Waveforms

Cumbal	Devemeter		M68AW511AL		1 lmit
Symbol	Parameter		55	70	Unit
t _{AVAV}	Read Cycle Time	Min	55	70	ns
t _{AVQV}	Address Valid to Output Valid	Max	55	70	ns
t _{AXQX} ⁽¹⁾	Data hold from Address change	Min	5	5	ns
t _{EHQZ} ^(2,3)	Chip Enable High to Output Hi-Z	Max	20	25	ns
t ELQV	Chip Enable Low to Output Valid	Max	55	70	ns
t _{ELQX} ⁽¹⁾	Chip Enable Low to Output Transition	Min	5	5	ns
t _{GHQZ} ^(2,3)	Output Enable High to Output Hi-Z	Max	20	25	ns
t _{GLQV}	Output Enable Low to Output Valid	Max	25	35	ns
t _{GLQX} ⁽¹⁾	Output Enable Low to Output Transition	Min	5	5	ns
t _{PD} ⁽⁴⁾	Chip Enable High to Power Down	Max	0	0	ns
t _{PU} ⁽⁴⁾	Chip Enable Low to Power Up	Min	55	70	ns

Table 7. Read and Standby Mode AC Characteristics

Note: 1. Test conditions assume transition timig reference level = 0.3V_{CC} or 0.7V_{CC}.
 2. At any given temperature and voltage condition, t_{EHQZ} is less than t_{ELQX} and t_{GHQZ} is less than t_{GLQX} for any given device.
 3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output

voltage levels.

4. Tested initially and after any design or process changes that may affect these parameters

Write Mode

The M68AW511AL is in the Write mode whenever the W and E pins are Low. Either the Chip Enable input (E) or the Write Enable input (W) must be deasserted during Address transitions for subsequent write cycles. Write begins with the <u>concur-</u> rence of Chip Enable being active with W low. Therefore, address setup time is referenced to Write Enable and Chip Enable as t_{AVWL} and t_{AVEH} respectively, and is determined by the latter occurring edge. The Write cycle can be terminated by the earlier rising edge of \overline{E} , or \overline{W} .

if the Output is enabled (\overline{E} = Low and \overline{G} = Low), then W will return the outputs to high impedance within t_{WLQZ} of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for t_{DVWH} before the rising edge of Write Enable, or for t_{DVEH} before the rising edge of \overline{E} , whichever occurs first, and remain valid for t_{WHDX} or t_{EHDX}.

Figure 10. Write Enable Controlled, Write AC Waveforms

Figure 11. Chip Enable Controlled, Write AC Waveforms

Table 8. Write Mode AC Characteristics

Symbol	Parameter		M68AW511AL	-	Unit
Symbol	Farameter		55	70	
t _{AVAV}	Write Cycle Time	Min	55	70	ns
t _{AVEH}	Address Valid to Chip Enable High	Min	45	60	ns
t _{AVEL}	Address Valid to Chip Enable Low	Min	0	0	ns
tavwh	Address Valid to Write Enable High	Min	45	60	ns
t _{AVWL}	Address Valid to Write Enable Low	Min	0	0	ns
t _{DVEH}	Input Valid to Chip Enable High	Min	25	30	ns
t _{DVWH}	Input Valid to Write Enable High	Min	25	30	ns
t ehax	Chip Enable High to Address Transition	Min	0	0	ns
t _{EHDX}	Chip Enable High to Input Transition	Min	0	0	ns
teleh	Chip Enable Low to Chip Enable High	Min	45	60	ns
tELWH	Chip Enable Low to Write Enable High	Min	45	60	ns
t _{WHAX}	Write Enable High to Address Transition	Min	0	0	ns
tWHDX	Write Enable High to Input Transition	Min	0	0	ns
twhqx ⁽¹⁾	Write Enable High to Output Transition	Min	5	5	ns
tWLEH	Write Enable Low to Chip Enable High	Min	45	60	ns
t _{WLQZ} (1,2)	Write Enable Low to Output Hi-Z	Max	20	25	ns
twLwH	Write Enable Low to Write Enable High	Min	45	60	ns

Note: 1. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

2. At any given temperature and voltage condition, t_{WLQZ} is less than t_{WHQX} for any given device.

Figure 12. Low V_{CC} Data Retention AC Waveforms

Table 9. Low	V _{CC} Data	Retention	Characteristics
--------------	----------------------	-----------	-----------------

Symbol	Parameter	Test Condition	Min	Тур	Мах	Unit
I _{CCDR} ⁽¹⁾	Supply Current (Data Retention)	$V_{CC} = 1.5V, \overline{E} \ge V_{CC} - 0.2V, f = 0^{(3)}$		4.5	9	μΑ
t _{CDR} ^(1,2)	Chip Disable to Power Down		0			ns
t _R ⁽²⁾	Operation Recovery Time		t _{AVAV}			ns
V _{DR} ⁽¹⁾	Supply Voltage (Data Retention)	$\overline{E} \ge V_{CC} - 0.2V$, f = 0	1.5			V

Note: 1. All other Inputs at $V_{IH} \ge V_{CC} - 0.2V$ or $V_{IL} \le 0.2V$. 2. Tested initially and after any design or process may affect these parameters. t_{AVAV} is Read cycle time. 3. No input may exceed $V_{CC} + 0.2V$.

PACKAGE MECHANICAL

Figure 13. TSOP 32 Type II - 32 lead Plastic Thin Small Outline Type II, Package Outline

Note: Drawing is not to scale.

Table 10. TSOP 32 Type II - 32 lead Plastic Thin Small Outline Type II, Package Mechanical Data

Symbol	millimeters			inches		
	Тур	Min	Мах	Тур	Min	Max
А			1.20			0.047
A1		0.05	0.15		0.002	0.006
A2		0.95	1.05		0.037	0.041
b		0.30	0.52		0.012	0.020
С		0.12	0.21		0.005	0.008
CP			0.10			0.004
D		20.82	21.08		0.820	0.830
е	1.27	-	_	0.050	-	-
E		11.56	11.96		0.455	0.471
E1		10.03	10.29		0.395	0.405
L		0.40	0.60		0.016	0.024
α		0°	5°		0°	5°
N		32	-		32	

Figure 14. SO32 - 32 lead Plastic Small Outline, Package Outline

Note: Drawing is not to scale.

Symbol	millimeters			inches		
	Тур	Min	Max	Тур	Min	Max
А			3.00			0.118
A1		0.10			0.004	
A2		2.57	2.82		0.101	0.111
В		0.36	0.51		0.014	0.020
С		0.15	0.30		0.006	0.012
D		20.14	20.75		0.793	0.817
E		11.18	11.43		0.440	0.450
E1		13.87	14.38		0.546	0.566
е	1.27	-	-	0.050	-	-
L		0.58	0.99		0.023	0.039
L1		1.19	1.60		0.047	0.063
CP			0.10			0.004

1	5/	1	8

PART NUMBERING

Table 12. Ordering Information Scheme

Example:	M68AW511 A L 55 NC 6 T
Device Type	
M68	
Mode	
A = Asynchronous	
Operating Voltage	
W = 2.7 to 3.6V	
Array Organization	
511 = 4 Mbit (512K x8)	
Option 1	
A = 1 Chip Enable	
Option 2	
L = Low leakage	
Speed Class	
55 = 55 ns	
70 = 70 ns	
Package	
NC = TSOP32 Type II	
MC = SO32	
Operative Temperature	
1 = 0 to 70°C	
6 = -40 to 85 °C	
Shipping	

T = Tape & Reel Packing

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

REVISION HISTORY

Date	Version	Revision Details
August 2001	-01	First Issue
27-Sep-2001	-02	55ns speed class replaces 70ns
27-Feb-2002	-03	From Preliminary Data to Data Sheet 70ns speed class added Temperature Range 1 (0 to 70°C) added Block Diagram clarified (Figure 4) Operating and AC Measurement Conditions table clarified (Table 3) AC Measurement Load Circuit clarified (Figure 6) DC Characteristics table clarified (Table 5) Write, Read and Standby Mode AC Characteristics tables clarified (Table 8 and 7) Chip Enable Controlled, Write AC Waveforms clarified (Figure 11) Low V _{CC} Data Retention AC Waveforms and Characteristics clarified (Figure 12 and Table 9)
01-Mar-2002	-04	SO32 package added
25-Mar-2002	-05	Read and Standby Mode AC Characteristics table clarified (Table 7) Low V_{CC} Data Retention AC Waveforms and Characteristics clarified (Figure 12 and Table 9)
26-Apr-2002	-06	DC Characteristics Table clarified (Table 5) Write Mode AC Characteristics Table clarified (Table 8)
17-Jun-2002	-07	Minor changes

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

