x Freescale Semiconductor, Inc.

als
e

Q) mororoLa | isitaldna

intelligence everywhere”

8-Bit Software
Development Kit

for Motor Control
Targeting M68HCO08
Applications

User’s Guide

M68HC08

Microcontrollers

SDKHCO08AUG/D
7/2002

WWW.MOTOROLA.COM/SEMICONDUCTORS

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

8-Bit Software Development Kit
for Motor Control Targeting
M68HCO8 Applications

User’'s Guide

To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.motorola.com/semiconductors/

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. © Motorola, Inc., 2002
DigitalDNA is a trademark of Motorola, Inc. All rights reserved.
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA 3

For More Information On This Product,
Go to: www.freescale.com


http://www.motorola.com/semiconductors/

A 4
4\

Freescale Semiconductor, Inc.

Revision History

Revision History

Revision - Page
Date Level Description Number(s)
July, 2002 N/A Original release N/A

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

4

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



[ ]

]

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

List of Sections

Section 1. General Description . ................... 15
Section 2. Directory Structure . .................... 33
Section 3. Developing Software. . .................. 37
Section 4. Core System Infrastructure . ............. 45
Section 5. On-Chip Drivers. . ......... ... ... .. ..... 57
Section 6. Off-Chip Drivers ...................... 137
8-Bit Software Development Kit for Motor Control Targeting M68HC08 Applications User’s Guide

MOTOROLA

List of Sections 5

For More Information On This Product,

Go to: www.freescale.com



A\ ¥ 4
4\ Freescale Semiconductor, Inc.

List of Sections

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

6 List of Sections MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
L |

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

Table of Contents

Section 1. General Description

1.1 ContentS. .. ... 15
1.2  Introduction. ... ..... ... 16
1.3  OVeIVIEW. . . e e 16
131 Features. .. ... . 17
1.3.1.1 Core-System Infrastructure . . ..................... 17
1.3.1.2 On-ChipDrivers. . ... o e e 18
1.3.1.3 Off-Chip Drivers . . ... ... e 18
1314 Sample Applications . ............ .. .. . . . ... 19
1.3.15 PC Master Software. . .......... ... ... 19
1.4 Quick Start . ... . e 21
141 Installing CodeWarrior Development Tools .. ........... 21
1.4.2 Installing HCO8 SDK. . . . .. ... 21
1421 Supplementary HC08 SDK Installation Steps . ........ 22
1422 Installing PCMaster. . ........... ... . ........... 23
1.4.3 RequiredHardware ............. ... ... .. ... .. .. 24
1.4.4 Building and Running Sample Application.............. 24
15 RulesandCoding Standards . ......................... 25
151 RuUles .. ... 25
1511 UseoftheClLanguage .......................... 25
1512 Use of Peripherals by Algorithms. . . ................ 25
1513 Use of Peripherals by Applications . ................ 26
152 Coding Standards. .. .......... ... i 26
1521 NamingConventions . . . ... 26
1522 Formatting . ........ ... . 27
1.5.2.3 Entry/EXit . . ... 27
1524 Self Modification. . ........ ... . . . . . 27
1525 Source Statements perLine ...................... 27
15.2.6 Arithmetic Calculations . ......................... 28
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Table of Contents 7

For More Information On This Product,
Go to: www.freescale.com



\ ¥4
i

Freescale Semiconductor, Inc.

Table of Contents

15.2.7 Reserve Word Redefinition .. ..................... 28
1.5.2.8 Recursion. . ........ .. 28
1529 Data Initialization . .. .......... ... ... ... . . ... 28
1.5.2.10 Global Variables. . ........... .. ... ... ... . ... . ... 28
15.2.11 Useof Parentheses .. ......... ... ... ... ......... 28
1.5.2.12 GOTO .. 29
1.5.2.13 Switch Statements. . . ......... .. ... ... ... .. ..., 29
15.2.14 Headers . .. ... ... . i 29
1.5.2.15 Data Typing . . ..o oo 31
1.5.2.16 Portability . . . ......... . . 31
1.5.2.17 MacroUsage . ...t e 31
1.5.2.18 Re-entrance . . .......... .. .. i 32
1.5.2.19 Code Comments ............ i 32

Section 2. Directory Structure

21 CoNntentS. . . ... .. 33
2.2 Introduction. . ... 33
2.3 RooOtDIrectory. . ... 34
2.4  Applications Directory. . . ...t 34
25  SrCDIreCtory. . ..o 35
2.6 Stationery Directory . .......... . 36
27 DocsDirectory ... 36
Section 3. Developing Software
3.1 Contents. ... ... .. 37
3.2 Introduction. . ... ... 37
3.3 CreatingaNewProject. ........... ... ... i, 38
3.3.1 Metrowerks CodeWarrior IDE . ...................... 38
3.3.2 Cosmic Software ldeaCPUO8 . . . .................... 39
3.4  On-Chip Peripheral Initialization. .. ..................... 39
3.5  On-Chip Drivers Interface Description . . ................. 42
3.6 Interrupts and Interrupt Service Routines. ................ 44
3.7 appconfig.hfile....... ... ... . . . 44
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
8 Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com



[ ]
L |

Freescale Semiconductor, Inc.
Table of Contents
Section 4. Core System Infrastructure
41  CONENtS. . .o 45
4.2  IntroduCtion. . . . ... 45
4.3 BOOtSEqUENCE. . ...t 46
4.3.1 peripherallnit() .......... ... ... . . . . . 46
4.3.2 main()- User's ApplicationCode. .. ................... 46
4.4  Data TYPeS . o vttt 46
4.5  ArchlO and ArchCore Register Structures . .. ............. 47
4.6  General Periphery Functions . ......................... 49
4.6.1 periphMemRead() - memoryread .................... 49
4.6.2 periphMemWrite() - memory write . . .................. 50
4.7  INeImUPLS. . . o 50
4.7.1 Processing Interrupts . . . . ... .. i 51
4.7.1.1 Interrupt Callbacks . . . ........ ... ... .. ... ... ... 51
4.7.1.2 Interrupt Flag Service. . . ......... .. ... ... . . ... ... 52
4.7.1.3 Interrupt Debug Strobes. .. ......... ... ..o L 53
4.7.1.4 Interrupt DebugMode . ........ ... ... .. . 53
4.7.1.5 Interrupt Processing Flow .. ...................... 54
Section 5. On-Chip Drivers

5.1 Contents. . ... ... 57
5.2 Introduction. . ... 59
5.3 Phase Locked Loop (PLL)Drivers . ......... ... .o .. 62
53.1 APIDefinition . .. ... .. 63
5.3.2 Static Initialization. . . ... ... . 63
5.3.3 API Specification ........... ... .. . . 65
54 PLLInterruptHandling . ............ ... .. ... ... ....... 66
54.1 Debug Strobes . .. ... ... 66
54.2 DebugMode. . ...... ... .. . 67
5.4.3 UserCallbacks. . ... ... . i 67
5.5 Pulse-Width Modulator (PWM) Driver. .. ................. 68
5.5.1 APIDefinition . .. ... .. 68
5.5.2 Static Initialization. . . .. ... ... . 69
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Table of Contents 9

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Table of Contents

55.3 API Specification ........... ... .. . . 72
554 Functional Description . . . ........ ... ... .. . . . ... 77
554.1 PwmChargeBootStrap. . ... .......... ... .. 77
55.4.2 PwmUpdateScaledvalue ... ...................... 78
55.4.3 PwmUpdateScaledvalue 8....................... 79
56 PWMinterruptHandling............ ... ... ... .. ... ... 80
5.6.1 Debug Strobes . . .. ... ... 80
5.6.2 DebugMode. . ...... ... .. . . 80
5.6.3 UserCallbacks. . ... ... . i 81
5.6.4 PWMReloadFlag ............. . ... .. .. . . . . ... 81
57  TIMerDriVers . . ... 82
5.7.1 APIDefinition . .. ... .. 82
5.7.2 Static Initialization. . ... ... .. .. 82
5.7.3 API Specification ........... ... .. . . 86
5.8 TimerinterruptHandling................. ... ... ....... 90
5.8.1 Debug Strobes . .. ... ... 90
58.1.1 Timer Overflow Interrupts. . . ...................... 91
5.8.1.2 Channel Interrupts . . .. ... ... . 91
5.8.2 DebugMode. . ...... ... .. . 91
5.8.3 UserCallbacks. . ... ... . i 92
5.8.3.1 Timer Overflow Interrupts. . .. ..................... 92
5.8.3.2 Channel Interrupts . . ... ... ... 92
5.9  Serial Peripheral Interface (SPI) Drivers. . ................ 93
59.1 APIDefinition . .. ... .. 93
5.9.2 Static Initialization. . ... ... .. .. 93
5.9.3 API Specification ........... ... .. . . 95
510 SPlinterruptHandling .......... ... ... ... . ... .. . . . ... 97
5.10.1 DebugStrobes....... ... ... . . . 97
5.10.1.1 SPI Receive Interrupt. . . ... ... .. 98
5.10.1.2 SPI TransmitInterrupt . . .......... .. .. ... . ... ... 98
5.10.2 DebugMode. . ...... ... .. ... 98
User’'s Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
10 Table of Contents MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



>
P

Freescale Semiconductor, Inc.

Table of Contents
5.10.3 UserCallbacks. ........ ... . i 99
5.10.3.1 SPI Receive Interrupt. . . ........ ... . 99
5.10.3.2 SPI TransmitInterrupt . . .......... .. .. ... . ... .. 99
5.11 Serial Communications Interface (SCI) Driver . ........... 100
5.11.1 APIDefinition . ... ... . . 100
5.11.2 Configurationltems . ............ ... .. ... 100
5.11.3 API Specification . ........... ... i 103
5.11.3.1 SCI Input/Output Control Commands .............. 104

5.11.3.2 Read — Non-Blocking or Blocking Read
fromSClIModule. ...... ... ... ... ... ... ... 110

5.11.3.3  Write — Non-Blocking or Blocking Write
toSCIModule . ........ ... .. ... .. .. . 111
512 SClinterruptHandling ............. ... .. ... .. ....... 115
512.1 DebugStrobes.......... ... ... ... 115
5122 DebugMode. . ...... ... .. . ... 116
5123 UserCallbacks. ......... ... i 116
513 POrtDriVerS. . ..o 117
5.13.1 APIDefinition . ..... ... . . 117
5.13.2  Static Initialization. . . ....... ... 118
5.13.3 Input/Output Control (IOCTL). .. ....... ... i, 120
5.13.4 APl Specification . .......... .. ... i 120
514 WDODIIVEr . .o 124
5141 APIDefinition . ......... . . . 124
5.15 Analog-to-Digital Converter (ADC) Driver. .. ............. 125
5151 APIDefinition . ......... . . . . 125
5.15.2 Configurationltems . .......... .. ... . .. ... 125
5.15.3 API Specification .. ......... ... i 128
5.15.3.1 ADC — Non-BufferedMode ..................... 129
5.15.3.2 ADC —BufferedMode .................. ... .... 132
5.16 ADC InterruptHandling. ........... ... .. ... ... .. .. ... 134
5.16.1 DebugStrobes....... ... ... .. . ... 134
5.16.2 DebugMode........ ... ... ... 135
5.16.3 UserCallbacks. ......... ... i, 135
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Table of Contents 11

For More Information On This Product,
Go to: www.freescale.com



vy
4\

User’'s Guide

Freescale Semiconductor, Inc.

Table of Contents

6.1
6.2

6.3

6.3.1
6.3.2
6.3.3
6.3.4

6.4

6.4.1
6.4.2
6.4.3
6.4.4

6.4.4.1
6.4.4.2

Section 6. Off-Chip Drivers

CoNteNtS . . . 137
Introduction. . ... .. .. 137
Light-Emitting Diode (LED) Driver ..................... 138
APIDefinition . . ... ... . 138
Static Initialization. . . .......... ... ... . 138
API Specification ......... ... .. .. . . 140
Functional Description . . ......... ... .. ... .. . ..., 142
Switch Driver. . . ... . 143
APIDefinition . . ... ... 143
Static Initialization. . . ......... .. ... .. . 143
API Specification ............ .. .. . 145
Functional Description . . ......... ... .. ... ... ..., 147
switchCheck. . ....... ... ... ... . ... . .. . 147
switchFilt .. ... ... ... . . . 147

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

12

Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com



[ ]

L |

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

Figure Title

1-1 Software Structure ... ....... . . . ... . ..
1-2 Software Structure ... ....... . .. . .. . ..
2-1 Root Directory Structure. . ...................
2-2  Applications Directory Structure . . . ............
2-3  Src Directory Structure . .. ......... ... ...
2-4  Stationery Directory Structure. .. ..............
3-1 Userinterface. .. ........ ... . .. ...
4-1  Interrupt Processing Flow. ...................
Table Title

1-1  Naming Conventions .......................
4-1  periphMemRead Arguments. . ................
4-2  periphMemWrite Arguments. . ................
5-1 PLL Driver Constant Definitions . .. ... .........
5-2 PLL Driver Macro and Function Commands. . . ...
5-3 PWM Driver Constant Definitions. . .. ..........
5-4 PWM Driver Macros and Functions Commands
5-5 Memory Consumption an Execution Time .......
5-6  Timer Driver Constants Definition. . . ... ........
5-7  Timer Driver Macros and Functions Commands
5-8  SPI Driver Constants Definition . ..............
5-9  SPI Driver Macros and Functions Commands . . ..

List of Figures and Tables

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

List of Figures and Tables

For More Information On This Product,
Go to: www.freescale.com

13



\ ¥4
i

User’'s Guide

Freescale Semiconductor, Inc.

List of Figures and Tables

Table

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

5-20

6-1
6-2
6-3
6-4
6-5

Title Page
Configuration Items for appconfig.h . ................... 102
Character Format Selection .. ........................ 103
Baud Rates. . ... . 103
SCI Input/Output Control Commands. . ................. 104
Read Function Call Arguments. . . ..................... 110
Write Function Call Arguments. .. ..................... 111
Port Driver Constants Definition. . . .................... 119
Port Driver Macros and Functions Commands. . .......... 122
Configuration Items for appconfog.h. . . ................. 127
ADC Input/Output Control Commands
Non-BufferedMode . .. .......... ... .. ... 129
ADC Input/Output Control Commands — Buffered Mode .. .132

LED Driver Constants Definition. . . .................... 139
LED Driver Macros and Functions . .. .................. 141
Switch Driver Constants Definition. . ................... 144
Switch Drivers Macros and Functions . ................. 146
Memory Consumption and Execution

Timeof Functions . .......... ... .. ... . . i, 146

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

14

List of Figures and Tables MOTOROLA

For More Information On This Product,

Go to: www.freescale.com



[ ]

L |

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

1.1 Contents

Section 1. General Description

1.2  Introduction. .. ......... .. 16
1.3  OVeIVIEW. . . 16
131 Features. ... ... 17
1.3.1.1 Core-System Infrastructure . . ..................... 17
1.3.1.2 On-ChipDrivers. . ... o e e 18
1.3.1.3 Off-Chip Drivers . . .. ... e 18
1314 Sample Applications . .......... ... ... . . . ... 19
1.3.15 PC Master Software. .. ......... ... .. ... . ... 19
1.4 Quick Start . ... . e 21
141 Installing CodeWarrior Development Tools .. ........... 21
1.4.2 Installing HCO8 SDK. . . . . ... . 21
1421 Supplementary HC08 SDK Installation Steps . ........ 22
1422 Installing PCMaster. . ........................... 23
1.4.3 RequiredHardware ............. ... ... . ... ... .. 24
1.4.4 Building and Running Sample Application.............. 24
15 RulesandCoding Standards . ......................... 25
151 Rules ... ... 25
1511 UseoftheClLanguage .......................... 25
1512 Use of Peripherals by Algorithms. . . ................ 25
1513 Use of Peripherals by Applications . ................ 26
152 Coding Standards. .. .......... ... i 26
1521 NamingConventions . . . ..., 26
1522 Formatting . ........ ... . 27
1.5.2.3 Entry/EXit . . ... 27
1524 Self Modification. . ......... .. ... .. .. . 27
1525 Source Statements perLine ...................... 27
1526 Arithmetic Calculations . ......................... 28
1527 Reserve Word Redefinition . ...................... 28
1528 Recursion. . ... .. 28
1.5.2.9 Data Initialization . .. ....... ... .. ... .. ... . ... ... 28
1.5.2.10 Global Variables. . ........... ... ... .. .. .. 28
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA General Description 15

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

General Description

1.2 Introduction

1.3 Overview

User’'s Guide

1.5.2.11 Useof Parentheses . . ........... .. .. . ... 28
1.5.2.12 GOTO .o 29
1.5.2.13 Switch Statements. . ......... ... .. .. ... .. . .. ... 29
1.5.2.14 Headers . .. ... . e 29
1.5.2.15 Data Typing . . ..o 31
1.5.2.16 Portability . . . ....... ... . 31
1.5.2.17 MacroUsage . ...t 31
1.5.2.18 Re-entrance . . ....... . i 32
1.5.2.19 Code Comments . ... 32

This user’s guide is targeted for Motorola M68HCO08 (HCO08) application
developers. Its purpose is to describe the development environment, the
software modules, and the tools for the HC08 and the application
programming interface (API). Simply, this manual describes how to use
the Motorola HC08 SDK to develop software for the Motorola MCU
processor.

The HCO08 SDK development environment provides fully debugged
peripheral drivers, examples, and interfaces that allow programmers to
create their own C application code, independent of the core
architecture. This environment has been developed to complement the
existing development environment for Motorola 68HCMR32 processors.
It provides a software infrastructure allowing development of efficient,
ready to use, high-level software applications which are fully portable
and reusable between different core architectures. Maximum portability
Is achieved for devices with comparable on-chip peripheral modules.

This manual only contains information specific to the HC08 SDK as it
applies to the Motorola HCO8 software development. Therefore, it is
required that users of the HC08 SDK should be familiar with the HC08
Family in general, as is described in the MC68HC908MR32/
MC68HC908MR16 Advance Information (Motorola document order
number MC68HC908MR32/D).

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

16

General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

General Description
Overview

The Motorola HC08 SDK is designed for and is fully integrated with
Metrowerks!) CodeWarrior(@ development tools. Before starting to
explore the full feature set of the HC08 SDK, one should install and
become familiar with the CodeWarrior development environment.

All together, the HC08 SDK, the CodeWarrior, and the evaluation
modules (EVMs) create a complete and scalable tool solution for easy,
fast and efficient development.

1.3.1 Features

The HCO08 SDK environment is composed of the following major
components:

e Core system infrastructure

e On-chip drivers with defined API
» Sample example applications

e Off-chip drivers

This section provides very illustrative information about these
components, while comprehensive descriptions can be found in
specially targeted sections.

1.3.1.1 Core-System Infrastructure

The core-system infrastructure creates the fundamental infrastructure
for the MC68HC908MR32 device operation and enables further
integration with other components, e.g., on-chip drivers. The provided
basic development support includes:

e Commonly used macro definitions
» Portable architecture-dependent register declaration

* Mechanism for static configuration of on-chip peripherals as well
as interrupt vectors

* Project templates

1. Metrowerks® and the Metrowerks logo are registered trademarks of Metrowerks, Inc., a wholly
owned subsidiary of Motorola, Inc.

2. CodeWarrior® is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of
Motorola, Inc.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 17

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

General Description

1.3.1.2 On-Chip Drivers

The on-chip drivers isolate the hardware-specific functionality into a set
of driver commands with a defined API. The API standardizes the
interface between the software and the hardware, see Figure 1-1. This
Isolation enables a high degree of portability or architectural and
hardware independence for application code. This is mainly valid for
devices with similar peripheral modules. The driver code reuses lead for
greater efficiency and performance.

APPLICATION

_m )

ON-CHIP DRIVERS

HARDWARE
ON-CHIP PERIPHERAL MODULES

Figure 1-1. Software Structure

1.3.1.3 Off-Chip Drivers

Off-chip drivers isolate the hardware-specific functionality into a set of
driver commands with a defined API. The API standardizes the interface
between the software and the hardware, see Figure 1-2. This isolation
enables a high degree of portability or architectural and hardware
independence for both application and off-chip drivers code. This is
mainly valid for standard external periphery such as: PC, display,
keyboard, switches, light emitting diode (LED), etc. The driver code
reuses leads for greater efficiency and performance.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

18 General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

General Description
Overview

APPLICATION

S

OFF-CHIP DRIVERS

[ e

ON-CHIP DRIVERS

HARDWARE
OFF-CHIP PERIPHERAL MODULES

Figure 1-2. Software Structure

1.3.1.4 Sample Applications

The HCO08 SDK contains a number of sample applications
demonstrating how to use on-chip drivers and how to implement some
user-specific tasks. These sample examples are kept simple, illustrative
and their intention is to minimize the learning curve.

1.3.1.5 PC Master Software

PC master software is one of the off-chip drivers, supporting
communication with a PC. This tool was initially created for developers
of motor control applications, but it may be extended to any other
application developments. This tool allows remote control of an
application using a user-friendly graphical environment running on a PC.
It also provides the ability to view some real-time application variables in
both textual and graphical form.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 19

For More Information On This Product,
Go to: www.freescale.com



\¥ 4
PR

Freescale Semiconductor, Inc.

General Description

User’'s Guide

Main features:
» Graphical environment

* Visual Basic Script or Java® Script can be used for control of
target boards

» Easy to understand navigation

» Connection to target board possible over a network, including the
Internet

» Demonstration mode with password protection support

» Visualization of real-time data in the Scope window

» Acquisition of fast data changes using integrated recorder
» Value interpretation using custom defined text messages

» Built-in support for standard variable types (i.e., integer, floating
point, bit fields)

» Several built-in transformations for real type variables

+ Automatic variable extraction from Metrowerks’ CodeWarrior
linker output files (MAP, ELF)

* Remote control of application execution

PC master software is a versatile tool to be used for multipurpose
algorithms and applications. It provides a lot of excellent features,
including:

* Real-time debugging

» Diagnostic tool

* Demonstration tool

¢ Education tool

The full description can be found in the PC Master Software User Manual
attached to the PC master software tool.

1. Java™ is a trademark of Sun Microsystems, Inc., in the United States and other countries.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

20

General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

General Description
Quick Start

1.4 Quick Start

This subsection provides information needed to install the HC08 SDK
and get it running.

1.4.1 Installing CodeWarrior Development Tools

CodeWarrior for Motorola MCU Embedded Systems provides a
complete software development environment for Motorola general
purpose HCO8 processors. CodeWarrior for Motorola MCU is a windows
based integrated development environment (IDE) with a highly efficient
C compiler.

As previously mentioned, Motorola HCO8 SDK is designed for and fully
integrated with Metrowerks CodeWarrior development tools. With
CodeWarrior tools, users can build applications and integrate other
software included as part of the HCO8 SDK release. Once the software
is built, CodeWarrior tools allow users to download executable images
into the target platform and run/debug downloaded code.

The installation process of CodeWarrior is described in the installation
guide attached to the actual version of CodeWarrior.

1.4.2 Installing HCO8 SDK

In order for HC08 SDK to integrate itself with the development tools,
the CodeWarrior tools should be installed prior to the installation of
HCO08 SDK (see 1.4.1 Installing CodeWarrior Development Tools).
If HCO8 SDK is installed while CodeWarrior is not present, users can
only browse the install software package, but will not be able to build,
download, and run the released code. However, installation of SDK
can be simply completed once CodeWarrior is installed, see

1.4.2.1 Supplementary HCO08 SDK Installation Steps.

The installation of SDK itself consists of copying the needed files to the
destination hard drive, checking the presence of CodeWarrior and
creating the shortcut under Start->Programs menu.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 21

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

General Description

NOTE:

Each HCO08 SDK release can be installed in its own new directory named
HCO08 SDK_rX.X (where X.X denotes the release number). Thus, it
allows you to maintain the older releases and projects. It gives free
choice to select the active release.

To start the installation process, perform the following steps:
1. Execute Setup.exe

2. Follow the HC08 SDK software installation instructions on your
screen.

To integrate HC08 SDK with CodeWarrior, perform the following steps:
1. Set path to HC08 SDK source within CodeWarrior's IDE

N

Launch the CodeWarrior IDE from the Start->Programs-
>Metrowerks CodeWarrior menu

Open IDE Preferences dialog window using Edit->Preferences...
Select Source Trees panel from IDE Preferences Panels-General
Type HCO08 SDK src to the Name box

Choose Absolute Path as a path type

N o o0 b~ W

Click Choose and locate the HC08 SDK installation directory, e.g.,
C:\Program Files\Motorola\HC08 SDK\src_mw

click Add
9. click OK to finish

o

1.4.2.1 Supplementary HC08 SDK Installation Steps

User’'s Guide

Now that CodeWarrior and HCO08 SDK are successfully installed. The
next step is to copy the content of the HC08 SDK stationery folder
(e.g., ...Motorola\HC08SDK\stationery) into the CodeWarrior stationery
folder (e.g., ...Metrowerks\CodeWarrior\Stationery) to “register” the
HCO08 SDK project templates for the newly created projects.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

22

General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

General Description
Quick Start

1.4.2.2 Installing PC Master

System Requirements
The PC master software application can run on any computer with

Microsoft™® windows® operating system with Internet Explorer 4.0 or
higher installed. The following requirements are for the Internet
Explorer 4.0 application:

Computer: 486DX/66 MHz or higher processor (Intel(3)
Pentium®) recommended)

Operating system: Microsoft Windows + DCOM pack

Memory: Windows 95 or 98: 16 Mb RAM minimum (32 Mb
recommended); for Windows NT: 32 Mb RAM minimum (64 Mb
recommended)

Required software: Internet Explorer 4.0 or higher installed
Hard drive space: 6 MB

Other hardware requirements: Mouse, serial RS-232 port for
local control, network access for remote control

Target Development Board Requirements

PC Master relies on the following to be provided by the target
development board:

Interface: Serial communication port (required on all Motorola
EVM boards)

1. Microsoft® is a registered trademark of Microsoft Corporation in the U.S. and/or other
countries.

2. Windows®, Windows95® and subsequent versions, Windows NT® are registered trademarks
of Microsoft Corporation in the U.S. and/or other countries.

3. Intel® is a registered trademark of Intel Corporation.

4. Pentium® is a registered trademark of Intel Corporation.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 23

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

General Description

1.4.3 Required Hardware

NOTE:

The HCO08 SDK for HCO8MRxx has been designed and tested with the
MC68HC908MR32 MC board target hardware. If the user wants to
quickly exercise software applications included with the HC08 SDK,
MC68HC908MR32 MC board hardware must be installed.

Itis recommended that all HCO8 SDK users read through this document,
before proceeding with software development.

1.4.4 Building and Running Sample Application

User’'s Guide

Once the HCO08 SDK is installed, the user can build and run any of the
released demo applications for the MC68HC908MR32 MC board by
opening and building the project, using the CodeWarrior development
environment. We will use pwm_demo.mcp as an example:

Step 1: Launch CodeWarrior IDE from:
Start->Programs->Metrowerks CodeWarrior menu

Step 2: Using File->Open command, open pwm_demo.mcp project
located in:
src_mw\68HC908MR32\demos\pwm_demo\ directory

Step 3: Execute Debug by pressing the Ctrl+F5 key or choose the
Debug command from the Project menu.

Step 4: Run the application by pressing the green arrow (Run) in the
debug window or choose the Run command from the Project menu.

At this point, the application is running — the LEDs associated to the
pulse-width modulator (PWM) outputs are now flashing and the green
LED is blinking periodically.

Subsequent sections describe:
* How to create a new application
* How to use interrupts

» Usage of on-chip drivers

» Other needed information to successfully create a new application

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

24

General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

General Description
Rules and Coding Standards

1.5 Rules and Coding Standards

1.5.1 Rules

In this section, some programming guidelines are described that apply
to all applications and algorithms as well as to all MCU architectures
supported by the HC08 SDK, regardless of the application area. Rules
are the set of critical software development practices that must be
followed to produce software with a high degree of portability and
reusability. Software developed with these rules is considered HC08
SDK-compliant, since it conforms to the standards used to develop the
HCO08 SDK software. Coding standards, on the other hand, are a set of
good software development practices that lead to a highly portable,
consistent, and reusable end product. These rules and guidelines are
the standards by which the HC08 SDK components are developed.

1.5.1.1 Use of the C Language

Rule 1:

All algorithms and applications will follow the calling conventions
imposed by the C programming language. This ensures the system
integrator is free to use C to “bind” various algorithms together, to control
the flow of data between algorithms and applications, and to interact
easily with other processors in the system.

It is very important to note this does not mean that software must be
written in C language. Software may be implemented entirely in
Assembly language. However, it must be callable from the C language
and respect the C language calling conventions. Refer to the
CodeWarrior Help, Calling Conventions, for details.

All algorithms and applications must follow the calling conventions
imposed by the CodeWarrior implementation of the C programming
language.

1.5.1.2 Use of Peripherals by Algorithms

Rule 2:

To ensure the inter-operability of algorithms, it is important no algorithm
ever directly access any peripheral device directly.

Algorithms must never directly access any peripheral device.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

General Description 25

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

General Description

1.5.1.3 Use of Peripherals by Applications

To ensure the inter-operability and portability of applications, no
application can ever directly access any peripheral device. All data
produced or consumed by an application must be explicitly passed by
the on-chip driver API.

Rule 3:  Application software must never directly access any peripheral device.

1.5.2 Coding Standards

If followed, the guidelines established here will lead to highly portable,
consistent, and reusable end product.

1.5.2.1 Naming Conventions
The following subsections discuss the specifics of naming.

General guidelines:

» Every external identifier should begin with the lower-case name of
the file that contains it. This helps eliminate naming conflicts and
provide for a quick cross-reference mechanism from identifier to
definition and implementation.

* Use meaningful names; i, j, k are meaningful and acceptable
names for iterators or counters

* Use mixed-case instead of underscores to separate words

» Use all upper case for constants; underscores are permitted for
readability

Table 1-1 provides guidance on naming conventions based upon
properties of the entity being identified. These prefix characters are used
to further identify attributes associated with the type being specified.

Table 1-1. Naming Conventions

Prefix Prefix
Property Characters Property Characters
Struc type S Typedef type t
Union type u Pointer variable p
Enum type e
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
26 General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

General Description
Rules and Coding Standards

Files:
» File names should remain short to facilitate the general naming
guidelines
Macros:
* Functions name should begin with the lower cases

* Macros should be upper case

1.5.2.2 Formatting

Guidelines:
* Line Length for comments should have 80 or less characters
* Line Length for code should have 135 or less characters
* Do not rely on window line wrap
e Try to alphabetize methods for easier reference

* Try not to use tabs; however, if you must use tabs, set tabs to four
spaces and use tabs only to the left of the first readable character.

1.5.2.3 Entry/Exit

Guidelines:
* Single entry and exit point for assembly language
* C code may have early exits for parameter or state checking

* Multiple exits may not be used for different processing paths

1.5.2.4 Self Modification

Do not use self-modifying code.

1.5.2.5 Source Statements per Line

Do not concatenate multiple source statements on a single line. Instead,
use a block comment before a section of code.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 27

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

General Description

1.5.2.6 Arithmetic Calculations

Guidelines:

» Considerissues related to integer length, signed versus unsigned,
divide by zero, overflow/underflow, etc.

* Where possible, utilize intrinsics provided by the HC08 SDK
libraries
1.5.2.7 Reserve Word Redefinition

Do not redefine reserved words.

1.5.2.8 Recursion
C functions may be used recursively. That is, a function may call itself
either directly or indirectly.
* Ifrecursion is used, it must be noted in the header
* Environment issues should be addressed; e.g., stack space
» Terminations must be guaranteed

1.5.2.9 Data Initialization

Guidelines:

» All local variables must be initialized to a valid value prior to their
use

» If no other valid value is available, pointers should be initialized to
NULL

1.5.2.10 Global Variables

Variables used in the library function should be passed through the
header.

1.5.2.11 Use of Parentheses

Use parentheses to avoid ambiguity and improper evaluation in
arithmetic and Boolean expressions.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

28 General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

General Description
Rules and Coding Standards

1.5.2.12 GOTO

There are valid reasons to use a GOTO in C code. However, in general,
it is used as a lazy alternative to restructuring and a GOTO should be
avoided if at all possible.

1.5.2.13 Switch Statements

Switch statements must have a default clause. Each case statement
must either have a separate break statement or be combined with
another case statement with a separate break statement.

1.5.2.14 Headers

The following sections establish conventions for headers.

File Headers:

Determine a standard file header with a copyright notice to make the
code appear more consistent between developers and to provide
legal protection for source code. The following is an example of code
intended for Motorola internal use only.

Example:

/*******************************************************************

Motorola Inc.
(c) Copyright 2001 Motorola, Inc.
ALL RIGHTS RESERVED.

khkhkhkhkkhkhkhkhkdhkhkhhkhkhkdhkhhhkhkdhhkhkhkhkdhkhhhkhkdhhkhkhhhdhhhkdkddhhkhdhdhhhkdkddkhhhdkkdhhkxd,x*x
File Name: < source file name >

Description: < Brief description >

Modules Included:

< modulenamel >
< modulename2 >

R E R EEEE N

*******************************************************************/

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 29

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

General Description

Function Headers:

User’'s Guide

e Module or functions should provide the function name for
reference

* The description should describe the intent of the routine and any
significant algorithms or complex coding schemes

* Returns should specify value to be returned

* Global data should identify the modification of data or state not
local to this routine and how this may affect the execution of the
application

* Arguments should identify the parameters and how they are used.
l.e. let the code identify the actual types of data

* Range Issues should identify any argument or function range
issues

» Special Issues should identify the following:

— Designer notes specifying considerations for maintainability or
iImplementation choices

— Dependencies include portability issues (hardware or
software), compiler workarounds, emulator nuances, etc.

Example:
/*******************************************************************
*

* Motorola Inc.

* (c) Copyright 2001 Motorola, Inc.

* ALL RIGHTS RESERVED.

*
hkhkkkhkkhkkkhkkkhkkhkhkkhhkkhkhkkhkhkkhkhkkhkkhkkhkhhkkhhkkhhkhkkhhkkhkhkkhkhkkhkhkkkkhkkhkkhkkhkkhkhkkhkhkkkkkkkkx*
*

* Module: yyyy ()

*

* Description: < Basic functionality performed by module >

*

* Returns: < Specify return values >

*

* Global Data:

*

* % ok K ok K ok X

< define global data modifications and effects on application
executions>

Arguments: < describe parameters >
Range Issues: < Specify argument or function range issues >

Special Issues: < designer notes, dependencies >

******************************************************************/

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

30

General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

General Description
Rules and Coding Standards

1.5.2.15 Data Typing

Guidelines:
* Beaware of signed versus unsigned and overflow/underflow when
using integers
» Differentiate between handling of character arrays and string data;
l.e., proper string termination

» Use the data types described in types.h to make your code more
portable

* UseANSIC's size t datatype whenyou need a portable way to
hold the size of an entity; e.g., sizeof returns size t

1.5.2.16 Portability

Guidelines:
* Rely on ANSI C whenever possible

* Any non-portable (i.e., dependency on OS or compiler specifics)
should be noted in the header

* Do notinsert computational statements in function calls which are
removed on certain platforms, e.g., printf() and assert(); when
these calls are removed or stubbed out, the computational
statements may not be executed

1.5.2.17 Macro Usage

Guidelines:

* Non-function-style macros (e.g., #define) should be used to define
symbolic constants that help to self-document code rather than
hard-coding literals in place

* Function-style macros should take into account the syntactical
result of inlining, as well as the proper functioning of the macro
itself

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA General Description 31

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

General Description

1.5.2.18 Re-entrance

Functions that are re-entrant may be entered multiple times
concurrently. For example, an application has called a subroutine, and
during the execution of this subroutine an interrupt occurs, calling the
same subroutine that was interrupted.

+ |f the function is re-entrant, it must be noted in the header

* Avoid static and non-local variables; e.g., file or global scope

1.5.2.19 Code Comments

Source files shall be commented to provide maintainability for future
enhancements or bug fixes. Comments shall detail basic functionality of
code sections, especially where implementation may not be obvious to
an inexperienced developer.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

32 General Description MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

2.1 Contents

2.2 Introduction

2.2
2.3
2.4
2.5
2.6
2.7

Section 2. Directory Structure

Introduction. . . ... ... . 33
ROOt DIreCtory. . . ..o 34
Applications Directory. . ... o 34
SIC DIreCtOrY . . . o 35
Stationery Directory . ... . . e 36
DOCS DIreCtOry . . .o 36

This section describes the directory structure of the Motorola HC08 SDK
tool, located in the directory: <...>\Motorola\HCO8SDK.

NOTE: The root directory of HCO8 SDK may be changed during installation by
the user. In general, the HC08 SDK software is organized by supported
devices as it is explained here.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

Directory Structure 33

For More Information On This Product,

Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Directory Structure

2.3 Root Directory

The root or main directory is organized as shown in Figure 2-1.

E|_-.] Makarola

=] HCOS 50K

-] docs
;I I

Figure 2-1. Root Directory Structure

Where:
» src contains the C source files; see also 2.5 Src Directory

+ docs contains the HC08 SDK User’'s Manual and other useful
documentation

2.4 Applications Directory

NOTE:

User’'s Guide

This directory contains the large applications to demonstrate the HC08
SDK usage when developing for different hardware platforms. The
structure of the applications directory is illustrated in Figure 2-2.

-+ | applications
-] MCESHCO0EMR 16CE
=] MCE8HCI0EMRS2CE
E|_| 3ph_ac_vhz
: _| pcmasker

- | sources
#-_7 3ph_bldc_hs
-] 3ph_bldc_sin
H- MCESHC0SMRECE

Figure 2-2. Applications Directory Structure

The applications reside on the directory corresponding to the target
hardware — Motorola EVM boards.

Individual application directories are further structured with project
specific folders which hold the configuration files, the project build files,
and the CodeWarrior private data files.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

34

Directory Structure

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



[ ]

]

Freescale Semiconductor, Inc.

2.5 Src Directory

Directory Structure
Src Directory

A src or “source” directory is intended to hold all source files. Its
structure is shown in Figure 2-3. The src directory is further divided into
the following subdirectories:

68HCO8MRxXx is the directory specific for each of the supported
devices.

— Subdirectory drivers contains the source code for on-chip
peripheral drivers and high-level drivers

— Subdirectory system contains the device specific source files,
the

— Subdirectory config contains files for static configuration.

— Subdirectory examples contains the sample applications
demonstrating the usage of the SDK drivers.

algorithms contains distributed and user algorithms

applications is the directory containing the large applications
targeted for specific EVM boards.

include contains the common HCO08 SDK header files, which
define APIs and the implementation of generally used macros

=7 sre
- 68HCI05MR LG
-] 68HCI0EMRZ4
=1 68HC908MR 32
-7 config
-] drivers

-] pwm_demo
L7 sei_demo

7] spi_demo

£{] timer_dema
0 svs

i-_7] 68HCI05MRS
=-] algorithms

m...I5

{:l rnakh
=-_ metioncontral
- applications

-] include

Figure 2-3. Src Directory Structure

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

Directory Structure 35

For More Information On This Product,
Go to: www.freescale.com



\¥ 4
PR

Freescale Semiconductor, Inc.

Directory Structure

2.6 Stationery Directory

NOTE:

The stationery directory contains the templates for the newly created
HCO08 SDK projects.

This directory is present in the HC08 SDK source directory only if the
Metrowerks development tool is not installed prior to the installation of
the HCO8 SDK. The proper placement is within the Metrowerks
installation directory. If Metrowerks was already installed, this directory
will be automatically placed during HCO8 SDK installation.

El m | sCakionery
-] BEHCI0EMROE
-] BBHCI0EMRG
=] 68HCI08MR 2

=] Simulatar & MMDS

Figure 2-4. Stationery Directory Structure

The device specific subdirectories 68HC908MRxx are covered by the
HCO08 SDK directory. The device specific subdirectory contains all

needed support files for proper memory, system, and application
configuration and initialization.

2.7 Docs Directory

User’'s Guide

The docs directory contains this HC08 SDK User’'s Manual as well as
other relevant documentation.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

36

Directory Structure MOTOROLA
For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

3.1 Contents

3.2 Introduction

3.2

3.3
3.3.1
3.3.2

3.4
3.5
3.6
3.7

Section 3. Developing Software

Introduction. . . ... ... . 37
Creatinga New Project. .. ....... ... .. ... ... 38

Metrowerks CodeWarrior IDE . ...................... 38

Cosmic Software ldeaCPUO8 . . . .................... 39
On-Chip Peripheral Initialization. . . ..................... 39
On-Chip Drivers Interface Description .. ................. 42
Interrupts and Interrupt Service Routines. ................ 43
appconfig.hfile .. ... .. . . . 44

This section describes:

How to develop applications using 8-bit SDK in detail
How to create new applications using 8-bit SDK
How to initialize on-chip peripheral modules

How to access on-chip peripheral modules in run-time by
application code

In addition, an application configuration by an application specific
configuration file appconfig.h is presented.

At this point, it is assumed CodeWarrior Development Tools and

8-bit SDK have been successfully installed and are running. If you need
information regarding installation of these tools, refer to 1.4.1 Installing
CodeWarrior Development Tools and 1.4.2 Installing HC0O8 SDK.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

Developing Software 37

For More Information On This Product,

Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Developing Software

3.3 Creating a New Project

8-bit SDK supports two compilers Metrowerks CodeWarior and
CosmicD) Software. Separate subsections for each compiler follow.

3.3.1 Metrowerks CodeWarrior IDE

To create a new project based on the HC08 SDK project templates
(stationery), perform the following steps:

1. Launch CodeWarrior IDE from the
Start->Programs->Metrowerks CodeWarrior menu.

2. Choose File->New command.

3. Click the Project tab and select HC0O8 SDK Stationery project
type.

4. Type the project name (with a .mcp extension) and set the location
for the new project.

5. Click OK.

6. Select the project stationery from the New Project window. This
step includes selecting the type of processor (MR32) and the
target configuration (Simulator, MMDS or both).

7. Click OK.

Upon completing all these actions the project window is displayed. The
project window contains these predefined file groups:
» Dependencies — contains the following file subgroups:

— SDK Configuration — contains types.h, appconfig.h, config.c,
sys.c, interrupts.c,Start08.c files, and the target specific linker
command files default.prm

— SDK Drivers — relevant drivers for chosen chip
— SDK Algorithms — empty by default
— MW Lib — ansi.lib

1. Cosmic® is a registered trademark of Cosmic Software Inc. All Rights Reserved

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

38 Developing Software MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

Developing Software
On-Chip Peripheral Initialization

» C Sources — contains an empty main.c file to be modified by the
user and the peripheral file subgroup which includes all driver
source files for an easy start

* |nfo — contains text files with default static initialization definitions.
The definitions can be copy to appconfig.h file.

Now, you can start writing your code in the C source file main.c and to
configure the on-chip peripherals into the include file appconfig.h.

3.3.2 Cosmic Software Idea CPUOS8
To create a new project based on the HC08 SDK project templates
(stationery), perform the following steps:

1. Copy whole new_app folder from
src_cosmic\stationery\HC08_SDK\68HC908MR32 to your
application directory.

2. Rename the folder and project file new_app.prj to appropriate
name.

3. Inthe new project file *.prj replace all string new_app by your new
name.

4. Launch Cosmicldea CPUO08fromthe Start->Programs->Cosmic
Tools->ldea 6808 menu.

5. Choose Project->Load and find your application project file.

6. In Setup->Working Directory set working directory to 8-bit SDK
source. E.g.C:\Program_Files\Motorola\8-bit SDK\src_cosmic

Upon completing all these actions the project window is displayed. The
project window contains the predefined 8-bit SDK files.

3.4 On-Chip Peripheral Initialization

HCO08 SDK provides a very effective mechanism illustrating how to
initialize statically all on-chip peripherals. The static configuration of on-
chip peripheral is provided by the application specific configuration file
appconfig.h.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Developing Software 39

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Developing Software

Tip:

User’'s Guide

The configuration file appconfig.h is used to define the configuration
items, which determine the configuration of the on-chip peripheral
registers. Defined configuration items are written to peripheral registers
in periphery initialization function. The function can be called by the
IOCTL driver commands xx_INIT (xx is the peripheral prefix used in all
IOCTL commands) which the user can use somewhere in the
initialization code of the application. For example, PWM_INIT for Pulse
Width Modulator, etc.

The periphery initialization function is called automatically if the
INCLUDE_xxx is defined in appconfig.h. For example, #define
INCLUDE_PWM. This way saves more because it can find influence
between the used peripheral modules.

The step-by-step procedure to statically initialize the on-chip peripheral
using the HCO08 SDK is:

1. Define configuration items (register values) in the configuration file
appconfig.h. In the periphery.txt file are predefined examples of all
constants for specified periphery.

2. Initialize the selected on-chip peripheral by the INCLUDE_xxx in
the appconfig or by the xx_INIT IOCTL command in your
application code.

If you are editing the configuration file appconfig.h manually, you can
copy the template of all configuration items intended for the appconfig.h
file from the peripheral TXT file <name_of_driver>.txt. For example,
pwmdrv.txt — Pulse Width Modulation driver TXT file, etc. Example 1
shows this template for the timer/counter as extracted from the include
file timer.h.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

40

Developing Software MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

Developing Software
On-Chip Peripheral Initialization

Example 1. Configuration items for Timer B Extracted from the Driver TXT File

/*****************************************************************************/

/* Timer B Initialization *x/
/*****************************************************************************/
/* TIMB Status and Control Register (TBSC) */
#define TIMB OVERFLOW_ INT TIM DISABLE /* TIM_DISABLE/TIM_ENABLE *x/
#define TIMB STOP BIT TIM STOP /* TIM_STOP/TIM_COUNT *x/
#define TIMB RESET COUNTER TIM OFF /* TIM_OFF/TIM_QN */
#define TIMB PRESCALER TIM BUS CLK DIV 1 /* TIM BUS CLK DIV 1 */

/* TIM BUS_CLK DIV 2  */
/* TIM BUS CLK DIV 4  */
/* TIM BUS CLK DIV 8  */
/* TIM BUS_CLK DIV 16 */
/* TIM BUS CLK DIV 32 */
/* TIM _BUS_CLK DIV 64 */

/* TIM PTEO TCLKB *x/
L2 */
/* TIMB Counter Modulo Register (TBMODH, TBMODL) *x/
#define TIMB MODULO OXFFFF /* OXFFFF..0x0000 */
/22 */
/* TIMB Channel 0 Status and Control Register (TBSCO) *x/
#define TIMB CHO INT TIM DISABLE /* TIM_DISABLE/TIM_ENABLE */
#define TIMB_CHO MODE TIM OUTPUT PRESET H /* TIM OUTPUT PRESET H */
/* TIM OUTPUT PRESET L */

/* TIM INPUT CAPTURE R EDGE */
/* TIM INPUT CAPTURE F EDGE */
/* TIM INPUT CAPTURE FR EDGE */

/* TIM TOGGLE ON COMP */
/* TIM CLEAR ON_COMP */
/* TIM SET ON_ COMP */

/* TIM TOGGLE ON COMP BUFF  */
/* TIM CLEAR ON COMP BUFF */

/* TIM SET ON COMP BUFF */

#define TIMB CHO TOGGLE ON OVERFLOW TIM NO /* TIM NO/TIM YES */
#define TIMB_CHO MAXIMUM DUTY CYCLE TIM NO /* TIM NO/TIM YES */

* *

........................................................................... /
/* TIMB Channel 0 Register (TBCHOH, TBCHOL) */
/* trrrrrnd Unaffected by reset trrrrrnd *x/
#define TIMB CHO VALUE OXFFFF /* 0..0xFFFF *x/
/22 */
/* TIMB Channel 1 Status and Control Register (TBSC1) */
#define TIMB CH1 INT TIM DISABLE /* TIM_DISABLE/TIM_ENABLE */
#define TIMB_CH1 MODE TIM OUTPUT PRESET H /* TIM OUTPUT PRESET H */
/* TIM OUTPUT PRESET L */

/* TIM INPUT CAPTURE R EDGE */
/* TIM_INPUT CAPTURE F EDGE */
/* TIM_INPUT CAPTURE FR EDGE */

/* TIM_TOGGLE ON COMP * /
/* TIM CLEAR ON COMP * /
/* TIM_SET ON_COMP * /
/* | Output compare for channel 1 is buffered when the chnnel 0 is in a ! */
/* buffered mode. In that case the channel 1 can not be an input capture. */
#define TIMB CH1 TOGGLE ON OVERFLOW TIM NO /* TIM NO/TIM YES * /
#define TIMB CH1 MAXIMUM DUTY CYCLE TIM NO /* TIM NO/TIM YES * /
LR e e e e e e e e */
/* TIMB Channel 1 Register (TBCH1H, TBCH1L) */
/* trrrrrnd Unaffected by reset trrrrrnd */
#define TIMB CH1 VALUE OxXFFFF /* 0..0xXFFFF */
Y& J T o */
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Developing Software 41

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Developing Software

3.5 On-Chip Drivers Interface Description

User’'s Guide

HCO08 SDK includes a set of on-chip drivers used to initialize, configure
and access the on-chip peripherals. The on-chip drivers provide a C
language application programming interface (API) to the peripheral
module (see Figure 3-1). This interface is common for all input/output
operations. Use of the ioctl command provides a very efficient and easy
way to access a peripheral module. It increases the code portability and
readability and, thus, decrease the number of bugs in the developed
code.

USER APPLICATION

:

ON-CHIP DRIVER API
A
Y

PERIPHERAL MODULE

Figure 3-1. User Interface

This interface provides the following API statements:

ioctl (peripheral module identifier, command,
command_specific parameter) ;

or, (if ioctl command returns a value):

var = ioctl (peripheral module identifier, command,
command_specific parameter) ;

Where:

* Peripheral_module_identifier parameter specify module for
example TIMA (timer A module), TIMB (timer B module), etc.

» Command parameter specifies the action, which will be performed
on the peripheral module. The list of all commands available can
be found in Section 5. On-Chip Drivers.

 Command_specific_parameter parameter specifies other data
required to execute the command.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

42

Developing Software MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

Developing Software
On-Chip Drivers Interface Description

Example 2. Using IOCTL

IOCTL (PORTB, PORT SET PINS, PORT PIN1|PORT PIN2) ;
IOCTL (ADC, ADC_START, ADC_ATD2);
IOCTL (TIMA, TIM CLEAR CHO FLAG, NULL);

This example shows miscellaneous IOCTL commands. The parameters
are:

1. The first one specifies the peripheral module:
— PORTB — input output port B
— ADC — analog-to-digital (A/D) converter
— TIMA —timer A

2. The second one is the command:
— PORT_SET_PINS — to set pin
— ADC_START — to start A/D conversion
— TIM_CLEAR_CHO_FLAG —to clear flag

3. The third one is the command specific parameter:
— PORT_PIN1 | PORT_PIN2 — to specify that pin 1 and 2 will be
set

— ADC_ADT2 — to specify input 2 is selected for ADC
conversation

— NULL — no parameter is used

See Section 5. On-Chip Drivers where all IOCTL commands and their
detailed descriptions can be found.

Tip: To see all available IOCTL commands and their parameters from within
CodeWarrior IDE, open the appropriate <name_of_driver>.h include file
(e.g. pwmdrv.h — Pulse Width Modulation driver include file, etc.). At the
beginning of the file, there is a list of all implemented IOCTL commands.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Developing Software 43

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Developing Software

3.6 Interrupts and Interrupt Service Routines

Handling interrupts using HC08 SDK is described in detail in
4.7 Interrupts. This section contains a practical guide on how to write a
user interrupt service routine.

3.7 appconfig.h file

The appconfig.h include file is the application specific configuration file.
It is used to define configuration items of both on-chip and off-chip
drivers, users callback, and pin assignment. See 1.5 Rules and Coding
Standards for more information about how to initialize on-chip
peripheral modules using the appconfig.h file and the respective ioctl
xX_INIT command.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

44 Developing Software MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

4.1 Contents

4.2 Introduction

Section 4. Core System Infrastructure

4.2  IntroduCtion. . . . ... 45
4.3 BOOtSEQUENCE. . ...t 46
4.3.1 peripherallnit() ........ ... ... .. . . . . . . 46
4.3.2 main()- User's ApplicationCode. .. ................... 46
4.4  Data TYPeS . o vttt 46
4.5  ArchlO and ArchCore Register Structures . . . ............. 47
4.6  General Periphery Functions . ......................... 49
4.6.1 periphMemRead() - memoryread .................... 49
4.6.2 periphMemWrite() - memory write . . .................. 50
4.7  INeImUPLS. . . o 50
4.7.1 Processing Interrupts . . . . ... .. 51
4.7.1.1 Interrupt Callbacks . . . ........ ... ... .. ... ... ... 51
4.7.1.2 Interrupt Flag Service. . . ...... ... .. .. ... .. . ... ... 52
47.1.3 Interrupt Debug Strobes. ... ....... ... . o L 53
4.7.1.4 Interrupt DebugMode . ........ ... .. ... ... 53
47.1.5 Interrupt Processing Flow .. ...................... 54

The core system infrastructure is one of the three main blocks
composing HC08 SDK. Its purpose is to provide the fundamental
infrastructure for the HCO8 device operation (e.g., the interrupt handling,
static configuration, etc.). It also provides some additional support
(commonly used macros, data types) and enables further integration
with on-chip drivers.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

Core System Infrastructure 45

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Core System Infrastructure

4.3 Boot Sequence

4.3.1 peripherallnit()

The core system infrastructure provides the fundamental code which is
executed before the user’s main function. This code provides basic
settings needed to initialize the chip, settings required by the Metrowerks
CodeWarrior 4.0 Compiler, and initialization of global variables. Finally,
it passes control to the user’s application code (main function).

The following subsections provide a detailed description of all
initialization performed before user’'s main() function is called.

The peripherallnit() performs peripheral initialization according to the
appconfig.h file. The peripherallnit() function has to be called at the
beginning of the main application code (main() function.

4.3.2 main()- User’'s Application Code

4.4 Data Types

User’'s Guide

NOTE:

The main() function is called after all the above described code is
executed (i.e., the processor is initialized). It is the place where the user
writes the application code. By default the function is located in main.c
file, but the file can be renamed by the user.

HCO08 SDK defines some basic data types to support code portability

between different hardware architectures and tools. These basic data
types are defined in the C header file types.h, This is used throughout
the interface definitions for the on-chip drivers.

In some development environments these data type definitions are
located in the type.h file.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

46

Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

Core System Infrastructure
ArchlO and ArchCore Register Structures

Data type definitions:

1. Generic word types

— SWord16 — 16-bit signed variable/value

— UWord16 — 16-bit unsigned variable/value
SByte — 8-bit signed variable/value
UByte — 8-bit unsigned variable/value

2. Miscellaneous types
— type_uBits — bit addressable UByte
— type_ulLowHigh — byte addressable UWord16
— mc_s3PhaseSystem — 3 SWord16 structure
— typefunc_p — pointer to a function

3. Constants
— TRUE — true value
— FALSE — false value
— NULL — null pointer

4.5 ArchlO and ArchCore Register Structures

The global variables ArchlO and archCore provide a C-callable interface
to all peripheral and core registers mapped in data memory. Access to
all peripheral and core registers is provided via these structures. Thus,
there is no need to know the concrete addresses of the registers to
write/read them. This mechanism increases code readability and
portability and simplifies access to registers. ArchlO, ArchCore,
FlashBlockProtectReg, and COPControlRegister are defined in the
header file arch.h.

The global variable ArchlO is of the type arch_slO and ArchCore is of the
type Arch_sCore. The structure type arch_slO is comprised in another
structures, where each structure corresponds to one on-chip peripheral
module.

The examples shown below use ArchlO and ArchCore global variables.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Core System Infrastructure 47

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Core System Infrastructure

User’'s Guide

Example 3. Using ArchlO and ArchCore

UWordlé RegValue;

RegValue = ArchIO.TimerA.Channell.Value.Word;
ArchIO.TimerA.Channell.Value.Word 0x8000;
ArchCore.LVIStatusControlReg.Byte 0x25;

This code reads timerA channel 1 register (TACH1), writes to the timer A
channel 1 register (TACH1), and finally writes to the low-voltage inhibit
(LV1) status and control register (LVISCR).

All peripheral registers also have defined short name substitutes for the
long Archlo name:

UWordlé RegValue;

RegValue = TACHI1;
TACH1 = 0x8000;
LVISCR = 0x25;

This reading/ writing can be also performed using the periphMemRead
and periphMemWrite functions. For more detailed information on these
macros, see 4.6 General Periphery Functions.

UWordlé RegValue;

RegValue = periphMemRead (&TACH1) ;
periphMemWrite (0x8000, &TACH1) ;

This method is recommended, as both periphMemRead() and
periphMemWrite() functions guarantee the proper sequence to access
each byte of the word.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

48

Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

Core System Infrastructure
General Periphery Functions

4.6 General Periphery Functions

This section describes functions having direct access to the periphery.
These functions are placed in the periph.asm file. periph.h has to be
included while this functions are used.

4.6.1 periphMemRead() - memory read

Call(s):
UWord16 periphMemRead(UWord16 *pAddr);

Arguments:

Table 4-1. periphMemRead Arguments

pAddr | in | The memory address from which to read a 16-bit word

Description:

The periphMemRead() function reads a 16-bit word from the memory
location addressed by parameter pAddr. The function read the high
byte first and then the low byte. This sequence is required mainly for
registers which have to be latched, or have a defined byte reading
order, during the reading (e.g., TBCNT)

Example 4. periphMemRead() Usage

UWordlé RegValue;

RegValue = periphMemRead (&TBCNT) ;

This code reads the high byte of counter register (TBCNTH) which
latches the content of the low byte (TBCNTL). Then the low byte
(TBCNTL) is read to unlatch TBCNTL.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Core System Infrastructure 49

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Core System Infrastructure

4.6.2 periphMemWrite() - memory write

4.7 Interrupts

User’'s Guide

Call(s):
UWord16 periphMemWrite(UWord16 Data, UWord16 *pAddr);

Arguments:

Table 4-2. periphMemWrite Arguments

Data in | The 16-bit data to write to the memaory

pAddr | in | The memory address from which to write a 16-bit word

Description:

The periphMemWrite() function writes a 16-bit word to the memory
location addressed by parameter pAddr. The function writes the high
byte first and then the low byte. This sequence is required for writing
to registers (e.g., TBMOD).

Example 5. periphMemWrite() Usage

periphMemWrite (0x1234, TBMOD) ;

This code writes 0x1234 to the 0x12 to the high byte of the counter
modulo register (TBMODH), which inhibits the TOF bit and overflow
interrupts until the low byte (TMODL) is written. Then the 0x34 is written
to the TMODL.

This subsection describes interrupt processing and interrupt
configuration using the HC08 SDK. For detailed information on interrupts
and interrupt processing for the MC68HC908MR32, refer to
MC68HC908MR32/ MC68HC908MR 16 Advance Information (Motorola
document order number MC68HC908MR32/D).

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

50

Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
2 |

Freescale Semiconductor, Inc.

Core System Infrastructure
Interrupts

4.7.1 Processing Interrupts

An interrupt is an event generated by a condition inside the MCU or from
external sources. When this event occurs, the interrupt processing
transfers control from the currently executing program to an interrupt
service routine (ISR), with the ability to later return to the current program
upon completion of the ISR.

The HCO08 SDK structure allows:
e Calling user ISR before IFS (interrupt flag service)
e Calling user ISR after IFS
» Allowing user his own IFS
e Sharing HC08 SDK and user's ISR
» Generating debug strobes on specified I/O pins during the ISR
* Debugging unhandled interrupts

4.7.1.1 Interrupt Callbacks

The interrupt system of SDK handles all possible interrupts of the
MC68HC908MR32. User callback enables users to share their own ISR
with an ISR provided by the HC08 SDK. The user can define his callback
before HC08 SDK ISR. For example:

#define INT PWM RELOAD CALLBACK 1 IsrPWM Reload

In this example, the IsrPWM__Reload() user function is called first. Then,
the PWM Interrupt flag is cleared.

The user can also define his own callback after HC08 SDK ISR. For
example:

#define INT PWM RELOAD CALLBACK 2 IsrPWM Reload

In this example, the PWM interrupt flag will be cleared and then the
IsrPWM_Reload() user function will be called.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Core System Infrastructure 51

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Core System Infrastructure

4.7.1.2 Interrupt Flag Service

User’'s Guide

NOTE:

Each on-chip peripheral interrupt source has its own interrupt flag, which
must be cleared while the interrupt is serviced. This interrupt flag
indicates an interrupt is pending and inside the ISR this flag must be
cleared. The constant INT_FlagName_FLAG defined in the appconfig.h
determine if the flag is cleared by HC08 SDK or if the user will have to
take care of this flag himself.

Example 6

/* appconfig.h file */
#define INT PWM RELOAD CALLBACK 1 IsrPWM Reload
#define INT PWM RELOAD FLAG CLEAR USER

This definition leaves flag service to the user. In this case, the user is
responsible for servicing the interrupt flag.

Example 7. Clearing Interrupt Flags inside ISR

/* application code */
/*****************************************************

PWM A Reload Interrupt Service Routine
******************************************************/

void IsrPWM Reload(void)
/* ISR code */

/* clear Reload interrupt flag */
IOCTL (PWM, PWM CLEAR RELOAD FLAG, NULL) ;

This example shows the PWM reload interrupt service routine.

The PWM_CLEAR_RELOAD_FLAG IOCTL() command is used to
clear the reload interrupt flag (PWMF) in control register 1 (PCTL1).

Default value of INT_PWM_RELOAD_FLAG is CLEAR_AUTO. If the

user does not define the INT_FlagName_FLAG HCO08 SDK will take care
of the flag. More information about FlagName for all ISR can be found in
specified periphery driver descriptions in Section 5. On-Chip Drivers.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

52

Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

Core System Infrastructure
Interrupts

4.7.1.3 Interrupt Debug Strobes

Debug strobes are useful for displaying the execution time on the
oscilloscope. The user can monitor not only extreme values of execution
time, but also its time evolution.

Selected I/O pins are set at the beginning of an interrupt and cleared at
the end. The required 1/0O port and pin must be defined in the appconfig.h
by definition:

INT _InterruptName_STROBE_PORT PORTXx

and
INT_InterruptName_STROBE_PIN n

where:

X is the port identifier (A, B, C, E, F) and the n is pin number (0, 1, 2,
3,4,5,6,7)

More information about InterruptName for all ISR can be found in
specified periphery driver descriptions in Section 5. On-Chip Drivers.

Example 8. Users Debug Strobe definition for PWM interrupt

#define INT PWM RELOAD STROBE_PORT PORTB
#define INT PWM_RELOAD STROBE PIN 4

4.7.1.4 Interrupt Debug Mode

Interrupt debug mode helps the user identify unhandled interrupts. If the
user defines INT_DEBUG_MODE TRUE in the appconfig.h, then a jump
to a never-ending cycle will be added to the all unhandled interrupts. If
the execution of the application ends in this cycle, the user can easily
find which interrupt is unhandled.

Example 9. Interrupt Debug Mode

/* appconfig.h */
INT DEBUG MODE TRUE

The default value of the INT_DEBUG_MODE is FALSE. If the interrupt
debug mode is not selected all interrupts will end by RTI.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Core System Infrastructure 53

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Core System Infrastructure

4.7.1.5 Interrupt Processing Flow

Every ISR is divided into three parts with these functions:

* Inthe second part, HCO8 SDK executive code is placed and the
interrupt flag is cleared.

» The first and third parts are reserved for calling user's callback
functions. The user can also choose to maintain interrupt flag
control himself. At the beginning and ending of an interrupt (if
required by the user) an assert and deassert of the debug strobe
will be placed. A never-ending cycle will be called at the end of the
interrupt if debug mode is selected.

Refer to Figure 4-1 for a detailed processing flowchart.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

54 Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

BEGINNING
OF ISR

Core System Infrastructure

# ifdef
INT_NAME_STROBE_PIN

SET SPECIFIED DEBUG PIN

# ifdef
INT_NAME_CALLBACK_1

SDK ISR

IF
INT_NAME_FLAG ==
CLEAR_USER

SDK FLAG SERVICE

# ifdef
INT_NAME_CALLBACK_2

INT_DEBUG_MODE &

+
USR CALLBACK PRE SDK
USR CALLBACK POST SDK
WHILE(1)

NOT DEFINED
BY CALLBACK

# ifdef
INT_NAME_STROBE_PIN

CLEAR SPECIFIED DEBUG PIN

D

Figure 4-1. Interrupt Processing Flow

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

Interrupts

User’'s Guide

MOTOROLA

Core System Infrastructure

For More Information On This Product,
Go to: www.freescale.com

55



A\ ¥ 4
4\ Freescale Semiconductor, Inc.

Core System Infrastructure

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

56 Core System Infrastructure MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]
L |

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

Section 5. On-Chip Drivers

5.1 Contents

5.2 Introduction. ... ....... .. .. 59
5.3 Phase Locked Loop (PLL)Drivers . ......... ... ... .. 62
53.1 APIDefinition . . ... ... . 63
5.3.2 Static Initialization. . . ........ ... . . 63
5.3.3 API Specification ........... ... .. . . 65
54 PLLInterruptHandling . ............ ... .. ... ... ....... 66
54.1 Debug Strobes . . . ... ... 66
54.2 DebugMode. . ...... ... . . 67
54.3 UserCallbacks.......... ... . ... 67
5.5 Pulse-Width Modulator (PWM) Driver. .. ................. 68
55.1 APIDefinition . . ... ... . 68
55.2 Static Initialization. . . ........ ... . . 69
55.3 API Specification ........... ... .. . . 72
554 Functional Description . . . ........ ... ... ... . . ... 77
554.1 PwmChargeBootStrap. . .. ........... ... . o .. 77
55.4.2 PwmUpdateScaledvalue ... ...................... 78
55.4.3 PwmUpdateScaledvalue 8....................... 79
56 PWMinterruptHandling............ ... ... ... .. ... ... 80
5.6.1 Debug Strobes . . . ... ... 80
5.6.2 DebugMode. . ....... ... . . . 80
5.6.3 UserCallbacks......... .. ... . ... 81
5.6.4 PWMReloadFlag .......... ... ... .. . ... 81
5.7  TimerDrivers ... ... 82
57.1 APIDefinition . . ... ... . 82
5.7.2 Static Initialization. . . ........ ... . . 82
5.7.3 API Specification ............ .. .. . . 86
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 57

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.8 TimerinterruptHandling................. ... ... ....... 90
5.8.1 Debug Strobes . .. ... ... 90
58.1.1 Timer Overflow Interrupts. . . ...................... 91
5.8.1.2 Channel Interrupts . . ... ... ... 91
5.8.2 DebugMode. . ...... ... .. . 91
5.8.3 UserCallbacks. .. ... ... . i 92
5.8.3.1 Timer Overflow Interrupts. . . ...................... 92
5.8.3.2 ChannelInterrupts . . . ... .. i 92
5.9  Serial Peripheral Interface (SPI) Drivers. . ................ 93
59.1 APIDefinition . .. ... .. 93
5.9.2 Static Initialization. . . ... ... .. 93
5.9.3 API Specification ........... ... .. . . 95
510 SPlinterruptHandling .......... ... .. ... . ... . .. . . . ... 97
5.10.1 DebugStrobes....... ... ... . . 97
5.10.1.1 SPI Receive Interrupt. . . ... ... . . 98
5.10.1.2 SPI TransmitInterrupt . . .......... .. .. ... . ... ... 98
5.10.2 DebugMode. . ...... ... .. . ... 98
5.10.3 UserCallbacks. ......... ... i 99
5.10.3.1 SPI Receive Interrupt. . . ... ... . . 99
5.10.3.2 SPI Transmit Interrupt . . .. ... ... 99
5.11 Serial Communications Interface (SCI) Driver . ........... 100
5.11.1 APIDefinition . ......... . . . 100
5.11.2 Configurationltems . ........... . ... . . ... 100
5.11.3 API Specification ........... ... i 103
5.11.3.1 SCI Input/Output Control Commands .............. 104

5.11.3.2 Read — Non-Blocking or Blocking Read
fromSCIModule. ............. .. ... ... ... ... 110

5.11.3.3  Write — Non-Blocking or Blocking Write
toSCIModule. ........ ... ... . .. . 111
512 SClinterruptHandling ............. .. ... .. ... ....... 115
512.1 DebugStrobes.......... ... .. . ... 115
5122 DebugMode. . ...... ... ... ... 116
5123 UserCallbacks. ......... ... i 116
513 POrtDriVerS. . ..o 117
5.13.1 APIDefinition . ......... . . . 117
5.13.2 Static Initialization. . . ...... ... 118
5.13.3 Input/Output Control (IOCTL). . ....... ... ... 120
5.13.4 APl Specification ... ........ .. ... i 120
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
58 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

5.2 Introduction

Freescale Semiconductor, Inc.

On-Chip Drivers
Introduction

5.14 WDO DIiVEr ... 124
5141 APIDefinition . ......... . . 124
5.15 Analog-to-Digital Converter (ADC) Driver. .. ............. 125
5151 APIDefinition . ......... . . . . 125
5.15.2 Configurationltems . ........... . ... .. ... 125
5.15.3 API Specification ........... .. ... i 128
5.15.3.1 ADC — Non-BufferedMode ..................... 129
5.15.3.2 ADC —BufferedMode . ............. .. ... .. .... 132
5.16 ADC InterruptHandling. ........... ... .. ... ... . ... ... 134
5.16.1 DebugStrobes....... ... ... .. . ... 134
5.16.2 DebugMode........ ... ... ... 135
5.16.3 UserCallbacks. ......... ... . 135

One strength of 8-bit SDK is that it provides a high degree of
architectural and hardware independence for the application code. This
portability is achieved by the modular design of 8-bit SDK. Which in this
case, isolates all chip-specific functionality into a set of defined, tested,
and documented application programming interfaces (APIs).

This section describes the APIs for on-chip drivers, forming the interface
between hardware and application software. The source code
implementation can be found at <...>\68HC908MR32\drivers of 8-bit
SDK directory. It defines the API by identifying all public interface
functions, commands, and data structures.

8-bit SDK on-chip driver's API are implemented as a low-level device
driver interface. The low-level device driver interface was chosen mainly
for its efficiency and also because it enables the utilization of the whole
hardware functionality. Another reason is the non-standardized
approach, on how to use most of the on-chip peripheral modules. The
portability of the low-level device driver interface is not influenced so
much by the lower abstraction level, but mainly by the capability of the
peripheral module hardware. This means portability is ensured between
devices, which involves the same or a very similar implementation of the
peripheral module. In the case of quite different peripheral modules on
target devices, the portability is much lower.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 59

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

On-chip drivers usage considerations:

* Peripheral module hardware and functionality knowledge

The only efficient and, in some cases, safe usage of the on-chip
peripheral module is based on the user knowledge that the user
has about the module itself. A comprehensive description can be
found in the MC68HC908MR32/ MC68HC908MR16 Advance
Information (Motorola document order number
MC68HC908MR32/D) and in various Motorola application notes.
The way in which the on-chip driver's API is designed takes
advantage of the whole hardware capability. The self-explaining
names of the driver commands will help the user to find the
desired hardware feature.

* On-chip driver commands implemented as macros

Almost all commands are implemented as efficient C macros.
Exceptions are documented in each detailed description of the
commands.

+ Efficient use of the driver commands

The general form of the driver command is:
i octl (peripheral _nodul e_identifier,command,
command_speci fic_paraneter);
Where, the peripheral_module_identifier parameter specifies the
peripheral module by the predefined symbolic constants, like
PWM, TIMA, TIMB, etc.

The command parameter specifies the action, which will be
performed on the peripheral module. It represents the command
name as it is implemented for each on-chip driver.

The command_specific_parameter parameter specifies other
data required to execute the command. Generally speaking, it can
be a pointer to the structure, the NULL value, or a variable-value
in dependency with the specific command. If the required
parameter is a variable value, it is recommended that, if possible,

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

60 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.
On-Chip Drivers
Introduction
a constant value be used because it influences the efficiency of
the resulting code. This efficiency is illustrated by the following
examples.
IOCTL (TIMB, TIM SET CH1 INT,TIM ENABLE) ;
Constant used results in:
BSET 6,89
IOCTL (TIMB, TIM SET CH1 INT,varUs8);
Variable used results in:
BIT #1
BNE L1673 ;abs = 1673
BCLR 6,89
SKIP2 L1675 ;abs = 1675
L1673: BSET 6,89
L1675:

NOTE: Some macros expand justto a single assembly instruction (as illustrated
in the above examples). Some other macros expand to more assembly
instructions, e.g., the different mode setting where it is necessary to
clear the previous setting and then, to set the new mode. This is
illustrated by the following example:

IOCTL (TIMA, TIM SET PRESCALER,TIM BUS CLK DIV 32);
BSET 2,14
BCLR 1,14
BSET 0,14
There can even be longer commands. These commands
incorporate some higher functionality than only a simple access to
the peripheral registers. An example can be commands which
perform the mathematical calculations for data scaling to fit the
results into the desired data range, e.g., recounting of the PWM
duty cycle in percentage of the actual value to be written to the
PWM value register.
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 61

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

* Implementation details

The next example is intended to illustrate the macro expansion
process. The corresponding items are highlighted by the same
color through this macro expansion example.

IOCTL command general syntax:

IOCTL (module ID, ,cmd_spec_param)
Example:
IOCTL (PWM, , OXFF)

Implementation:
Common include file — sys.h

#define IOCTL (id, ,param) IOCTL ##id## ## (param)

On-chip driver include file — pwmdrv.h

#define IOCTL PWM (param) PMOD = param

Generated assembly code:

LDHX #255
STHX 40

5.3 Phase Locked Loop (PLL) Drivers

The phase locked loop (PLL) driver performs both the initial
configuration during startup and LOCTL commands for controlling the
peripheral module.

The initial configuration sets required clock sources and waits for PLL
lock. All required parameters for PLL configuration are expected in the
appconfig.h. The commands for peripheral module control are
performed by macros.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

62 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
Phase Locked Loop (PLL) Drivers

5.3.1 API Definition

Required Files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "plldrv.h"

NOTE: The included files must be kept in order.

5.3.2 Static Initialization

Call(s:)

SByte pllInit(void);

Description:

The pllinit function sets PLL peripheral module. The required
parameters for peripheral module configuration are defined in
appconfig.h (see Table 5-1).

Returns: O

Global Data: None
Arguments: None
Range Issues: None

Special Issues:
All enters parameters are defined in appconfig.h

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 63
For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

Example 10. Configuration items for appconfig.h

/* Modules for Static Configuration */

#define INCLUDE PLL

/****************************************************************************

* PLL Initialization
*****************************************************************************/

/* PLL Control Register 1

#define PLL,_ON BIT

#define PLL_BASE CLOCK

PLL_ON
PLL_CGMVCLK

(PCTL)
/* PLL ON / PLL OFF */
/* PLL_ _CGMXCLK / PLL_ CGMVCLK */

NOTE:

The previous definition determine using PLL clock source as the base of

CPU bus clock. The function pllinit(), where the required setting occurs,
Is called automatically before main, if INCLUDE_PLL is defined in
appconfig.h

Table 5-1. PLL Driver Constant Definitions

Constant Definition parameters® Description Note®
PLL_ON_BIT PLL ON/PLL_OFF PLLON in PCTL =1/0 d
PLL_INTERRUPT PLL DISABLE /PLL_ENABLE PLLIE in PCTL =0/1 d
PLL_BASE_CLOCK PLL CGMXCLK/PLL_CGMVCLK BCS in PCTL =0/1 d

PLL MUL1/PLL MUL2/PLL_MUL3
PLL MUL4 /PLL_MULS5/PLL_MUL6 MUL7,MUL6,MUL5,MUL4 in PPG =
PLL FREQUENCY_MUL PLL MUL7 /PLL_MUL8/PLL_MUL9 1/2/3/4/5/6/7/18/9/ d
PLL MUL10/PLL MUL11/PLL MUL12 10/11/12/13/14/15
PLL MUL13/PLL MUL14/PLL_MUL15
PLL MUL1/PLL MUL2/PLL_MUL3
PLL _MUL4 /PLL_MULS5/PLL_MUL6 VRS7,VRS6,VRS5,VRS4 in PPG =
PLL VCO_FREQUENCY_MUL | PLL MUL7/PLL_MUL8/PLL _MUL9 1/2/3/4/5/6/718/9/ d
PLL MUL10/PLL MUL11/PLL MUL12 10/11/12/13/14/15
PLL MUL13/PLL MUL14/PLL_MUL15
PLL_MANUAL / . ~
PLL_BANDWIDTH PLL_AUTOMATIC AUTO in PBWC =0/1 d
PLL_MODE PLL_ACQUISITION / PLL_TRACKING ACQ in PBWC =0/1 d

1. First item in the parameters column is the default.

2. Configuration in appconfig.h:

d — parameter with defined default reset state
u — parameter with undefined default reset state
0 — parameter with write-once register

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

64

On-Chip Drivers

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Phase Locked Loop (PLL) Drivers

5.3.3 API Specification

NOTE:

Function arguments for each routine are described as in, out, or inout:

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)

void IOCTL
UByte IOCTL
UWordleée IOCTL
void IOCTL
UByte IOCTL
UWordleée IOCTL

module, command, parameters)
module, command, parameters)
module, command, parameters)
module, command, *parameters
module, command, *parameters
module, command, *parameters

Py

)
)i
)i

Description:

A MACRO for operation with a PLL peripheral register is called
according to the command and value parameters.

Example:

The following command sets bit PLLIE (PLL interrupt enable) in the
register PCTL to 1.

IOCTL (PLL, PLL SET INT, PLL ENABLE);

Arguments:
module (in) — specifies module, in this case, the module is PLL

command (in) — specifies target which has to be addressed

parameters (in, inout, out) — data passed to the IOCTL macro
function

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 65

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

All commands and appropriate parameters are arranged in Table 5-2.
The table uses the following conventions:

* Items separators:
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)

* Implementation:
f — function
M — macro

Table 5-2. PLL Driver Macro and Function Commands

Command Parameters(® Description Notes (@
PLL_ GET CONTROL_REG |NULL return PCTL (UByte) M
PLL_WRITE_CONTROL_REG |Ubyte in  |<0..0xFF> PCTL = 0..0xFF M
PLL_SET ON_BIT PLL_ON/PLL_OFF PLLON in PCTL = 1/0 M
PLL_SET BASE_CLOCK PLL_CGMXCLK / PLL_CGMVCLK |BCS in PCTL = 0/1 M
PLL_GET_LOCK_BIT NULL return LOCK of PBWC M

1. First item in the parameters column is the default.
2. f = function
M = macro

5.4 PLL Interrupt Handling

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed
description of interrupt handling.

5.4.1 Debug Strobes

Debug strobes allow the interrupt duration to be observed on the user
specified GPIO port and pin. At the beginning of the interrupt, the strobe
signal is set and when finished it is cleared.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

66 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

5.4.2 Debug Mode

5.4.3 User Callbacks

Freescale Semiconductor, Inc.

On-Chip Drivers
PLL Interrupt Handling

Debug strobe port and pin specification:

#define INT PLL STROBE PORT PORT
#define INT PLL STROBE PIN Pin Number

Example of setting the debug strobe signal on port A pin 4:

#define INT PLI,_ STROBE PORT A
#define INT PLI,_STROBE PIN 4

The debug mode helps the user to find the unhandled interrupts. If the
INTERRUPT_DEBUG_MODE is defined in appconfig.h and an
unhandled interrupt occurs, the program will run an endless loop.

#define INT DEBUG MODE TRUE

Users can define two different types of callbacks for execution in his own
interrupt code.

1. This definition in the appconfig.h file installs the user callback
function function_name_1 before the SDK routine and SDK
reload flag service.

#define INT PLL RELOAD CALLBACK 1 function name 1

2. This definition in appconfig.h file installs the user callback
function function_name_2 after the SDK routine and SDK reload
flag service.

#define INT PLL RELOAD CALLBACK 2 function name 2

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 67

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

5.5 Pulse-Width Modulator (PWM) Driver

The PWM driver performs the statical configuration of the PWM module
and IOCTL commands for controlling the peripheral module.

The statical initialization sets the PWM peripheral module according to
user settings in the appconfig.h file which overwrites the default
configuration of the registers. Initialization consists of three parts:

1. Setting of the write-once registers (performed in the premain

function).

2. Setting of the registers with default value defined after reset
(function pwmlinit sets the PWM peripheral module according to
the appconfig.h file if the set value differs from the default reset

state)

3. Setting of registers which have not defined any value after reset
(function pwminit set the PWM peripheral module according to the
appconfig.h file)

Commands for peripheral module control are performed by:

1. Functions (suitable for longer and often used code)

2. Macros (suitable for short code)

5.5.1 API Definition

This section defines the application programming interface (API).

Public Data Structure(s):

typedef struct

{

SWordlé PhaseAd; /*Current in phase A*/
SWordlé PhaseB; /*Current in phase B*/
SWordlé PhaseC; /*Current in phase C*/

} mc s3PhaseSystem;

Required Files:

#include
#include
#include
#include
#include
#include

"types.h"

n SYS . hll
"arch.h"
"appconfig.h"
"config.h"
"pwmdrv.h"

NOTE: The included files must be kept in order.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

68

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Pulse-Width Modulator (PWM) Driver

5.5.2 Static Initialization

Call(s:)

void pwmInit (void) ;

Description:

The pwmlinit function sets PWM peripheral module. The required
parameters for peripheral module configuration are defined in
appconfig.h (see Table 5-3).

Returns: O

Global Data: None
Arguments: None
Range Issues: None

Special Issues: All enters parameters are defined in appconfig.h

Example:
These definitions have to be in appconfig.h

/* Modules for Static Configuration */
#define INCLUDE PWM

/**************;*************************************************************

* PWM Initialization
*****************************************************************************/
/* PWM Control Register 1 (PCTL1) */

#define PWM DISABLE BANK X  PWM_NO /* PWM NO/PWM YES */

#define PWM DISABLE BANK Y  PWM_NO /* PWM _NO/PWM_YES */

#define PWM RELOAD INT PWM ENABLE /* PWM DISABLE /PWM_ENABLE *x/

NOTE: The previous definition determines the setting of bits DISX and DISY in
PCTL1 to 0 and PWMEN to 1. The function pwminit(), where the
required setting occurs, is called automatically before main if
INCLUDE_PWM is defined in appconfig.h.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 69

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-3. PWM Driver Constant Definitions (Sheet 1 of 2)

PVALIL = 0..0xFFFF

Constant Definition Parameters® Description Notes@
PWM_DISABLE_BANK_ X PWM_NO/PWM_YES DISX in PCTL1 =0/1 d
PWM_DISABLE_BANK_Y PWM_NO/PWM_YES DISY in PCTL1 =0/1 d
PWM_RELOAD_INT PWM_DISABLE /PWM _ENABLE PWMINT in PCTL1 = 0/1 d

PWM_CORRECTION_NO /
pun cunsenr comsecnon [ COmECTON SorTwne! e |
PWM_CORRECTION_DURING_CYCLE
PWM_LOAD_OK PWM_NO/PWM_YES LDOK in PCTL1 =0/1 d®
PWM_MODULE PWM_DISABLE /PWM _ENABLE PWMEN in PCTL1 =0/1 d
PWM_EVERY 1 CYCLE /
PWM_RELOAD_FREQUENCY | ol e = CrLe " POTL2 = o1v213 d®
PWM_EVERY_8 CYCLE /
punSorARe connecrion | "M s s | o porois |
PWM_PRESCALER PWM_FOP D3/ PWMFOP D4 | In POTLE = 0/L/23 a®
PWM_FAULT4_INT PWM_DISABLE / PWM_ENABLE FINT4 in FCR d
PWM_FAULT4_MODE PWM_MANUAL / PWM_AUTOMATIC FMODE4 in FCR d
PWM_FAULT3_INT PWM_DISABLE / PWM_ENABLE FINT3 in FCR d
PWM_FAULT3_MODE PWM_MANUAL / PWM_AUTOMATIC FMODE3 in FCR d
PWM_FAULT2_INT PWM_DISABLE / PWM_ENABLE FINT2 in FCR d
PWM_FAULT2_MODE PWM_MANUAL / PWM_AUTOMATIC FMODEZ2 in FCR d
PWM_FAULT1_INT PWM_DISABLE / PWM_ENABLE FINT1 in FCR d
PWM_FAULT1_MODE PWM_MANUAL / PWM_AUTOMATIC FMODEL in FCR d
PWM_NONE / PWM_OUTL1 | PWM_OUT?2 | OUT1, OUT2, OUT3, OUT4,
PWM_OUTPUT_CONTROL PWM_OUT3 | PWM_OUT4 | PWM_OUTS5 | OUT5, OUT6 in PWMOUT d
PWM_OUT6 = 0/1/2]4/8]10]20
PV(;/E/I_MANUAL_OUTPUT_CONTR PWM_DISABLE / PWM_ENABLE OUTCTL in PWMOUT = 0/1 d
PWM_MODULO <0..0XOFFF> B';,,SI'('DBD'E ilo'.r.'OZEAFOFDFH’ u®
PWM_VALUE_1 <0..0xFFFF> Bit 0.. Bit 15 in PVAL1H, d

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

70

On-Chip Drivers

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com




[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Pulse-Width Modulator (PWM) Driver

Table 5-3. PWM Driver Constant Definitions (Sheet 2 of 2)

Constant Definition Parameters® Description Notes@
Bit 0.. Bit 15
PWM_VALUE_2 <0..0xFFFF> in PVAL2H, PVAL2L d
= 0..0xFFFF
Bit 0.. Bit 15 in PVAL3H,
PWM_VALUE_3 <0..0xFFFF> CVALAL = 0. OXEEFE d
Bit 0.. Bit 15 in PVAL4H,
PWM_VALUE_4 <0..0xFFFF> CVALAL = 0. OXEEFE d
Bit 0.. Bit 15 in PVAL5H,
PWM_VALUE_5 <0..0xFFFF> VALEL = 0. OXEEER d
Bit 0.. Bit 15 in PVAL6H,
PWM_VALUE_6 <0..0xFFFF> VALEL = 0. OXEEFE d
PWM_ALIGN (2) PWM_CENTER / PWN_EDGE EDGE in CONFIG =0/1 o®
PWM_BOTTOM_POLARITY (2) PWM_POSITIVE / PWM_NEGATIVE BODNEG in CONFIG =0/1 o®
PWM_TOP_POLARITY (2) PWM_POSITIVE / PWM_NEGATIVE TOPNEG in CONFIG =0/1 o®
PWM_COMPLEMENTARY / .
_ = (%)
PWM_MODE (2) PWM_INDEPENDENT INDEP in CONFIG = 0/1 0
Bit 0..Bit 7 in DEADTM
(%)
PWM_DEAD_TIME <0..0xFF> - 0.0xFF o
PWM_DPIN1_X | PWM_DPIN2_X Bit 0Bt 7
PWM_DISABLE_MAP PWM_DPIN2_Y | PWM_DPIN3_X| in DISMAP = OxFF/ o®

PWM_DPIN4_Y | PWM_DPIN5_X |
PWM_DPIN5_Y | PWM_DPIN6_Y

80/40[2010]8]4|2|1

1. First item in the parameters column is the default.

2. Configuration in appconfig.h:

d — parameter with defined default reset state
u — parameter with undefined default reset state
0 — parameter with write-once register

3. PCTL1 is set at the end of the pwmlnit() function and confirms the setting by the Load OK Bit (LDOK)

I

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

. The action takes effect when PWM_LOAD_OK is used to confirm the setting
5. See 5.15.2 Configuration Items.

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,

Go to: www.freescale.com

71




vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

5.5.3 API Specification

NOTE:

User’'s Guide

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)
void IOCTL (module, command, parameters) ;
UByte IOCTL (module, command, parameters) ;
UWordlé IOCTL (module, command, parameters) ;
void IOCTL (module, command, *parameters) ;
UByte IOCTL (module, command, *parameters) ;
UWordlé IOCTL (module, command, *parameters) ;

Description:

A MACRO for operation with a PWM peripheral register is called
according to the command and value parameters.

Example:

IOCTL (PWM, PWM_BANK X, PWM_YES); /* Sets DISX in PCTLl to 1 */

Arguments:
module in specifies module, in this case the module
is PWM
command in specifies target which has to be
addressed

parameters in, inout, out data passed to the IOCTL macro function

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

72

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.
On-Chip Drivers
Pulse-Width Modulator (PWM) Driver
All commands and appropriate parameters are shown in Table 5-4. The
table uses the following conventions:
* Items separators
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)
* Implementation:
f — function
M — Macro
Bold — Buffered
Table 5-4. PWM Driver Macros and Functions Commands (Sheet 1 of 4)
Command® Parameters® Description Notes(®
PWM INIT NULL Static configuration according f
- appconfig return O
PWM_GET_CONTROL_REG_1 NULL return PCTL1 (UByte) M
PWM_WRITE_CONTROL_REG_1 Ubyte ‘in ‘<0..OXFF> PCTL1=0..0xFF M
PWM_SET_DISABLE_BANK_X PWM_NO / PWM_YES DISX in PCTL1=0/1 M
PWM_SET_DISABLE_BANK_Y PWM_NO / PWM_YES DISY in PCTL1=0/1 M
PWM_SET_RELOAD_INT PWM_DISABLE / PWM_ENABLE PWMINT in PCTL1=0/1 M
PWM_CLEAR_RELOAD_FLAG NULL PWMF in PCTL1=0 M
PWM_SET_LOAD_OK NULL LDOK in PCTL1=1 M
PWM_SET_MODULE PWM_DISABLE / PWM_ENABLE PWMEN in PCTL1=0/1 M
PWM_GET_DISABLE_BANK_X NULL return DISX of PCTL1 M
PWM_GET_DISABLE_BANK_Y NULL return DISY of PCTL1 M
PWM_GET_RELOAD_INT NULL return PWMINT of PCTL1 M
PWM_GET_RELOAD_FLAG NULL return PWMF of PCTL1 M
PWM_GET_MODULE NULL return PWMEN of PCTL1 M
PWM_CORRECTION_NO /
PWM_CORRECTION_SOFTWARE / ISENSO, ISENS1
PWM_SET_CURRENT_CORRECTION PWM_CORRECTION_DURING_DEADTIME /| in PCTL1=0/1/2/3 M
PWM_CORRECTION_DURING_CYCLE
PWM_GET_CURRENT_CORRECTION  |NULL return ISENSO, ISENS1
of PCTL1
PWM_GET_CONTROL_REG_2 NULL return PCTL2 (UByte) M
PWM_WRITE_CONTROL_REG_2 Ubyte ‘in ‘<0..OXFF> PCTL2 = 0..0xFF M
PWM_EVERY_1_CYCLE /
PWM_EVERY_2 CYCLE/ LDFQO, LDFQL1in @),6)
PWM_SET_RELOAD_FREQUENCY PWM_EVERY_4_CYCLE / PCTL2 = 0/1/2/3 M
PWM_EVERY_8_CYCLE
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 73

For More Information On This Product,
Go to: www.freescale.com




Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-4. PWM Driver Macros and Functions Commands (Sheet 2 of 4)

Command® Parameters(® Description Notes®
PWM_SET _SOFTWARE_CORRECTION PVIQIVACK/IV_A\\/I;\_L]-_ lzﬁvgyvﬁ\f/lﬁs’_ﬁvgxﬁv_@;f_g :fCOT'-le’ I=Poo||6|26|2|320|1|—3 in M@.6)
PWH_SET_PRESCALER PWNFOR_DV_S | PWM_FOP DA | POTL - 01728 Mo
PWM_GET_RELOAD_FREQUENCY NULL rngg'T::ZD FQO, LDFQ1 of M
PWM_GET_SOFTWARE_CORRECTION  |NULL return IPOL1, IPOL2, IPOL3 M
PR - of PCTL2

PWM_GET_PRESCALER NULL reg;rggﬁ_szco, PRCS1 M
PWM_GET_FAULT_CONTROL_REG NULL return FCR (UByte) M
PWM_WRITE_FAULT CONTROL_REG  |Ubyte in  [<o.oxFF>  [FCR=0.0xFF M
PWM_SET_FAULT4_INT PWM_DISABLE / PWM_ENABLE FINT4 in FCR M
PWM_SET_FAULT4_MODE PWM_MANUAL / PWM_AUTOMATIC FMODE4 in FCR M
PWM_SET_FAULT3_INT PWM_DISABLE / PWM_ENABLE FINT3 in FCR M
PWM_SET_FAULT3_MODE PWM_MANUAL / PWM_AUTOMATIC FMODES in FCR M
PWM_SET_FAULT2_INT PWM_DISABLE / PWM_ENABLE FINT2 in FCR M
PWM_SET_FAULT2_MODE PWM_MANUAL / PWM_AUTOMATIC FMODE2 in FCR M
PWM_SET_FAULT1_INT PWM_DISABLE / PWM_ENABLE FINTL in FCR M
PWM_SET_FAULT1_MODE PWM_MANUAL / PWM_AUTOMATIC FMODEL in FCR M
PWM_GET_FAULT4_INT NULL return FINT4 of FCR M
PWM_GET_FAULT4_MODE NULL return FMODE4 of FCR M
PWM_GET_FAULT3_INT NULL return FINT3 of FCR M
PWM_GET_FAULT3_MODE NULL return FMODE3 of FCR M
PWM_GET_FAULT2_INT NULL return FINT2 of FCR M
PWM_GET_FAULT2_MODE NULL return FMODE2 of FCR M
PWM_GET_FAULTL_INT NULL return FINTL of FCR M
PWM_GET_FAULT1_MODE NULL return FMODEL of FCR M
PWM_GET_FAULT_STATUS_REG NULL return FSR (UByte) M
PWM_GET_FAULT_PIN gwm;gm;gwm]’zgmil return FPINX in FSR M
PWM_GET_FAULT_FLAG gwmiigm;gwmiigmi’ return FFLAGx in FSR M
PWM_GET_CURRENT_SENSING NULL return FTACK (UByte) M
PWM_WRITE_FAULT ACKNOWLEDGE |Ubyte in  [<o.oxFF>  [FTACK = 1j4]16]64 M

FTACK1 FTACKL in FTACK = 1
PWM_SET_FAULT ACKNOWLEDGE gﬁgﬁ gﬁgﬁ :: gﬁgE : i M

FTACK4 FTACK4 in FTACK = 1

NONE / OUT1, OUT2, OUT3, OUT4,
PWM_SET_OUTPUT_CONTROL PWM_OUTL | PWM_OUT2 | PWM_OUT3 | OUTS, OUT6 in PWMOUT | M®

PWM_OUT4 | PWM_OUT5 | PWM_OUT6 | = 0/1[2|4|8]10]20

PWM_SET_MANUAL_OUTPUT_CONTROL |[PWM_DISABLE/PWM_ENABLE OUTCTL in PWMOUT = 0/1 M

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

74 On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Pulse-Width Modulator (PWM) Driver

Table 5-4. PWM Driver Macros and Functions Commands (Sheet 3 of 4)

Command®

Parameters(®

Description

Notes®

PWM_GET_COUNTER

NULL

return UWord16
<0..0xOFFFH>

Bit 0.. Bit 11 in PMODH,
PMODL

£6)

PWM_GET_MODULO

NONE

return UWord16
<0..0xOFFFH>

Bit 0.. Bit 11 in
PMODH,PMODL

PWM_WRITE_MODULO

UWord16 in

Bit 0.. Bit 11 in PMODH,

<0-0XOFFF> 1 5\ i0DL = 0..0xFFFF

M)

PWM_UPDATE_MODULO

UWord16 in

Bit 0.. Bit 11 in PMODH,
PMODL = 0..0xFFFF
PCTL1_LDOK =1

<0..0xOFFF>

PWM_GET_VALUE_n
where n = <1..6>
example: PWM_GET_VALUE_1

UWord16 in

return UWord16
<0..0xOFFFH>

Bit 0.. Bit 11 in PVALNH,
PVALNL

in the example:

return Bit 0.. Bit 15 in
PVAL1H, PVAL1L

<0..0xOFFF>

M@

PWM_WRITE_VALUE_n
where n = <1..6>
example: PWM_WRITE_VALUE_1

UWord16 in

Bit 0.. Bit 15in

PVALNH, PVALNL =
0..0xFFFF

in the example:

Bit 0.. Bit 15in

PVAL1H, PVAL1L =
0..0xFFFF

<0..0xOFFF>

M)

PWM_UPDATE_VALUE_n
where n = <1..6>
example: PWM_UPDATE_VALUE_1

UWord16 in

Bit 0.. Bit 15in

PVALNH, PVALNL =
0..0xFFFF

CTL1_LDOK =1

in the example:

Bit 0.. Bit 15in

PVAL1H, PVALI1L =
0..0xFFFF

CTL1_LDOK =1

<0..0xOFFF>

PWM_UPDATE_VALUE_REGS_COMPL

&mc_s3PhaseSystem n

Bit 0..15 in PVAL1,3,5
PVAL1L,H = (*Value).PhaseA
PVALS3L,H = (*Value).PhaseB
PVALS5L ,H = (*Value).PhaseC
PCTL1_LDOK=1

3xUWord16

PWM_UPDATE_VALUE_CONSTANT

const in

Bit 0..15 in PVAL1,3,5
PVAL1L,H = Value
PVAL3L,H = Value
PVALS5L,H = Value
PCTL1_LDOK =1

<0..0xOFFF>

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

75




\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-4. PWM Driver Macros and Functions Commands (Sheet 4 of 4)

Command® Parameters(® Description Notes®

Bit 0..15 in PVAL1,3,5
PVAL1L,H=
(*Value).PhaseA*scale
PVAL3L,H = M) ©)
(*Value).PhaseB*scale (7,8)
PVALSL,H =
(*Value).PhaseC*scale
PCTL1_LDOK =1

PWM_UPDATE_SCALED_VALUE_REGS |&mc_s3PhaseSystem n 3xUWord16

if PWM_ENABLE = _NO
PWM_CHARGE_BOOT_STRAP UByte in <0..0xFF> switch on PWM2,4,6 for n = f Oe)
value PWM Reload cycles

1. PACTL1 is set at the end of the pwmlnit() function and confirms the setting by the Load OK Bit (LDOK)
. First item in the parameters column is the default.
. f = function
M = macro
. The action takes effect when PWM_LOAD_OK is used to confirm the setting
. User have to make sure that no interrupt, where is same register affected, can occur during this command
. User have to make sure that no interrupt, where is same register read, can occur during this command
. IOCTL(PWM, PWM_UPDATE_SCALED_VALUE_REGS, mc_s3PhaseSystem *pHandle)
Description:
Update value reg with scaling according to constant PWM_MODULO defined in appconfig.h

if PWM_MODULO is in {0x0100, 0xFF} use H bytes of inputs

if PWM_MODULO < OxFF call PwmUpdateScaledValue_8

if PWM_MODULO > 0x100 call PwmUpdateScaledValue
8. Use constant PWM_MODULO defined in the appconfig.h
9. Detailed explanation is in 5.5.4 Functional Description

w N

~N o 0 A~

Table 5-5. Memory Consumption an Execution Time

. . Cycles | Cycles | Cycles
Command Function Name Size . Notes
(Min) | (Typ) | (Max)
PWM_READ_COUNTER periphMemRead16 9 23 23 23 @)
* *| *
PWM_CHARGE_BOOT_STRAP PwmChargeBootStrap 41 | MPWM I ntPWM I n*PWM |- 5) )
Rel. Rel. Rel.
PWM_UPDATE_SCALED_VALUE_REGS_16 PwmUpdateScaledValue 70 216 216 216 —
PWM_UPDATE_SCALED_VALUE_REGS_8 PwmUpdateScaledValue_8 45 TBD TBD TBD TBD
1. The function periphMemRead16 is from periph.c library file
2. n = third parameter of IOCTL command
3. PWM Rel. = period of PWM reload
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
76 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Pulse-Width Modulator (PWM) Driver

5.5.4 Functional Description

5.5.4.1 PwmChargeBootStrap
Call(s:)

void PwmChargeBootStrap (UByte reloadNumb)

Description:
In this case the PWM_OUT2, PWM_0OUT4 and PWM_OUT®6 are set
and kept active for ‘ReloadNumb’ period of PWM reload cycles and
allows the precharging of the bootstrap capacitors. During that period
PWM reload interrupt is disabled (PWMINT = 0). After the function is
finished the PWMINT is restored.

Range Issues: None

Special Issues:
The function is performed only when the PWMEN in PCTL1 =1

The function is used in following IOCTL command

IOCTL (PWM, PWM CHARGE BOOT STRAP, reloadNumb) ;

Example 11. PwmChargeBootStrap Usage

#define RELOAD NUMB 10
Before execution PWMEN in PCTL1 = O
IOCTL (PWM, PWM CHARGE BOOT STRAP, RELOAD_NUMB);

During execution:
PWM_ENABLE in PCTL1 = 1 (_YES)
PWMINT in PCTL1 = 0 (Disabled)

PWMOUT = OUT2 |OUT4 |OUT6 | OUTCTL

After execution:
PWM_ENABLE in PCTL1l = 1
PWMOUT = OUT2 |OUT4 |OUT6

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 77
For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.5.4.2 PwmUpdateScaledValue

void PwmUpdateScaledValue (mc_s3PhaseSystem * pHandle, UByte pwnModulo)

Description:

The function scale UWord16 value from mc_s3PhaseSystem variable
to the PWM_MODULO range, place results to PWM value registers
and confirm new values by setting the LDOK bit.

Represents: input * PWM_MODULO/2562

Real Calculation:
PVALL1,3,5 = (pHandle -> PhaseA,B,C * high of PWM_MODULO)/256

Range Issues: None

Special Issues:
The function is used in IOCTL command:

IOCIL (PWM, PWM UPDATE SCALED VALUE REGS, mc_s3PhaseSystem * pHandle) ;

The function is used only when PVYM_MODULO > 0x100.

Example 12. PwmUpdateScaledValue Usage

in appconfig.h

#define PWM MODULO 0x300

in main.c

mc_s3PhaseSystem motorVoltage;

motorVoltage.PhaseA = 3000;
motorVoltage.PhaseA = 30000;
motorVoltage.PhaseA = 200;

IOCTL (PWM, PWM UPDATE SCALED VALUE REGS, &motorVoltage)

results:
PVAL1l: 35
PVAL3: 351
PVALS: 2
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
78 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Pulse-Width Modulator (PWM) Driver

5.5.4.3 PwmUpdateScaledValue 8

void PwmUpdateScaledValue (mc_s3PhaseSystem * pHandle, UByte pwnModulo)

Description:

The function scales UWord16 value from mc_s3PhaseSystem
variable to the PWM_MODULO range, place results to PWM value
registers and confirm new values by setting the LDOK bit.

Represents: input * PWM_MODULO/2562

Real Calculation: PVALL1,3,5 = (low of (pHandle -> PhaseA,B,C) * low
of PWM_MODULO)/256

Range Issues: None

Special Issues:
The function is used in IOCTL command:

TOCTL (PWM, PWM UPDATE SCALED VALUE REGS, mc s3PhaseSystem * pHandle);

The function is used only when PVM_MODULO < OxFF.

Example 13. PwmUpdateScaledValue 8 Usage

In appconfig.h:

#define PWM MODULO 0x95

In main.c:

mc_s3PhaseSystem motorVoltage;

motorVoltage.PhaseA = 3000;
motorVoltage.PhaseA = 30000;
motorVoltage.PhaseA = 200;

IOCTL (PWM, PWM UPDATE SCALED VALUE REGS, &motorVoltage)

results:
PVALl: 6
PVAL3: 68
PVALS: 0
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 79

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.6 PWM Interrupt Handling

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed
description of interrupt handling.

5.6.1 Debug Strobes

Debug strobes allows the observing of the interrupt duration on the user
specified GPIO port and pin. At the beginning of the interrupt the strobe
signal is set and when finished it is cleared.

Debug Strobe Port and Pin Specification:

#define INT PWM RELOAD STROBE PORT PORT
#define INT PWM_RELOAD STROBE PIN Pin Number

Example: Setting the debug strobe signal on port A pin 4:

#define INT PWM RELOAD STROBE_PORT A
#define INT PWM_RELOAD STROBE PIN

IS

5.6.2 Debug Mode

The debug mode helps the user to find the unhandled interrupts. If the
INTERRUPT_DEBUG_MODE is defined in appconfig.h and any
unhandled interrupt occurs, the program will run an endless loop.

#define INT DEBUG MODE TRUE

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

80 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
PWM Interrupt Handling

5.6.3 User Callbacks

Users can define two different types of callback for executing in his own
interrupt code.

1. This definition in appconfig.h file installs the user callback
function function_name_1 before the SDK routine and SDK
reload flag service.

#define INT PWM RELOAD CALLBACK 1 function name 1

2. This definition in appconfig.h file installs the user callback
function function_name_2 after the SDK routine and SDK reload
flag service.

#define INT PWM RELOAD CALLBACK 2 function name 2

5.6.4 PWM Reload Flag

SDK automatically takes care of the PWM reload flag clearing it between
pre- and post-SDK user callbacks.

IfINT_PWM_RELOAD_FLAG_CARE_USER isdefinedin appconfig.h,
SDK allows the user to take care of the interrupt flag clearing.

#define INT PWM RELOAD FLAG CARE USER

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 81

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.7 Timer Drivers

The timer driver performs both the statical configuration of the timer
module and LOCTL commands for controlling the peripheral module.

The statical initialization sets the timer peripheral module according to
the user setting in the appconfig.h file which overwrites the default
configuration of the registers. Commands for peripheral module control
are performed by both functions and macros.

5.7.1 API Definition

Required Files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "timerdrv.h"

NOTE: Included files must be kept in order.

5.7.2 Static Initialization

Call(s:)

SByte timalInit (void) ;
SByte timbInit (void) ;

Description:

The timalnit and timblnit functions set the timer peripheral module.
The required parameters for peripheral module configuration are
defined in appconfig.h (see Table 5-6).

Returns: O

Global Data: None
Arguments: None
Range Issues: None

Special Issues: All enter parameters are defined in appconfig.h

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

82 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Timer Drivers

Example 14. Static Initialization of Timer Driver

Next definition have to be in appconfig.h

/* Modules for Static Configuration */
#define INCLUDE TIMA

/**************;*************************************************************

* Timer Initialization
*****************************************************************************/
/* TIMA Status and Control Register (TASC)

#define TIMA OVERFLOW INT TIM ENABLE /* TIM DISABLE / TIM ENABLE */

#define TIMA STOP BIT TIM COUNT /* TIM STOP / TIM COUNT */

NOTE: The previous definition determine setting of bit TOIE in TASC to 1 and
TSTOP to 0. The function timalnit(), where the required setting occur, is
called automatically before main, if INCLUDE_TIMA is defined in
appconfig.h

Table 5-6. Timer Driver Constants Definition (Sheet 1 of 3)

Constant Definition pParameters® Description Notes@
TIMA_OVERFLOW_INT TIM_DISABLE / TIM_ENABLE TOIE in TASC=0/1 d
TIMA_STOP_BIT TIM_STOP /TIM_COUNT TSTOP in TASC=1/0 d
TIMA_RESET_COUNTER NULL TRST in TASC =0/1 d

TIM_BUS_CLK_DIV_1/ d

TIM_BUS_CLK_DIV_2/

TIM_BUS_CLK_DIV_4/
TIM_BUS_CLK_DIV_8/
TIM_BUS_CLK_DIV_16/
TIM_BUS_CLK_DIV_32/
TIM_BUS_CLK_DIV_64/

TIM_PTE3_TCLKA

TIMA_PRESCALER PS2,PS1,PS0O in TASC = 1/0

TIMA_MODULO 0x0000..0xFFFF TAMOD = 0x0000..0xFFFF d
TIMA_CHO_INT TIM_DISABLE / TIM_ENABLE CHOIE in TASCO = 0/1 d
TIM_OUTPUT_PRESET_H d

TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE
TIM_INPUT_CAPTURE_F_EDGE
TIM_INPUT_CAPTURE_FR_EDGE
TIMA_CHO_MODE TIM_TOGGLE_ON_COMP
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIM_TOGGLE_ON_COMP_BUFF
TIM_CLEAR_ON_COMP_BUFF
TIM_SET_ON_COMP_BUFF

MSOA,ELSOB,ELSOA in TASCO
=0000/0100/0001/0010/
0011 /0101/0110/ 0111/
1101/1110/ 1111/

TIMA_CHO_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOVO in TASCO = 0/1 d
TIMA_CHO_MAXIMUM_DUTY_CYCLE |TIM_NO/TIM_YES CHOMAX in TASCO = 0/1 d
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 83

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-6. Timer Driver Constants Definition (Sheet 2 of 3)

Constant Definition pParameters® Description Notes@
TIMA_CH1_INT TIM_DISABLE / TIM_ENABLE CHL1IE in TASC1 = 0/1 d
TIM_OUTPUT_PRESET_H d
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE MS1A,ELS1B,ELS1A in TASC1
TIM_INPUT_CAPTURE_F_EDGE = 0000/ 0100/ 0001 /0010/
TIMA_CH1_MODE TIM_INPUT_CAPTURE_FR_EDGE 0011/0101/0110/0111/
TIM_TOGGLE_ON_COMP 1101/ 1110/1111/
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIMA _CH1 TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV1in TASC1=0/1 d
TIMA_CH1_MAXIMUM_DUTY_CYCLE TIM_NO/TIM_YES CH1MAX in TASC1 =0/1 d
TIMA_CH2_INT TIM_DISABLE / TIM_ENABLE CH2IE in TASC2 = 0/1 d
TIM_OUTPUT_PRESET_H d
TIM_OUTPUT_PRESET_L
TIM_INPUT_CAPTURE_R_EDGE
TIM_INPUT_CAPTURE_F_EDGE MS2A,ELS2B,ELS2A in TASC2
TIM_INPUT_CAPTURE_FR_EDGE — 0000/ 0100 / 0001 / 0010 /
TIMA CH2 MODE TIM_TOGGLE_ON_COMP -
- - - — = 0011/0101/0110/0111/
TIM_CLEAR_ON_COMP 1101 /1110 / 1111 /
TIM_SET_ON_COMP
TIM_TOGGLE_ON_COMP_BUFF
TIM_CLEAR_ON_COMP_BUFF
TIM_SET_ON_COMP_BUFF
TIMA _CH2 TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV2in TASC2 =0/1 d
TIMA_CH2_MAXIMUM_DUTY_CYCLE TIM_NO/TIM_YES CH2MAX in TASC2 = 0/1 d
TIMA_CH3_INT TIM_DISABLE / TIM_ENABLE CHS3IE in TASC3 =0/1 d
TIM_OUTPUT_PRESET_H d
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE MS3A,ELS3B,ELS3A in TASC3
TIM_INPUT_CAPTURE_F_EDGE = 0000/ 0100/0001/0010/
TIMA_CH3_MODE TIM_INPUT_CAPTURE_FR_EDGE 0011/0101/0110/0111/
TIM_TOGGLE_ON_COMP 1101/ 1110/1111/
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIMA _CH3 TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV3in TASC3 =0/1 d
TIMA_CH3_MAXIMUM_DUTY_CYCLE TIM_NO/TIM_YES CH3MAX in TASC3 =0/1 d
TIMB_OVERFLOW_INT TIM_DISABLE / TIM_ENABLE TOIE in TBSC= 0/1 d
TIMB_STOP_BIT TIM_STOP / TIM_COUNT TSTOP in TBSC=1/0 d
TIMB_RESET_COUNTER NULL TRST in TBSC =0/1 d

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

84

On-Chip Drivers

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com




O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Timer Drivers

Table 5-6. Timer Driver Constants Definition (Sheet 3 of 3)

Constant Definition pParameters® Description Notes@
TIM_BUS_CLK_DIV_1/ d
TIM_BUS_CLK_DIV_2/
TIM_BUS_CLK_DIV_4/
TIM_BUS_CLK_DIV_8/ ) _
TIMB_PRESCALER TIM_BUS_CLK_DIV_16/ PS2,PS1,PS0in TBSC =1/0
TIM_BUS_CLK_DIV_32/
TIM_BUS_CLK_DIV_64/
TIM_PTE3_TCLKB
TIMB_MODULO 0x0000..0xFFFF TBMOD = 0x0000..0xFFFF d
TIMB_CHO_INT TIM_DISABLE / TIM_ENABLE CHOIE in TBSCO = 0/1 d
TIM_OUTPUT_PRESET_H d
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE
TIM_INPUT_CAPTURE_F_EDGE |\, A 1 S0B,ELSOA in TBSCO
TIM_INPUT_CAPTURE_FR_EDGE |~ o= o 0010
TIMB_CHO MODE TIM_TOGGLE_ON_COMP -
- - - — = 0011 /0101/0110/0111/
TIM_CLEAR_ON_COMP 1101 /1110 / 1111 /
TIM_SET_ON_COMP
TIM_TOGGLE_ON_COMP_BUFF
TIM_CLEAR_ON_COMP_BUFF
TIM_SET_ON_COMP_BUFF
TIMB_CHO_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOVO in TBSCO = 0/1 d
TIMB_CHO_MAXIMUM_DUTY_CYCLE TIM_NO/TIM_YES CHOMAX in TBSCO = 0/1 d
TIMB_CHZ1_INT TIM_DISABLE / TIM_ENABLE CH1IE in TBSC1 =0/1 d
TIM_OUTPUT_PRESET_H d
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE MS1A,ELS1B,ELS1AIn TBSC1
TIM_INPUT_CAPTURE_F_EDGE = 0000/ 0100/0001/0010/
TIMB_CH1_MODE TIM_INPUT_CAPTURE_FR_EDGE 0011 /0101/0110/0111/
TIM_TOGGLE_ON_COMP 1101/ 1110/1111/
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIMB_CH1 TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV1in TBSC1=0/1 d
TIMB_CH1_MAXIMUM_DUTY_CYCLE TIM_NO/TIM_YES CH1IMAX in TBSC1 =0/1 d

1. First item in the parameters column is the default.
2. Configuration in appconfig.h:
d — parameter with defined default reset state
u — parameter with undefined default reset state
0 — parameter with write-once register

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

85



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

5.7.3 API Specification

User’'s Guide

NOTE:

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)
void IOCTL (module, command, parameters) ;
UByte IOCTL (module, command, parameters) ;
UWordlé IOCTL (module, command, parameters);
void IOCTL (module, command, *parameters) ;
UByte IOCTL (module, command, *parameters) ;
UWordlé IOCTL (module, command, *parameters) ;

Description:

A MACRO for operation with a timer peripheral register is called
according to the command and value parameters.

Example:

The following command sets bit TIOE(Timer Overflow Interrupt
Enable) in the register TASC to 1.
IOCTL (TIMA, TIM SET OVERFLOW INT, TIM ENABLE);

Arguments:
module in specify module, in this case the module
is TIMA or TIMB
command in specify target which have be addressed

parameters in, inout, out data passed to the IOCTL macro function

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

86

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.
On-Chip Drivers
Timer Drivers
All commands and appropriate parameters are shown in Table 5-2. The
table uses these conventions:
* Items separators
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)
e Implementation
f — function
M — Macro
I
Table 5-7. Timer Driver Macros and Functions Commands (Sheet 1 of 4)
. Note
Command Parameters® Description @
TIM_INIT NULL Static conflguratlon according V)
appconfig return 0
TIM_WRITE_CONTROL_REG Ubyte in | <0..0xFF> TASC,TBSC = 0..0xFF M@
TIM_GET_CONTROL_REG NULL return TASC, TBSC(UByte) M@
TIM_CLEAR_OVERFLOW_FLAG NULL TOF in TASC,TBSC =0 M®
TIM_SET_OVERFLOW_INT TIM_DISABLE / TIM_ENABLE TOIE in TASC,TBSC = 0/1 M®
TIM_SET_STOP_BIT TIM_STOP / TIM_COUNT TSTOP in TASC,TBSC = 1/0 M@
TIM_SET_RESET_COUNTER TIM_OFF / TIM_ON TRST in TASC,TBSC = 0/1 M@
TIM_BUS_CLK_DIV_1/
TIM_BUS_CLK_DIV_2/
TIM_BUS_CLK_DIV_4/
TIM_BUS_CLK_DIV_8/ PS0,PS1,PS2in TASC,TBSC = o
TIM_SET_PRESCALER TIM_BUS_CLK_DIV_16/ 0/1/2/3/4/516/7 M@
TIM_BUS_CLK_DIV_32/
TIM_BUS_CLK_DIV_64/
TIM_PTE3_TCLKA
TIM_GET_OVERFLOW_FLAG NULL return TOF of TASC,TBSC M@
TIM_GET_OVERFLOW_INT NULL return TOIE of TASC,TBSC M®
TIM_GET_STOP_BIT NULL return TSTOP of TASC,TBSC M®
TIM_GET_COUNTER NULL return TASC, TBSC(UWord16) M@
TIM_WRITE_MODULO UWord16 in | <0..0xFFFF> TAMOD, TBMOD(UWord16) M@
TIM_GET_MODULO NULL return TAMOD, TBMOD(UWord16) M@
TIM_WRITE_CHO_CONTROL_REG Ubyte in | <0..0xFF> TASCO,TBSCO = 0..0xFF M@
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 87

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-7. Timer Driver Macros and Functions Commands (Sheet 2 of 4)

— Note
Command Parameters® Description ®
TIM_GET_CHO_CONTROL_REG NULL return TASCO,TBSCO(UBYte) M@
TIM_CLEAR_CHO_FLAG NULL CHOF in TASCO,TBSCO = 0 M@
TIM_SET_CHO_INT TIM_DISABLE / TIM_ENABLE CHOIE in TASCO,TBSCO = 0/1 M@
TIM_SET_CHO_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOVO in TASCO,TBSCO = 0/1 M@
TIM_SET_CHO_MAXIMUM_DUTY_CYCLE  |TIM_NO/TIM_YES CHOMAX in TASCO,TBSCO = 0/1 M@
TIM_GET_CHO_FLAG NULL return CHOF of TASCO,TBSCO M@
TIM_GET_CHO_INT NULL return CHOIE of TASCO, TBSCO M@
TIM_OUTPUT_PRESET_H
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE .
TIM_INPUT_CAPTURE_F_EDGE gfggéMrZ%Ac’E"_SOB’ELSOA n
TIM_INPUT_CAPTURE_FR_EDGE [ ot 27
TIM_SET_CHO_MODE TIM_TOGGLE_ON_COMP M@
SRl R - S 0001/0010/0011/
TIM_CLEAR_ON_COMP
— —IN 0101/0110/0111/
TIM_SET_ON_COMP 1001/1010/1011
TIM_TOGGLE_ON_COMP_BUFF
TIM_CLEAR_ON_COMP_BUFF
TIM_SET_ON_COMP_BUFF
TIM_WRITE_CHO_VALUE UWord16  |in |<O0..0XFFFF> return TACHO, TBCHO(UWord16) M@
TIM_GET_CHO_VALUE NULL return TACHO, TBCHO(UWord16) M@
TIM_WRITE_CH1_CONTROL_REG Ubyte in |<0..0xFF> TASC1,TBSC1 = 0..0xFF M@
TIM_GET_CH1_CONTROL_REG NULL return TASC1,TBSC1(UByte) M@
TIM_CLEAR_CH1_FLAG NULL CH1F in TASC1,TBSC1 = 0 M@
TIM_SET_CHZL_INT TIM_DISABLE / TIM_ENABLE CHLIE in TASC1,TBSC1 = 0/1 M@
TIM_SET_CH1_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV1 in TASC1,TBSC1 = 0/1 M@
TIM_SET_CH1_MAXIMUM_DUTY_CYCLE  |TIM_NO/TIM_YES CH1MAX in TASC1,TBSC1 = 0/1 M@
TIM_GET_CH1_FLAG NULL return CH1F of TASC1,TBSC1 M@
TIM_GET_CHL_INT NULL return CH1IE of TASC1,TBSC1 M@
TIM_OUTPUT_PRESET_H
TIM_OUTPUT_PRESET L .
TIM_INPUT_CAPTURE_R_EDGE yfslé’lET"Bsslg’lEl‘SlA n
TIM_INPUT_CAPTURE_F_EDGE ; =
- - - @
TIM_SET_CH1_MODE TIM INPUT GAPTURE FR EogE | 000010100/ M
- — — 0001/0010/0011/
TIM_TOGGLE_ON_COMP 0101/0110/0111/
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIM_WRITE_CH1_VALUE UWord16  |in |<O0..0XFFFF> return TACH1, TBCH1(UWord16) M@

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

88

On-Chip Drivers

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com




O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Timer Drivers

Table 5-7. Timer Driver Macros and Functions Commands (Sheet 3 of 4)

- Note
Command Parameters® Description ®
TIM_GET_CH1_VALUE NULL return TACHL, TBCH1(UWord16) M@
TIM_WRITE_CH2_CONTROL_REG Ubyte in |<0..0xFF> TASC2 = 0..0xFF M@
TIM_GET_CH2_CONTROL_REG NULL return TASC2(UByte) ViE)
TIM_CLEAR_CH2_FLAG NULL CH2F in TASC2 = 0 M@
TIM_SET_CH2_INT TIM_DISABLE / TIM_ENABLE CHLIE in TASC2 = 0/1 YE)
TIM_SET_CH2_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV2 in TASC2 = 0/1 ViE)
TIM_SET_CH2_MAXIMUM_DUTY_CYCLE  |TIM_NO/TIM_YES CH2MAX in TASC2 = 0/1 VIE)
TIM_GET_CH2_FLAG NULL return CH2F of TASC2 ViE)
TIM_GET_CH2_INT NULL return CH2IE of TASC2 M@
TIM_OUTPUT_PRESET H
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE .
TIM_INPUT_CAPTURE_F_EDGE yfszgé“{SZA’ELSZB’ELSZA n
TIM_INPUT_CAPTURE_FR_EDGE | oo
TIM_SET_CH2_MODE TIM_TOGGLE_ON_COMP YE)
0001/0010/0011/
TIM_CLEAR_ON_COMP
- —IN~ 0101/0110/0111/
TIM_SET_ON_COMP 1001/1010/1011
TIM_TOGGLE_ON_COMP_BUFF
TIM_CLEAR_ON_COMP_BUFF
TIM_SET_ON_COMP_BUFF
TIM_WRITE_CH2_VALUE UWordlé  |in |<0..OXFEFF> return TACH2(UWord16) ViE)
TIM_GET_CH2_VALUE NULL return TACH2(UWord16) VIE)
TIM_WRITE_CH3_CONTROL_REG Ubyte in |<0..0xFF> TASC3 = 0..0xFF M®
TIM_GET_CH3_CONTROL_REG NULL return TASC3(UByte) M@
TIM_CLEAR_CH3_FLAG NULL CH3F in TASC3 = 0 YE)
TIM_SET_CH3_INT TIM_DISABLE / TIM_ENABLE CH3IE in TASC3 = 0/1 ViE)
TIM_SET_CH3_TOGGLE_ON_OVERFLOW |TIM_NO/TIM_YES TOV3 in TASC3 = 0/1 ViE)
TIM_SET_CH3_MAXIMUM_DUTY_CYCLE  |TIM_NO/TIM_YES CH3MAX in TASC3 = 0/1 VIE)
TIM_GET_CH3_FLAG NULL return CH3F of TASC3 M@
TIM_GET_CH3_INT NULL return CH3IE of TASC3 YE)

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

89




vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-7. Timer Driver Macros and Functions Commands (Sheet 4 of 4)

— Note
Command Parameters® Description ®
TIM_OUTPUT_PRESET_H
TIM_OUTPUT_PRESET L
TIM_INPUT_CAPTURE_R_EDGE MS3A,ELS3B,ELS3A in TASC3 =
TIM_INPUT_CAPTURE_F _EDGE 0000/0100/
- ~ —— @
TIM_SET_CH3_MODE TIM_INPUT_CAPTURE_FR_EDGE | 0001/0010/0011/ M
TIM_TOGGLE_ON_COMP 0101/0110/0111/
TIM_CLEAR_ON_COMP
TIM_SET_ON_COMP
TIM_WRITE_CH3_VALUE UWord16 in | <0..0xFFFF> return TACH3(UWord16) M@
TIM_GET_CH3_VALUE NULL return TACH3(UWord16) M@

1. First item in the parameters column is the default.

2. M = macro

3. The command is supported for both timer A and timer B (port identifier TIMA and TIMB).
4. The command is supported only for timer A (port identifer TIMA).

5.8 Timer Interrupt Handling

5.8.1 Debug Strobes

User’'s Guide

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed

description of interrupt handling.

Debug strobes allow observation of the interrupt duration on the user
specified GPIO port and pin. At the beginning of the interrupt the strobe
signal is set and when finished it is cleared.

The following subsections provide more specific information regarding

the debug strobe port and pin.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

90

On-Chip Drivers

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com




o

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Timer Interrupt Handling

5.8.1.1 Timer Overflow Interrupts

The following definition has to be in appconfig.h.

#define INT TIMA OVERFLOW STROBE PORT PORT
#define INT TIMA OVERFLOW STROBE PIN  Pin Number
#define INT TIMB OVERFLOW STROBE PORT PORT
#define INT TIMB OVERFLOW STROBE PIN  Pin Number

Example of setting the debug strobe signal on port A pin 4:

#define INT TIMA OVERFLOW STROBE PORT A
#define INT TIMA OVERFLOW STROBE PIN 4

5.8.1.2 Channel Interrupts

The following definition in the appconfig.h enables the interrupt strobe

signal on a specific port and pin.

#define INT TIMA CHO STROBE_ PORT PORT
#define INT TIMA CHO STROBE PIN Pin Number
#define INT TIMA CH1 STROBE_ PORT PORT
#define INT TIMA CH1 STROBE PIN Pin Number
#define INT TIMA CH2 STROBE_PORT PORT
#define INT TIMA CH2 STROBE PIN Pin Number
#define INT TIMA CH3 STROBE_ PORT PORT
#define INT TIMA CH3 STROBE PIN Pin Number
#define INT TIMB CHO STROBE_ PORT PORT
#define INT TIMB CHO STROBE PIN Pin Number
#define INT TIMB CH1 STROBE_PORT PORT
#define INT TIMB CH2 STROBE PIN Pin Number

Example of setting the debug strobe signal on port A pin 4:

#define
#define

INT TIMA CHO STROBE PORT
INT _TIMA CHO STROBE_PIN

A

4

5.8.2 Debug Mode

Debug mode helps the user to find unhandled interrupts. If
INTERRUPT_DEBUG_MODE is defined in appconfig.h and an
unhandled interrupt occurs, the program will run in an endless loop.

#define

INT DEBUG MODE TRUE

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

For More Information On This Product,

On-Chip Drivers

Go to: www.freescale.com

91



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.8.3 User Callbacks
The user can define two different types of callbacks for executing his
own interrupt code.

5.8.3.1 Timer Overflow Interrupts

This definition in appconfig.h installs the user callback function
function_name_1 before the SDK routine and SDK reload flag service.

#define INT TIMA OVERFLOW CALLBACK 1 function name 1
#define INT TIMB OVERFLOW CALLBACK 1 function name 1

This definition in appconfig.h installs the user callback function
function_name_2 after the SDK routine and SDK reload flag service.

#define INT TIMA OVERFLOW CALLBACK 2 function name 2
#define INT TIMB OVERFLOW CALLBACK 2 function name 2

5.8.3.2 Channel Interrupts

This definition in appconfig.h installs the user callback function
function_name_1 before the SDK routine and SDK reload flag service.

#define
#define
#define
#define
#define
#define

INT TIMA CHO CALLBACK 1
INT_TIMA CH1 CALLBACK 1
INT TIMA CH2 CALLBACK 1
INT TIMA CH3 CALLBACK 1
INT_TIMB_CHO CALLBACK 1
INT _TIMB_CH1 CALLBACK 1

function name 1
function name 1
function name 1
function name 1
function name 1
function name 1

This definition in appconfig.h installs the user callback function
function_name_2 after the SDK routine and SDK reload flag service.

#define
#define
#define
#define
#define
#define

INT TIMA CHO CALLBACK 2
INT _TIMA CH1 CALLBACK 2
INT_TIMA CH2 CALLBACK 2
INT TIMA CH3 CALLBACK 2
INT _TIMB_CHO CALLBACK 2
INT_TIMB_CH1 CALLBACK 2

function name 2
function name 2
function name 2
function name 2
function name 2
function name 2

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

92

On-Chip Drivers

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA



o

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Peripheral Interface (SPI) Drivers

5.9 Serial Peripheral Interface (SPI) Drivers

5.9.1 API Definition

NOTE:

The serial peripheral interface (SPI) driver performs both the statical
configuration of the SPI module and the IOCTL commands for
controlling the peripheral module.

The statical initialization sets the SPI peripheral module according to the
user setting in appconfig.h which overwrites the default configuration of
the registers. Commands for peripheral module control are performed by
both functions and macros.

Required files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "spidrv.h"

The included files must be kept in order.

5.9.2 Static Initialization

Call(s:)

SByte spiInit (void) ;

Description:

The spilnit function sets the SPI peripheral module. The required
parameters for peripheral module configuration are defined in
appconfig.h (see Table 5-8).

Returns: O

Global Data: None
Arguments: None
Range Issues: None
Special Issues: None

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 93

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

On-Chip Drivers

Example 15. Static Initialization of the SPI Module

Next definition have to be in appconfig.h

/* Modules for Static Configuration */
#define INCLUDE SPI

/**************;*************************************************************

* SPI Initialization
*****************************************************************************/

/* SPI Control Register
#define SPI CLOCK POLARITY
#define SPT_WIRED OR

(SPCR)

SPI ENABLE

SPI POSITIVE /* SPI _POSITIVE / SPI NEGATIVE */
/* SPI DISABLE / SPI_ENABLE */

NOTE:

The previous definitions determine setting of bit CPOL and SPWOM in
SPCR to 1. The function spilnit(), where the required settings occur, is
called automatically before main if INCLUDE_SPI is defined in

appconfig.h

Table 5-8. SPI Driver Constants Definition

Constant Definition Parameters® Description Notes@
SPI_RX_INT SPI_DISABLE / SPI_ENABLE SPRIE in SPCR =0/1 d
SPI_MASTER_BIT SPI_MASTER / SPI_SLAVE SPMSTR in SPCR=1/0 d
SPI_CLOCK_POLARITY SPI_POSITIVE / SPI_NEGATIVE CPOL in SPCR =0/1 d
SPI_CLOCK_PHASE SPI_F_EDGE /SPI_R_EDGE CPHA in SPCR = 1/0 d
SPI_WIRED_OR SPI_DISABLE / SPI_ENABLE SPWOM in SPCR = 0/1 d
SPI_MODULE SPI_DISABLE / SPI_ENABLE SPE in SPCR = 0/1 d
SPI_TX_INT SPI_DISABLE / SPI_ENABLE SPTIE in SPCR = 0/1 d
SPI_ERROR_INT SPI_DISABLE / SPI_ENABLE ERRIE in SPSCR = 0/1 d
SPI_MODE_FAULT SPI_DISABLE / SPI_ENABLE TCIE in SPSCR = 0/1 d
SPI_BAUD_RATE gi::g:x:gzl /SSPIE-’_I_DIID\II\_/f/J.ZS SPR1, SPRO in SPSCR =0/1/2/3 d

1. First item in the parameters column is the default.
2. Configuration in appconfig.h:
d — parameter with defined default reset state
u — parameter with undefined default reset state
0 — parameter with write-once register

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

94

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Peripheral Interface (SPI) Drivers

5.9.3 API Specification

NOTE:

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the

function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)

void IOCTL (module, command, parameters);
UByte IOCTL (module, command, parameters);
UWordl6IOCTL (module, command, parameters) ;
void IOCTL (module, command, *parameters) ;
UByte IOCTL (module, command, *parameters) ;
UWordl6IOCTL (module, command, *parameters) ;

Description:
A MACRO for operation with a peripheral register is called according
to the command and value parameters.

Example:

The following command sets the CPOL bit (clock polarity) in the
SPCR reqister to 1.

IOCTL (SPI, SPI_CLOCK POLARITY, SPI POSITIVE) ;

Arguments:

module in specifies the module, in this case the
module is SPI

command in specifies target which has be addressed
parameters in, inout, out data passed to the IOCTL macro function

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 95

For More Information On This Product,
Go to: www.freescale.com



|
y

y
A

Freescale Semiconductor, Inc.

On-Chip Drivers

All commands and appropriate parameters are shown in Table 5-9. The
table uses these conventions:

Items separators

/ only one of the specified items is allowed

| consolidation of items is allowed (item1|item2|item4)

& intersection of items is allowed (item1&item2&item3)

Implementation
f — Function

M — Macro

Table 5-9. SPI Driver Macros and Functions Commands (Sheet 1 of 2)

Command Parameters® Description Note®
SPI_INIT NULL St:sgc(;onrgégferf‘u“r‘r’lnoaccordi”g f
SPI_GET_CONTROL_REG NULL return SPCR (UByte) M
SPI_WRITE_CONTROL_REG Ubyte in <0..0xFF> SPCR = 0..0xFF M
SPI_SET_RX_INT SPI_DISABLE / SPI_ENABLE SPRIE in SPCR =0/1 M
SPI_SET_MASTER_BIT SPI_MASTER / SPI_SLAVE SPMSTR in SPCR = 1/0 M
SPI_SET_CLOCK_POLARITY SPI_POSITIVE / SPI_NEGATIVE CPOL in SPCR =0/1 M
SPI_SET_CLOCK_PHASE SPI_F_EDGE / SPI_R_EDGE CPHA in SPCR = 1/0 M
SPI_SET_WIRED_OR SPI_DISABLE / SPI_ENABLE SPWOM in SPCR = 0/1 M
SPI_SET_MODULE SPI_DISABLE / SPI_ENABLE SPE in SPCR =0/1 M
SPI_SET_TX_INT SPI_DISABLE / SPI_ENABLE SPTIE in SPCR =0/1 M
SPI_GET_RX_INT NULL return SPRIE of SPCR M
SPI_GET_MASTER_BIT NULL return SPMSTR of SPCR M
SPI_GET_CLOCK_POLARITY NULL return CPOL of SPCR M
SPI_GET_CLOCK_PHASE NULL return CPHA of SPCR M
SPI_GET_WIRED_OR NULL return SPWOM of SPCR M
SPI_GET_MODULE NULL return SPE of SPCR M
SPI_GET_TX_INT NULL return SPTIE of SPCR M
SPI_GET_STATUS_REG NULL return SPSCR (UByte) M
SPI_WRITE_STATUS_REG Ubyte in <0..0xFF> SPSCR = 0..0xFF M

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

96

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
SPI Interrupt Handling

Table 5-9. SPI Driver Macros and Functions Commands (Sheet 2 of 2)

Command Parameters® Description Note®
SPI_SET_ERROR_INT SPI_DISABLE / SPI_ENABLE ERRIE in SPSCR = 1/0 M
SPI_SET_MODE_FAULT SPI_DISABLE / SPI_ENABLE MODFEN in SPSCR = 0/1 M
SPI_GET_RX_FULL NULL return SPRF of SPCR M
SPI_GET_ERROR_INT NULL return ERRIE of SPCR M
SPI_GET_OVERFLOW NULL return OVRF of SPCR M
SPI_GET_FAULT_FLAG NULL return MODF of SPCR M
SPI_GET_TX_EMPTY NULL return SPTE of SPCR M
SPI_GET_MODE_FAULT NULL return MODFEN of SPCR M
SPI_GET_DATA REG NULL return SPDR (UByte) M
SPI_WRITE_DATA_REG Ubyte in <0..0xFF> SPDR = 0..0xFF M

1. First item in the parameters column is the default.
2. f = function
M = macro

5.10 SPI Interrupt Handling

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed
description of interrupt handling.

5.10.1 Debug Strobes

Debug strobes allow the observation of the interrupt duration on the user
specified GPIO port and pin. At the beginning of the interrupt the strobe
signal is set and when finished it is cleared.

The following subsections provide more specific information pertaining
to the debug strobe port and pin

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 97

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.10.1.1 SPI Receive Interrupt

This definition has to be in appconfig.h.

#define INT SPI_RX STROBE PORT  PORT
#define INT SPI_RX STROBE PIN  Pin Number

Example of setting the debug strobe signal on port A pin 4:

#define INT SPI_RX STROBE PORT A
#define INT SPI_RX STROBE PIN 4

5.10.1.2 SPI Transmit Interrupt

This definition in the appconfig.h enables the interrupt strobe signal on
a specified port and pin.

#define INT SPI_TX STROBE PORT  PORT
#define INT SPI_TX STROBE PIN  Pin Number

Example of setting the debug strobe signal on port A pin 4:

#define INT SPI_TX STROBE PORT A
#define INT SPI_TX STROBE PIN 4

5.10.2 Debug Mode

The debug mode helps the user to find the unhandled interrupts. If
INTERRUPT_DEBUG_MODE is defined in appconfig.h and an
unhandled interrupt occurs, the program will run in an endless loop.

Example:

#define INT DEBUG MODE TRUE

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

98 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
SPI Interrupt Handling

5.10.3 User Callbacks
The user can define two different types of callbacks for executing his
own interrupt code.

5.10.3.1 SPI Receive Interrupt

This definition in appconfig.h installs the user callback function
function_name_1 before the SDK routine and SDK reload flag service.

#define INT SPI RX CALLBACK 1 function name 1

This definition in appconfig.h installs the user callback function
function_name_2 after the SDK routine and SDK reload flag service.

#define INT SPI RX CALLBACK 2 function name 2

5.10.3.2 SPI Transmit Interrupt

This definition in appconfig.h installs the user callback function
function_name_1 before the SDK routine and SDK reload flag service.

#define INT SPI TX CALLBACK 1 function name 1

This definition in appconfig.h installs the user callback function
function_name_2 after the SDK routine and SDK reload flag service.

#define INT SPI TX CALLBACK 2 function name 2

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 99

For More Information On This Product,
Go to: www.freescale.com



\¥ 4
PR

Freescale Semiconductor, Inc.

On-Chip Drivers

5.11 Serial Communications Interface (SCI) Driver

5.11.1 API Definition

This section describes the API for the 68HC908MRxx serial
communication interface (SCI) on-chip module. The functionality of the
SCI module itself is described in the specific device data sheet.

The SCI driver is dedicated to controlling the on-chip SCI module. It is
comprised of the initialization routine for statical module configuration
and IOCTL commands for controlling the module during run-time.

IOCTL commands for controlling the SCI module are implemented as:
1. Macros (in-line code — short code)

2. Functions (called function — longer code)

Required Header File(s):
The following header files are needed in order to use ADC driver:

#include "sys.h"
#include "arch.h"
#include "periph.h"
#include "appconfig.h"
#include "config.h"

#include "plldrv.h"
#include "scidrv.h"

5.11.2 Configuration Items

User’'s Guide

This subsection summarizes the symbols used in definitions for the
static configuration of the SCI module. This initialization is performed by
the scilnit() function during initialization process.

The statical configuration routine scilnit() sets the SCI module according
to the user settings specified in appconfig.h which overwrites the
default configuration of the registers.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

100

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.
On-Chip Drivers
Serial Communications Interface (SCI) Driver
The initialization process is divided into the following three parts:
1. Setting of the write-once registers (performed in the premain
function).
2. Setting of the registers with defined reset states.

— The function scilnit() sets the SCI registers according to the
application static configuration file appconfig.h if the user
settings differ from the default reset state of the register.

— Refer to Table 5-10 for the configurable items.

3. Setting of the registers with undefined reset states.

— The function scilnit() sets the SCI registers according to the
appconfig.h file.

— Refer to Table 5-10 for the configurable items.

See Example 16 and Example 17 for more detalils.
Code to initialize the SCI driver is automatically included in the SDK
project by inserting the following into appconfig.h file.
#define INCLUDE SCI /* include SCI initialization code
to application */
ltems Separators:

/ only one of the specified items is allowed

| consolidation of items is allowed (item1|item2|item4)

& intersection of items is allowed (item1&item2&item3)

CAPITAL = constant (in)

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 101

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-10. Configuration Items for appconfig.h

Symbol Parameters Description
SCI_MODULE :g::g:\ls::LLEE/ Er[\]|asbcl:e| i?]rggsélile: %C/:Ilmodule and the SCI baud rate generator.
scoornooe | SOGRE | oestwr
SCI_DATA_POLARITY :g:::\’l\l(?/'lrz_Flg\égRTED / _Sriﬁf\li?iendsaéacplolzagty 1of transmitted signal

SCI_WAKEUP_COND

SCI_WAKE_BY_IDLE /

SCI_WAKE_BY_ADDRESS

Set wakeup condition
of the SCI module.
WAKE in SCC1=0/1

SCI_IDLE_LINE

SCI_AFTER_START/
SCI_AFTER_STOP

Select idle line type
ILTY inSCC1=0/1

SCI_DATA_FORMAT

SCI_8BIT_NONE /
SCI_7BIT_EVEN /
SCI_7BIT_ODD/
SCI_8BIT_EVEN /
SCI_8BIT_ODD/
SCI_9BIT_NONE

Select the format of data

Sets M, PEN, PTY in SCC1 refer toTable 5-11
Default and reset state is

SCI_8BIT_NONE.

Select the desired communication speed in bauds. Refer to Table 5-

SCI_BAUD_RATE UWord32 12 with valid baud rates

SCI_PRESCALER 1, 3,4, 13 Select the desired SCI prescaler SCBR

SCI_DIVIDER 1,2,4,8, 16, 32, 64, 128 Select the desired SCI divider SCBR

SCI_TX_EMPTY_INT gg::g:\lsAA:LLEE/ ggfil\_bl:ze i(r)]rsdésggli tg?llRQ generation when data register is empty.
SCI_TX_IDLE_INT :g::g:\lsAA;LLEE / Eg?glﬁ]()srggza\llleot/hilRQ generation when transmission complete.
SCI_RX_FULL_INT :g::g:\lsAA:LLEE/ gg:?llg i?lrggéglitg(j IlRQ generation when receiver is full.
SCI_RX_IDLE_INT :g::g:\lsAA:LLEE/ gg:?llg i?lrggéglitg(j IlRQ generation when receiver is idle.
SCI_TRANSMITTER :g::g:\lsAA:LLEE/ Ega}glggrcdzis:agk/e 1the SCI transmitter
I bl st e sCeceive

scloveRRUN T | SO ORELE) bl o e e SCI o overun G
N Sl b e oGl e

I Er ) s e Sl Xy

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

102

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com




O
]

Freescale Semiconductor, Inc.

On-Chip Drivers

Serial Communications Interface (SCI) Driver

Table 5-11. Character Format Selection

Parameter M PEN:PTY Parity ?3ti(t)sp CE:;Z(;LH
SCI_7BIT_EVEN 0 10 Even 1 10 bits
SCI_7BIT_ODD 0 11 Odd 1 10 bits
SCI_8BIT_NONE 0 0X None 1 10 bits
SCI_8BIT_EVEN 1 10 Even 1 11 bits
SCI_8BIT_ODD 1 11 Odd 1 11 bits
SCI_9BIT_NONE 1 0X None 1 11 bits

Table 5-12. Baud Rates

Bus Clock

Valid Baud Rates for Given Bus Clock

8000000

75, 150, 300, 600, 1200, 2400, 4800, 9600

4915200

150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 76800
200, 400, 800, 1600, 3200, 6400, 12800, 25600

7372800

300, 600, 1200, 2400, 4800, 9600, 19200, 38400
225, 450, 900, 1800, 3600, 7200, 14400, 28800, 57600, 115200

5.11.3 API Specification

Function arguments for each routine are described as in, out, or inout.

1. inargument means that the parameter value is an input only to the
function

2. out argument means that the parameter value is an output only
from the function.

3. inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE:

Inout parameters are typically input pointer variables in which the caller

passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers 103

For More Information On This Product,

Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

ltems Separators:
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)

CAPITAL = constant (in)

First item or items in the column is default

Implemented as:
f = function
M = Macro

5.11.3.1 SCI Input/Output Control Commands

The SCI input/output control (IOCTL) commands are defined in
Table 5-13.

Table 5-13. SCI Input/Output Control Commands (Sheet 1 of 3)

Command pParameters® Description Note®
SCLINIT NULL Inltlallges SQI mpdule by dat_a from f
configuration file (appconfig.h)
Enables or disables SCI module and the SCI
SCI_SET_MODULE :g:—g:\?::LLEE / baud rate generator. M
- ENSClinSCC1=0/1
SCI_DISABLE/ Sets SCI loop mode operation
SCI_SET_LOOP_MODE SCI_ENABLE LOOPSinSCC1=0/1 M
SCI_NOT_INVERTED / Sets the data polarity of transmitted signal
SCI_SET_DATA_POLARITY SCI_INVERTED TXINVinSCC1=0/1 M
SCI_8BIT_NONE/
:g:—;gg—g\gg\l/ Select the format of data
SCI_SET_DATA_FORMAT - - Sets M, PEN, PTY in SCC1 M
- - - SCI_8BIT_EVEN/ refer to Table 5-11
SCI_8BIT_ODD/
SCI_9BIT_NONE
SCI_WAKE_BY_IDLE/ Select the wakeup condition
SCI_SET_WAKEUP_COND SCI_WAKE_BY_ADDRESS | WAKE inSCC1=0/1 M
SCI_AFTER_START/ Select idle line type
SCI_SET_IDLE_LINE SCI_AFTER_STOP ILTYinSCC1=0/1 M

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

104

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA




[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Communications Interface (SCI) Driver

Table 5-13. SCI Input/Output Control Commands (Sheet 2 of 3)
Command parameters® Description Note®@
Enable or disable the IRQ generation when data
SCI_SET_TX _EMPTY_INT gg:—g:\ls ::LLEE / register is empty. M
- SCTIEin SCC2=0/1.
Enable or disable the IRQ generation when
SCI_SET_TX_IDLE_INT :g:—g:\ls::LLEE / transmission complete. M
- TCIEinSCC2=0/1.
Enable or disable the IRQ generation when
SCI_SET_RX_FULL_INT :g:—g:\ls::LLEE / receiver is full. M
- SCRIEinSCC2=0/1.
Enable or disable the IRQ generation when
SCI_SET_RX_IDLE_INT gg:—g:\ls::LLEE / receiver is idle. M
- SCRIEinSCC2=0/1.
SCI_DISABLE / Enable or disable the SCI transmitter
SCI_SET_TRANSMITTER SCI_ENABLE TEinSCC2=0/1. M
SCI_DISABLE / Enable or disable the SCI receiver
SCI_SET_RECEIVER SCI_ENABLE REin SCC2=0/1. M
Puts SCI receiver into standby state
SCI_SET_RX_STANDBY NULL RWU in SCC1 = 1 M
Wakeup SCI receiver from standby state
SCI_SET_RX_WAKEUP NULL RWU in SCC1 = 0 M
SCI_DISABLE / Enable or disable the SCI RX overrun IRQ
SCI_SET_OVERRUN_INT SCI_ENABLE ORIEiInSCC3=0/1 M
SCI_DISABLE / Enable or disable the SCI RX noise IRQ
SCI_SET_NOISE_INT SCI_ENABLE NEIE in SCC3=0/1 M
SCI_DISABLE / Enable or disable the SCI RX framing IRQ
SCI_SET_FRAMING_INT SCI_ENABLE FEIEin SCC3=0/1 M
SCI_DISABLE/ Enable or disable the SCI RX parity IRQ
SCI_SET_PARITY_INT SCI_ENABLE PEIEin SCC3=0/1 M
SCI_CLEAR_STATUS REG1 | NULL Clear the SCI status register 1
SCI_GET_STATUS_REG1 NULL
Return the status of the SCI Transmitter Empty
SCI_GET_TX_EMPTY NULL Flag SCTE in SCS1 M
Return the status of the SCI Transmission
SCILGET_TX_IDLE NULL Complete Flag TC in SCS1 M
Return the status of the SCI Receiver Full Flag
SCI_GET_RX_FULL NULL SCRF in SCS1 M
SCI_GET_RX_IDLE NULL Return the status of the SCI Receiver Idle Flag M

IDLE in SCS1

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

105



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-13. SCI Input/Output Control Commands (Sheet 3 of 3)

Command parameters® Description Note®@
:g:_(N)E II Return the status of error flags specified by
SCI_GET_RX_ERROR scl FE | input mask M
SCI:PE OR, NF, FE, PE in SCC1

SCl GET STATUS REG2 NULL Return the content of the SCI Status Register 2 M

- - - SCS2
SCI READ 8BIT DATA NULL Read the 8 bit data from the SCI data register M

- - - SCDR
SCl READ 9BIT DATA NULL Read the 9bit data from the SCDR and R8 in M

- - - SCC3
SCI_WRITE_8BIT_DATA UByte Write the 8 bit data to the SCI data register M

SCDR

SCI_WRITE_9BIT_DATA UWord16 Write the 9bit data to the SCDR and T8 in SCC3 M
SCI_GET_STATUS NULL Get operation status of read/write functions M
SCI_READ_CANCEL NULL Cancel non-blocking read operation M
SCI_WRITE_CANCEL NULL Cancel non-blocking write operation M
SCI_CLEAR_EXCEPTION NULL Clear exception of read/write functions if exist M
1. First item in the parameters column is the default.
2. f = function

M = macro

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
106 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com




O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Communications Interface (SCI) Driver

Example 16. SCI Usage without Buffering

/*****************************************************************************

Motorola Inc.
(c) Copyright 2001 Motorola, Inc.
ALL RIGHTS RESERVED.

*
*
*
*
*
kkhkkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhhkhkkhkdhhkhhhkhkkhkhhkhkkhkdhhkhhhkhkkhkhkhkhkkhkdhkhhhkhkhkhkhkhkkhdhkhhhkhkhhkhkhkkhkdhkhhrhkhkhrrhkkkhdhhxdx*x
*

* File Name: appconfig.h

*

* Description: application configuration file

*

* Modules Included: None

*
*

****************************************************************************/

#ifndef _ APPCONFIG H
#define _ APPCONFIG H

/*****************************************************************************

* Include needed driver initialization routines
******************************************************************************/

#define INCLUDE PLL /* PLL support */

#define INCLUDE SCI /* SCI support */

/* Specify the your Xtal clock frequency */
#define XTAL CLOCK 8000000L
/*****************************************************************************/
/* PLL Initialization *x/
/*****************************************************************************/
/* BUS CLOCK = (XTAL CLOCK * PLL FREQUENCY MUL) / 4 */
/* PLL Control Register 1 (PCTL) */
#define PLI, ON BIT PLI, ON /* PLL ON / PLL OFF */
#define PLL BASE CLOCK PLL CGMVCLK /* PLL CGMXCLK /

PLL CGMVCLK */
L X e e e e e e [P */
/* PLL Programing Register 1 (PPG) */
#define PLL FREQUENCY MUL PLL MUL4 /* PLL MUL1..PLL MUL15 */
#define PLL_VCO FREQUENCY MUL PLL_MUL3 /* PLL MULL..PLL MUL15 */
L X e e e e e e e e e e e */
/* PLL Control Register 2 (PBWC) *x/
#define PLL BANDWIDTH PLL AUTOMATIC /* PLL MANUAL /

PLL AUTOMATIC */
/*****************************************************************************/
/* Watch dog initialization *x/
/*****************************************************************************/
/* Config Register 11!l Write-Once-Register !!! (CONFIG) */
#define WDO_COPD WDO DISABLE /* WDO_ENABLE /

WDO DISABLE */

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User’s Guide
MOTOROLA On-Chip Drivers 107

For More Information On This Product,
Go to: www.freescale.com



vy
4\

/*

Freescale Semiconductor, Inc.

On-Chip Drivers

/*****************************************************************************/

SCI Initialization

*/

/*****************************************************************************/

#define

#define

#define

#define

#define

#define

/* Install the SCI callbacks */

SCI_BAUD RATE

SCI_DATA FORMAT

SCI_WAKEUP_COND

SCI_DATA POLARITY

SCI_IDLE LINE

SCI_LOOP_MODE

9600

SCI_8BIT NONE

SCI_WAKE BY IDLE

SCI_NOT INVERTED

SCI_AFTER STOP

SCI DISABLE

#define INT SCI_TX CALLBACK 1 mySciTxISR

#endif /

* _ APPCONFIG H*/

/*

/*

/*

/*

/*

SCI_8BIT NONE /
SCI_7BIT ODD /
SCI_7BIT EVEN /
SCI_8BIT EVEN /
SCI_8BIT ODD /
SCI_9BIT NONE

SCI_WAKE BY IDLE /

*/

SCI_WAKE BY ADDRESS */

SCI_NOT INVERTED /
SCI_ INVERTED

SCI_AFTER START /
SCI_AFTER STOP

SCI_DISABLE /
SCI_ENABLE

/*****************************************************************************

Motoro

ALL RI

File N

Module

R EE R

*

la Inc.

(c) Copyright 2001 Motorola,

GHTS RESERVED.

ame: sci demo.c

s Included:
< main >
< mySciTxISR >

Inc.

Description: SCI device driver demo application

hkhkhkkhkkhkkkhkkkhkkhkkhkhkkhhkkhkhkkhkhkkhkhkhkkkhkkhkkhkkhhkkhkhkhkkhkhkkhkhkkhkhkkkkhkkhkkhhkkhhkkhhkkhkkhkhkkhkhkkkkkkkkhkkkhkkkkkkkk*x

*****************************************************************************/

#include
#include
#include
#include
#include

#include
#include

/* funct
void myS

User’'s Guide

"types.h"
"arch.h"
"hidef.h"

n SyS . hll
"appconfig.h"

"plldrv.h"
"scidrv.h"

ion prototypes */
ciTxISR (void) ;

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

108

On-Chip Drivers

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA



[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Communications Interface (SCI) Driver

/* global variables */
volatile UByte position = 0;
volatile UByte idt[] = "Serial Communication Interface";

void main (void)

{
UByte sci_tmp;
UByte rxChar;

IOCTL(SCI, SCI_SET MODULE, SCI_ENABLE) ;
IOCTL (SCI, SCI TRANSMITTER, SCI ENABLE) ;

IOCTL (SCI, SCI:RECEIVER, SCI:ENABLE);
EnableInterrupts; /* Authorise all interrupts */
while (1)

/* wait for received character */
while (! IOCTL (SCI, SCI_GET RX FULL, NULL) ) ;

sci tmp = IOCTL(SCI, SCI_GET STATUS REGl, NULL);

rxChar = IOCTL(SCI, SCI_READ 8BIT DATA, NULL);

if (rxChar != "*’)
while (! IOCTL(SCI, SCI_GET TX EMPTY, NULL) ) ;

SCi_tmp = IOCTL (SCI, SCI_GET STATUS REGI, NULL) ;
/* send back received character */
IOCTL (SCI, SCI _WRITE 8BIT DATA, rxChar) ;

else {

/* is SCI Transmitter in use ? */

if (IOCTL(SCI, SCI_GET TX EMPTY, NULL)) {
position = 0;
/* enable user ISR to send answer */
IOCTL (SCI, SCI _SET TX EMPTY INT, SCI_ENABLE);

}

void mySciTxISR (void)
UByte sci_tmp;

if (! (position == (sizeof (idt) /sizeof (idt[0]) - 1))) {
/* clear status register and write to data register */
sci tmp = IOCTL(SCI, SCI_GET STATUS REG1l, NULL);
IOCTL(SCI, SCI_WRITE 8BIT DATA, idt[position++]);

else {
IOCTL(SCI, SCI_SET TX EMPTY INT, SCI DISABLE) ;

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 109

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.11.3.2 Read — Non-Blocking or Blocking Read from SCI Module

Call(s):

void read (SCI, NON BLOCKING,UByte *address, UByte size);
void read (SCI, BLOCKING, UByte *address, UByte size);

Arguments:
Table 5-14. Read Function Call Arguments

SCI in SCI module identifier

BLOCKING / in Specify wheth_er the data is read in blocking

NON_BLOCKING or non-blocking mode

UByte *address in / out Pointer of the user buffer

UByte size in the number of bytes read from SCI to user buffer
Description:

The read function is implemented as a macro and calls related read
functions for non-blocking and blocking mode dependent on the mode
parameter.

* Non-Blocking Mode

The read function in non-blocking mode initializes some internal
status variables and pointers of the SCI driver, modifies the RIE
(receiver full interrupt enable) bit as well as the REIE (receive error
interrupt enable) bit in the SCI control register and returns
immediately to the main program. All characters are sent within
the interrupt service routine.

NOTE: Corresponding interrupt routines must be installed. See Example 17.

* Blocking Mode

The read function in blocking mode uses a polling technique,
interrupts are not used. The read function in blocking mode waits
until all characters are read from the SCI module.

Returns: None.

Range Issues: Parameter size must greater than 1.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

110 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Communications Interface (SCI) Driver

Special Issues:
The read function in non-blocking mode is not reentrant.

* Non-Blocking Mode

If the non-blocking mode of the read function is used, then
interrupt functions of the SCI driver must be installed to obtain
proper functionality of the read function. See Example 17.

* Blocking Mode — None

Design/Implementation:

The non-blocking and blocking mode of the read macro are
implemented as a function call.

5.11.3.3 Write — Non-Blocking or Blocking Write to SCI Module

Call(s):

void write (SCI, NON BLOCKING, UByte *address, UByte size);
void write (SCI, BLOCKING, UByte *address, UByte size);

Arguments:
Table 5-15. Write Function Call Arguments

SCI in SCI module identifier

BLOCKING / in Specify whether the data is written

NON_BLOCKING in blocking or non-blocking mode

UByte *address in / out Pointer of the user buffer

UByte size in the number of bytes to write send through SCI
Description:

The write function is implemented as a macro and calls related write
functions for non-blocking and blocking mode, dependent on the
mode parameter.

* Non-Blocking Mode

The write function in non-blocking mode initializes internal status
variables and pointers of the SCI driver, modifies the TEIE

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 111

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

(transmitter empty interrupt enable) bit in the SCI control register
and returns immediately to the main program. All characters are
received within the interrupt service routines.

* Blocking Mode

The write function in blocking mode uses a polling technique,
interrupts are not used. The write function in blocking mode waits
until all characters are written to the SCI.

Returns: None
Range Issues: Parameter size must greater than 1.

Special Issues:
The write function in non-blocking mode is not re-entrant.

* Non-Blocking Mode

If the non-blocking mode of the write function is used, then
interrupt functions of the SCI driver must be installed to obtain
proper functionality of the write function. See Example 17.

* Blocking Mode — None

Design/Implementation:

The non-blocking and blocking mode of the write macro are
implemented as a function call.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

112 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Serial Communications Interface (SCI) Driver

Example 17. Read/Write Function

/*****************************************************************************

Motorola Inc.
(c) Copyright 2001 Motorola, Inc.
ALL RIGHTS RESERVED.

*
*
*
*
*
kkhkkhkhkkhkkhkkhkhkhkhkhkkhkkhkkhhkhkkhkdhhkhhhkhkkhkhhkhkkhkdhhkhhhkhkkhkhkhkhkkhkdhkhhhkhkhkhkhkhkkhdhkhhhkhkhhkhkhkkhkdhkhhrhkhkhrrhkkkhdhhxdx*x
*

* File Name: appconfig.h

*

* Description: application configuration file

*

* Modules Included: None

*
*

****************************************************************************/

#ifndef _ APPCONFIG H
#define _ APPCONFIG H

/*****************************************************************************

* Include needed driver initialization routines
******************************************************************************/

#define INCLUDE PLL /* PLL support */

#define INCLUDE SCI /* SCI support */

/* Specify the your Xtal clock frequency */
#define XTAL CLOCK 8000000L
/*****************************************************************************/
/* PLL Initialization *x/
/*****************************************************************************/
/* BUS CLOCK = (XTAL CLOCK * PLL FREQUENCY MUL) / 4 */
/* PLL Control Register 1 (PCTL) */
#define PLI, ON BIT PLI, ON /* PLL ON / PLL OFF */
#define PLL BASE CLOCK PLL CGMVCLK /* PLL CGMXCLK /

PLL CGMVCLK */
L X e e e e e e [P */
/* PLL Programing Register 1 (PPG) */
#define PLL FREQUENCY MUL PLL MUL4 /* PLL MUL1..PLL MUL15 */
#define PLL_VCO FREQUENCY MUL PLL_MUL3 /* PLL MULL..PLL MUL15 */
L X e e e e e e e e e e e */
/* PLL Control Register 2 (PBWC) *x/
#define PLL BANDWIDTH PLL AUTOMATIC /* PLL MANUAL /

PLL AUTOMATIC */
/*****************************************************************************/
/* Watch dog initialization *x/
/*****************************************************************************/
/* Config Register 11!l Write-Once-Register !!! (CONFIG) */
#define WDO_COPD WDO DISABLE /* WDO_ENABLE /

WDO DISABLE */

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User’s Guide
MOTOROLA On-Chip Drivers 113

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

User’'s Guide

/*****************************************************************************/

/* SCI Initialization */
/*****************************************************************************/

#define SCI _BAUD RATE 9600

#define SCI_DATA FORMAT SCI_8BIT NONE /* SCI_8BIT NONE /
SCI_7BIT ODD /
SCI_7BIT EVEN /
SCI_8BIT EVEN /
SCI_8BIT ODD /
SCI_9BIT NONE */

#define SCI_WAKEUP COND SCI_WAKE BY IDLE /* SCI_WAKE BY IDLE /
SCI_WAKE BY ADDRESS */

#define SCI DATA POLARITY SCI_NOT INVERTED /* SCI_NOT INVERTED /
SCI_ INVERTED */

#define SCI_IDLE_LINE SCI_AFTER STOP /* SCI_AFTER START /
SCI_AFTER STOP */

#define SCI_LOOP_MODE SCI DISABLE /* SCI_DISABLE /
SCI_ENABLE */

/* Assign the SCI callbacks for use in read / write functions */
#define INT SCI TX CALLBACK 1 SciTxEmptyISR

#define INT SCT _RX CALLBACK 1 SciRxFullISR

#define INT SCT_ERR CALLBACK 1 SciRxErrorISR

#endif /* _ APPCONFIG H*/

/*****************************************************************************

Motorola Inc.
(c) Copyright 2001 Motorola, Inc.
ALL RIGHTS RESERVED.

khkkkhkkhkkkhkkkhkkhkkhkhkkhhkkhkhkkhkhkkhkhkhkkhkkhkkhkkhhkkhkhhkkhkhkkhkhkkhkhkkhkkkhkkhkkhhkkhhkkhhkkhkhkhkkhkkhkkhkkkkhkkkhkkhkkhkkkkx*x

File Name: sci demol.c
Description: Example of usage read / write commands.

*
*
*
*
*
*
*
*
*
*
*
* Modules Included: < main >
*

*

****************************************************************************/

#include "types.h"
#include "arch.h"
#include "hidef.h"
#include "sys.h"
#include "appconfig.h"

#include "plldrv.h"
#include "scidrv.h"

/* global variables */
volatile UByte buffer([10];

114

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications



o

]

Freescale Semiconductor, Inc.

On-Chip Drivers
SCI Interrupt Handling

void main (void)

/* enable all maskable interrupts */
EnablelInterrupts;

/* read 10 characters in blocking mode */

read (SCI,BLOCKING, buffer, 10);

/* send back received characters in blocking mode */
write (SCI, BLOCKING, buffer, 10);

/* read 10 characters in non-blocking mode */
read (SCI, NON_ BLOCKING, buffer, 10) ;

/* test if the characters are already received */
while (ioctl (SCI, SCI_GET STATUS, NULL) & SCI_STATUS_READ_INPROGRESS) ;

* gend back received characters in non-blocking mode */
write (SCI, NON BLOCKING, buffer, 10);

while (1) ;

}

This code:

» Installs receiver full, receiver error, and transmitter empty
interrupts for the SCI module

+ [|nitializes the PLL and SCI module

First, 10 characters are received and sent back to show how to use the
read and write functions in blocking mode, then 10 characters are
received and sent back again to show the usage of the read and write
function in non-blocking mode.

5.12 SClI Interrupt Handling

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed
description of interrupt handling.

5.12.1 Debug Strobes

Debug strobes allow the measuring of the interrupt duration on the user
specified port and pin utilizing scope. At the beginning of the interrupt the
strobe signal is asserted and when finished it is deasserted. To specify
the debug strobes, the following code has to be added into appconfig.h.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 115

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Debug Strobe Port and Pin Specification:

#define INT SCI TX STROBE PORT PORT
#define INT SCI TX STROBE PIN Pin Number
#define INT SCI RX STROBE PORT PORT
#define INT SCI _RX STROBE PIN Pin Number
#define INT SCI_ERR STROBE PORT PORT
#define INT SCI_ERR STROBE PIN Pin Number

The following code is an example of setting the debug strobes for SCI
Tx interrupts on port A pin 4.

#define INT SCI_TX STROBE PORT A
#define INT SCI_TX STROBE PIN

IS

5.12.2 Debug Mode

The debug mode helps the user to find the unhandled interrupts. If
INTERRUPT_DEBUG_MODE is defined in appconfig.h and an
unhandled interrupt occurs, the program will run in an endless loop.

Example:

#define INT DEBUG MODE TRUE

5.12.3 User Callbacks

The user can define two different types of callbacks for execution in his
own interrupt code.

This definition appconfig.h installs the user callback function
function_name_1 before the SDK routine and SDK flag service.

#define INT SCI_TX CALLBACK 1 function name 1

This definition in appconfig.h installs the user callback function
function_name_2 after the SDK routine and SDK flag service.

#define INT SCI TX CALLBACK 2 function name 2

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

116 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
Port Drivers

5.13 Port Drivers

The port driver performs both the statical configuration of the
input/output (I/0) ports and LOCTL commands for controlling the
peripheral.

Before main is called the ports direction and initial state are set
according to the user settings in appconfig.h, which overwrites the
default configuration of the registers.

Initialization contains two parts:

1. Setting of the registers with default values defined after reset.
Initialization sets the registers according to appconfig.h if the set
value differs from the default reset state.

2. Setting of the registers with not defined reset value.
Initialization sets the registers according to appconfig.h.

Commands for peripheral control are performed by:

1. Function — Usually more general, all parameters are passed
through variables.

2. Macro — The code is usually shorter, but depends on compilation
and type used. In some cases, macros can support only constant
parameters.

5.13.1 API Definition

Required Files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "spidrv.h"

NOTE: The included files must be kept in order.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 117

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.13.2 Static Initialization

Call(s:)

void portInit (void) ;

Description:

The portlnit function sets PORT peripheral module. The required
parameters for peripheral module configuration are defined in

appconfig.h (see Table 5-16).
Returns: 0
Global Data: None
Arguments: None
Range Issues: None

Special Issues: None

Example 18. Static Initialization of the Port Driver

Next definition have to be in appconfig.h

/* Modules for Static Configuration */
#define INCLUDE PORT

/****************************************************************************

* PORT Initialization
*****************************************************************************/
/* SPI Control Register (SPCR)

#define PORTA DIRECTION  PORT OUTO|PORT OUTS /% PORT OUTO|..|PORT OUT7 */
#define PORTA DATA PORT_PINS /* PORT PINO|..|PORT PIN7 */

NOTE: The previous definition determines the setting of pin 0 and pi

n5on

port A as output. Pin 5 is set to level H and pin O is set to level L. The
function portlnit(), where the required setting occurs, is called

automatically before main if INCLUDE_PORT is defined in appconfig.h.
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
118 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

Table 5-16. Port Driver Constants Definition

On-Chip Drivers
Port Drivers

Constant Definition

Parameters®

Description

Notes®

PORTA_DATA

PORT_PINO|PORT_PIN1|
PORT_PIN2|PORT_PIN3]|
PORT_PIN4|PORT_PINS5|
PORT_PIN6|PORT_PIN7|

PTA = 0..0xFF

PORTA_DIRECTION

PORT_OUTO|PORT_OUT]|
PORT_OUT2|PORT_OUT3]
PORT_OUT4|PORT_OUTS5|
PORT_OUT6|PORT_OUT?,
PORT_OUT, PORT_IN

DDRA = 0..0xFF

PORTB_DATA

PORT_PINO|JPORT_PIN1|
PORT_PIN2|PORT_PIN3]|
PORT_PIN4|PORT_PIN5|
PORT_PIN6|PORT_PIN7|

PTB = 0..0xFF

PORTB_DIRECTION

PORT_OUTO|PORT_OUT]|
PORT_OUT2|PORT_OUT3]
PORT_OUT4|PORT_OUTS5|
PORT_OUT6|PORT_OUT?,
PORT_OUT, PORT_IN

DDRB = 0..0xFF

PORTC_DATA

PORT_PINO|JPORT_PIN1]|
PORT_PIN2|PORT_PIN3]|
PORT_PIN4|PORT_PINS5|
PORT_PING

PTC = 0..0x7F

PORTC_DIRECTION

PORT_OUTO|PORT_OUT]|
PORT_OUT2|PORT_OUT3]
PORT_OUT4|PORT_OUTS5|
PORT_OUTS,

PORT_OUT, PORT_IN

DDRC = 0..0x7F

PORTE_DATA

PORT_PINO|JPORT_PIN1|
PORT_PIN2|PORT_PIN3]|
PORT_PIN4|PORT_PINS5|
PORT_PIN6|PORT_PIN7

PTE = 0..0xFF

PORTE_DIRECTION

PORT_OUTO|PORT_OUT]|
PORT_OUT2|PORT_OUT3]
PORT_OUT4|PORT_OUTS5|
PORT_OUT6|PORT_OUT?,
PORT_OUT, PORT_IN

DDRE = 0..0xFF

PORTF_DATA

PORT_PINO|JPORT_PIN1|
PORT_PIN2|PORT_PIN3]|
PORT_PIN4|PORT_PINS5|

PTC = 0..0x3F

PORTF_DIRECTION

PORT_OUTO|PORT_OUT]|
PORT_OUT2|PORT_OUT3]
PORT_OUT4|PORT_OUTS,
PORT_OUT, PORT_IN

DDRC = 0..0x3F

1. First item in the parameters column is the default.

2. Configuration in appconfig.h:

d — parameter with defined default reset state
u — parameter with undefined default reset state
0 — parameter with write-once register

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

119



\¥ 4
PR

Freescale Semiconductor, Inc.

On-Chip Drivers

5.13.3 Input/Output Control (IOCTL)

Call(s:)

return type IOCTL (PORTx, command, parameters) ;

Description:

A MACRO for operation with a PORT peripheral register is called
according to the command and value parameters.

Returns:
Return type (depend on required command)

Global Data: None

Arguments:
command — specifies targets which have to be addressed

parameters — depends on required command, for more information
see Table 5-16

Range Issues: None

Special Issues: None

Example:

IOCTL (PORTA, PORT SET PINS, PORT PIN1); /* Sets pinl on the
PORT A to level H*/

5.13.4 API Specification

User’'s Guide

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

120

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Port Drivers

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)

void IOCTL (module, command, parameters);
UByte IOCTL (module, command, parameters);
UWordl6IOCTL (module, command, parameters) ;
void IOCTL (module, command, *parameters) ;
UByte IOCTL (module, command, *parameters) ;
UWordl6IOCTL (module, command, *parameters) ;

Description:
A MACRO for operation with a peripheral register is called according
to the command and value parameters.

Example:

The following command sets bit CPOL (clock polarity) in the register
SPCR to 1.

IOCTL (SPI, SPI_CLOCK POLARITY, SPI POSITIVE) ;

Arguments:

module (in) — specify module, in this case the module can be:
PORTA, PORTB, PORTC, PORTD, PORTE, or PORTF

command (in) — specify target which have be addressed

parameters (in, inout, out) — data passed to the IOCTL macro
function

All commands and appropriate parameters are shown in Table 5-17.
The table uses these conventions:

* Items separators
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)

e Implementation
f = function
M = macro

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 121

For More Information On This Product,
Go to: www.freescale.com



|
y

y
A

Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-17. Port Driver Macros and Functions Commands (Sheet 1 of 2)

. Notes
Command Parameters( Description @
PORT_INIT NULL Static conflguratlon according f
appconfig return 0
PORT_WRITE_DATA
Port identifier: PORTA, PORTB, PORTC, Ubyte in <0..0xFF> |PTA = 0..0xFF M
PORTE, PORTF
SPI_GET_CONTROL_REG NULL return PTA (UByte) M
PORT_SET_PINS §8§$—§:mg : §8§$—§:m$ : PTx = PTx | BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is A,B,C,E or F M@ 4)
PORTE, PORTF PORT_PIN4 | PORT_PINS | and vy is 0|1]2|3|4|5|6|7
' PORT_PING6 | PORT_PIN7| y
PORT_CLEAR_PINS §8§$—§:mg : §8§$—§:m$ : PTx = PTx & ~BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is AB,C,Eor F M®. @)
PORTE, PORTF PORT_PIN4 | PORT_PINS | and y is 0[1]2|3]4/5|6|7
' PORT_PING6 | PORT_PIN7| y
PORT_TOGGLE_PINS §8§$—§:mg : §8§$—§:m$ : PTx = PTx "BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is AB,C,Eor F M®
PORTE, PORTF PORT_PIN4 | PORT_PINS | and y is 0[1]2|3]4/5/6|7
' PORT_PING6 | PORT_PIN7| y
PORT_GET_PINS igg—i:mg : igg—im : return (PTx & BITy)&&BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is AB,C,Eor F Mm®
PORTE, PORTF PORT_PIN4 | PORT_PINS | and y is 0[1]2|3]4/5|6|7
' PORT_PIN6 | PORT_PIN7| y
PORT_SET_PINO ~
Port identifier: PORTA, PORTB, PORTC, PORT_L /PORT_H \lj)v-lf;)e(?:-)[)l(g; g/ClE or E M
PORTE, PORTF T
PORT_SET_PIN1 ~
Port identifier: PORTA, PORTB, PORTC, PORT_L /PORT_H \ljv-ll’?e(?:-)[)l(i; g/ClE or E M
PORTE, PORTF T
PORT_SET_PIN2 ~
Port identifier: PORTA, PORTB, PORTC, PORT_L/PORT_H \E)VE)G(F:I)I(SZ; g/ClE or E M
PORTE, PORTF T
PORT_SET_PIN3 ~
Port identifier: PORTA, PORTB, PORTC, PORT_L/PORT_H \E)VE);F:I)S; g/ClE or E M
PORTE, PORTF T
PORT_SET_PIN4 _
Port identifier: PORTA, PORTB, PORTC, PORT_L/PORT_H \E)VE)G(F:I)I(S?A_BOC/:]-E or E M
PORTE, PORTF T
PORT_SET_PINS _
Port identifier: PORTA, PORTB, PORTC, PORT_L/PORT_H EVEEF:ITS; g/ClE or E M
PORTE, PORTF T
PORT_SET_PIN6 ~
Port identifier: PORTA, PORTB, PORTC, PORT_L/PORT_H PTX_PTx0=0/1 M

PORTE

where x is A,B or E

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

122

On-Chip Drivers

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com




O
]

Freescale Semiconductor, Inc.

On-Chip Drivers

Port Drivers

Table 5-17. Port Driver Macros and Functions Commands (Sheet 2 of 2)

. Notes
Command parameters@® Description @
PORT_SET_PIN7 PTx_PTx0=0/1
Port identifier: PORTA, PORTB, PORTE, PORT_L /PORT_H where x is A,B,C or E M
PORT_WRITE_DIR
Port identifier: PORTA, PORTB, PORTC, Ubyte in <0..0xFF> | DDRx = 0..0xFF M
PORTE, PORTF
PORT_SET_DIR_OUT E8§$—$:mg : E8§$—$:mé : DDRx = DDRx | BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is AB,C,Eor F M@
PORTE, PORTF PORT_PIN4 | PORT_PINS | and y is 0[1]2|3]4/5/6|7
' PORT_PING6 | PORT_PIN7| y
PORT_SET_DIR_IN E8§$_§:Eg : E8§$_§:Eé : DDRx = DDRx & ~BITy
Port identifier: PORTA, PORTB, PORTC, - - where x is AB,C,Eor F M@
PORTE, PORTF PORT_PIN4 | PORT_PINS | and y is 0[1]2|3]4/5|6|7
' PORT_PING6 | PORT_PIN7| y

1. First item in the parameters column is the default.

2. f = function
M = macro

3. When the parameter contains more than one pin the hole register is read and rewrite. It means that if some pins are defined
as inputs, than its actual state is read and write to the output register. It can change state of port if the port direction is
changed. User also have to make sure that no interrupt can occur, where the same register is affected.

4. If parameter is constant and contains less than 4 pins, then using more commands with one pin setting is recommended.
The pins will not be set at the same time, but total time will be lower and the command will not have any affect to other pins

5. The commands return true if one or more of selected pins are at level H, else return false. If only one pins selected the

command return state of this pin.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,

Go to: www.freescale.com

123



vy
4\

Freescale Semiconductor, Inc.

On-Chip Drivers

5.14 WDO Driver

The WDO driver performs both the initial configuration during startup
and IOCTL commands for controlling the peripheral module.

The initial configuration allows the disabling of WDO by defining the
WDO_COPD WDO_DISABLE in appconfig.h. The commands for
peripheral module control are performed by macros.

5.14.1 API Definition

Required files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "wdodrv.h"

NOTE: The included files must be kept in order.

The static initialization of WDO allows disabling the COP by setting the
COPD in the CONFIG register. The CONFIG register is writing in

PreMainlnit(), which is located in config.c. The PreMainlinit() is called
automatically before main().

Example 19. Static Initialization of the WDO Driver

Next definition have to be in appconfig.h

/****************************************************************************

* COP Initialization
*****************************************************************************/

/* 11111111 Write-Once-Register !!!11111 *
/* Config Register (CONFIG)
#define WDO_COPD WDO DISABLE /* WDO_ ENABLE / WDO DISABLE * /

NOTE: The previous definition disables watchdog during CPU initialization.

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

124

On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
Analog-to-Digital Converter (ADC) Driver

5.15 Analog-to-Digital Converter (ADC) Driver

NOTE:

5.15.1 API Definition

This section describes the API for the 68HC908MRxx analog-to-digital
converter (ADC) on-chip module. The functionality of the ADC module
itself is described in the specific device data sheet.

The ADC driver is dedicated to controlling the on-chip ADC module. It
comprises an initialization routine for statical configuration refer to of the
module data sheet and to the IOCTL commands for controlling the
module during run-time.

IOCTL commands for controlling the ADC module are implemented as:
1. Macros (in-line code — short code)

2. Functions (called function — longer code)

Some commands are implemented both as macros and as functions. In
this case, the implementation which best suits an application can be
chosen.

Required Header File(s):
These header files are needed in order to use the ADC driver.

#include "sys.h"
#include "arch.h"
#include "adcdrv.h"
#include "periph.h"
#include "appconfig.h"
#include "config.h"

5.15.2 Configuration Items

The symbols used in macro definitions for the static configuration of ADC
module are summarized here. Initialization is performed by the adclInit()
function during the initialization process.

The statical configuration routine adclnit() sets the ADC module
according to the user setting specified in appconfig.h which overwrites
the default configuration of the registers.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

On-Chip Drivers 125

For More Information On This Product,
Go to: www.freescale.com



4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Initialization process, divided into three parts:

1. Setting of the write-once registers (performed in the premain
function).

2. Setting of the registers with defined reset states.

— The function adclnit() sets the ADC registers according to the
application statical configuration file appconfig.h if the user
setting differs from the default reset state of the register.

— Refer to table Table 5-10 with configurable items.
3. Setting of the registers with undefined reset state.

— The function adclnit() set the ADC registers according to the
appconfig.h file.

— Refer to table Table 5-18 for configurable items.
See Example 16 and Example 21 for more details.

Code to initialize the ADC driver is automatically included in the SDK
project by inserting the following line into appconfig.h:

#define INCLUDE ADC /* includes ADC code to application */

Items Separators:
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)
CAPITAL = constant (in)

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

126 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Analog-to-Digital Converter (ADC) Driver

Table 5-18. Configuration Items for appconfog.h

Configurable Items

Parameters

Description

ADC_INPUT_CLOCK

/ ADC_CGMXCLK
/ ADC_BUS_CLK

Set the ADC clock source write to ADICLK
bit of the ADC Clock Register (ADCLK)
during initialization

ADC_CLOCK_PRESCALER

/ ADC_CLK_DIV_1
/ ADC_CLK_DIV_2
/ ADC_CLK_DIV_4
/ ADC_CLK_DIV_8
/ ADC_CLK_DIV_16

Set ADC prescaler in the ADC Clock
Register (ADCLK) to derive the internal
ADC clock during initialization

ADC_RESULT_MODE

/ ADC_TRUNCATE_8BIT

/ ADC_JUSTIFY_RIGHT

/ ADC_JUSTIFY_LEFT

/ ADC_JUSTIFY_LEFT_SIGN

Set the result justification mode in the ADC
Clock Register (ADCLK) during
initialization

ADC_CONVERSION

/ ADC_SINGLE (1)
/ ADC_CONTINUOUS (2)

Select the type of conversion
(1) after conversion waits for new ADC
start
(2) ADC works in loop mode — ISR at the
end of conversion is not generated

ADC_INT

/ ADC_DISABLE
/ ADC_ENABLE

Enable or disable interrupt after end of
conversion

ADC_COMPLETE_CALLBACK

Pointer to the user callback
function

Create the statical binding to the used
conversion complete function

ADC_ENABLE_SCAN_CHANNELS

NONE

Enable buffered mode of ADC device when
ADC converts the channels specified in
ADC_CHANNEL_LIST and store it to
ADC buffer. After finishing the conversion
the ADC_COMPLETE_CALLBACK is
generated to enable user to process the
converted data from the buffer.

ADC_CHANNEL_LIST

Pointer to the user channel list

Contains the list of channels to be converted
(statical binding) if the switching of the
channel lists is required during run time,
do not define this item in appconfig.h

ADC_BUFFER_SIZE

UByte Value

Specifies the number of items to be stored
in buffer

ADC_SAMPLE_TYPE

/ UByte / UWord16
/ SByte / SWord16

ADC_SAMPLE_TYPE specifies the size of
items stored in buffer

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers
For More Information On This Product,

127

Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.15.3 API Specification
Function arguments for each routine are described as in, out, or inout.

1. inargument means that the parameter value is an input only to the
function

2. out argument means that the parameter value is an output only
from the function.

3. inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Item Separators:
/ only one of the specified items is allowed
| consolidation of items is allowed (item1|item2|item4)
& intersection of items is allowed (item1&item2&item3)
CAPITAL = constant (in)
First item or items in the column is default

Implemented as:

f = function

M = macro
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
128 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

5.15.3.1 ADC — Non-Buffered Mode

Freescale Semiconductor, Inc.

On-Chip Drivers
Analog-to-Digital Converter (ADC) Driver

Table 5-19. ADC Input/Output Control Commands

Non-Buffered Mode (Sheet 1 of 2)

See Table 5-19 for the ADC input/output control commands in on-
buffered mode.

Command parameters@ Description Notes@
Write UByte value to the ADC
ADC_WRITE_ADCLK UByte Clock Register (ADCLK) M
Get the content of the ADC Clock
ADC_GET_ADCLK NULL Register (ADCLK) M
Select the ADC clock source
ADC_SELECT_CLOCK ;ﬁgg—gﬁgﬂé?f write to ADICLK bit of the ADC M
- - Clock Register (ADCLK)
/ ADC_CLK_DIV_1
/ ADC_CLK_DIV_2 Set ADC prescaler in the ADC
ADC_SET_PRESCALER / ADC_CLK_DIV_4 Clock Register (ADCLK) to M
/ ADC_CLK_DIV_8 derive the internal ADC clock
/ ADC_CLK_DIV_16
Get ADC prescaler from the ADC
ADC_GET_PRESCALER NULL Clock Register (ADCLK) M
/ ADC_TRUNCATE_8BIT S .
- = Set the result justification mode in
/ ADC_JUSTIFY_RIGHT )
ADC_SET_MODE / ADC_JUSTIFY_LEFT EhATDéIEE)CIock Register M
/ ADC_JUSTIFY_LEFT_SIGN
Get the current result justification
ADC_GET_MODE NULL mode from the ADC Clock M
Register (ADCLK)
Write UByte value to the ADC
ADC_WRITE_ADSCR UByte Status and Control Register M
(ADSCR)
Get the content of the ADC
ADC_GET_ADSCR NULL Status and Control Register M
(ADSCR)
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User’'s Guide
MOTOROLA On-Chip Drivers 129

For More Information On This Product,

Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

Table 5-19. ADC Input/Output Control Commands
Non-Buffered Mode (Sheet 2 of 2)

Command pParameters@® Description Notes@

Start the conversion of selected
channel by write to the ADC

/ ADC_ATDO Status and Control Register
/ ADC_ATD1 (ADSCR)
/ ADC_ATD2
/ ADC_ATD3 (1) without affecting the Interrupt
/ ADC_ATD4 Enable bit (AIEN)
ADC_START (1) / ADC_ATD5
ADC_START_ID (2) / ADC_ATD6 (2) with disabling the ADC M
ADC_START_IE (3) / ADC_ATD7 Interrupt (AIEN = 0)
/ ADC_ATDS8
/ ADC_ATD9 (3) with enabling the ADC
/ ADC_VREFH Interrupt (AIEN = 1)
/ ADC_VREFL
/ ADC_POWER_OFF (4) (4) One conversion cycle is
required to recover from disable
state

Enable ADC interrupt at the end
of ADC conversion in the ADC
ADC_ENABLE_ISR NULL Status and Control Register M

(ADSCR) (AIEN = 1)

Disable ADC interrupt at the end
of ADC conversion in the ADC
ADC_DISABLE_ISR NULL Status and Control Register M

(ADSCR) (AIEN = 0)

Get the status of current
ADC_GET_CONVERSION_COMPLETE NULL conversion in the ADC Status M
and Control Register (ADSCR)

Get the 8 bit result from the ADC
Data Register (ADR)
ADC_GET_RESULTS8 NULL Note: Macro implementation M, f
works only for
ADC_TRUNCATE_8BIT

Get the 16 bit result from the ADC
ADC_GET_RESULT16 NULL Data Register (ADR) M, f

1. First item in the parameters column is the default.
2. f = function
M = macro

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

130 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

On-Chip Drivers
Analog-to-Digital Converter (ADC) Driver

Example 20. Example of Using ADC in Non-Buffered Mode

/************************************************************************

Statical ADC Initialization in appconfig.h

*************************************************************************/

#define
#define

#define
#define

#define

ADC_INT ADC_DISABLE
ADC_CONVERSION ADC_SINGLE
ADC_INPUT CLOCK ADC_BUS CLK
ADC_CLOCK_PRESCALER ADC_CLK DIV 8
ADC_RESULT MODE ADC_JUSTIFY LEFT

/************************************************************************

Application program
*************************************************************************/

#include "sys.h"
#include "arch.h"
#include "adcdrv.h"
#include "periph.h"
#include "appconfig.h"
#include "config.h"
static volatile SWordlé channell;
void main (void)
while (1)
{
/* Start conversion of the channel 0 with disabled interrupt */
IOCTL (ADC, ADC START ID, ADC ATDO);
/* Wait until conversion of the Channel 0 is completed */
while (! IOCTL (ADC, ADC CONVERSION COMPLETE, NULL)) ;
/* Get the result of conversion from ADC Data Registers
ADRH and ADRL and store it to channell */
channell = IOCTL(ADC, ADC GET RESULT16, NULL);
}
}
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA On-Chip Drivers 131

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

5.15.3.2 ADC — Buffered Mode

In this mode, the ADC driver samples data according to the user

specified channel list and pools them to the ADC software buffer. At the
end of the channel list conversion the user defined callback is called to
allow processing of the converted data. Refer to Table 5-18 for a list of
configuration items and Table 5-20 for input/output control commands.

I
Table 5-20. ADC Input/Output Control Commands — Buffered Mode

Command pParameters® Description Notes®@
ADC_SET CHANNEL_LIST Pointer to user Set the AD_C driver to use the specified f
channel list channel list for conversion
ADC_SCAN_CHANNELS NULL Starts the conversion of specified channel list.
ADC_GET_SAMPLE UByte Returns the sample specified by the parameter. M

Return the state of buffered conversion.
ADC_GET_SCAN_IN_PROGRESS |NULL If scanning of samples from channel list is finished M
returns 1 otherwise 0

1. First item in the parameters column is the default.
2. f = function
M = macro

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

132 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

]

Freescale Semiconductor, Inc.

On-Chip Drivers
Analog-to-Digital Converter (ADC) Driver

Example 21. Example of Using ADC in Buffered Mode

/************************************************************************

Statical ADC Initialization in appconfig.h
*************************************************************************/

#define ADC INT ADC_DISABLE
#define ADC CONVERSION ADC_SINGLE
#define ADC INPUT CLOCK ADC_BUS CLK
#define ADC CLOCK PRESCALER ADC_CLK DIV 8
#define ADC RESULT MODE ADC_JUSTIFY LEFT

#define ADC ENABLE SCAN CHANNELS

#define ADC SAMPLE TYPE SWordlé
#define ADC BUFFER SIZE 3
#define ADC CHANNEL LIST adcChannellist

#define ADC COMPLETE CALLBACK AdcCompleteCallback

/************************************************************************

Application program
*************************************************************************/

#include "sys.h"

#include "arch.h"

#include "adcdrv.h"

#include "periph.h"

#include "appconfig.h"

#include "config.h"

static volatile SByte channell;
static volatile SByte channel?2;
static volatile SWordlé channel3;

#pragma CONST SEG CONST ROM

const UByte adcChannellist([ ]

ADC ATDO,
ADC ATD1,
ADC ATD2,

}i

/* channel 0
/* channel 1 */
/* channel 3 */

#pragma CONST SEG DEFAULT

/* function prototype */
void AdcCompleteCallback (void) ;

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

On-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

133



\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

void main (void)

{
/* start the conversion of adcChannellist */
IOCTL (ADC, ADC SCAN CHANNELS, NULL) ;

}

/* Conversion complete function */

void AdcCompleteCallback (void)

{
/* Read Sample 0 (ChannelO) from sample buffer */
Channell = (SByte) (IOCTL(ADC, ADC GET SAMPLE, 0)>>8);

/* Read Sample 1 (ChannelO) from sample buffer */
Channel2 = (SByte) (IOCTL(ADC, ADC GET SAMPLE, 1)>>8);

/* Read Sample 1(ChannelO) from sample buffer */
Channel3 = (SWordlé)IOCTL (ADC, ADC GET SAMPLE, 2);

5.16 ADC Interrupt Handling

Refer to 3.6 Interrupts and Interrupt Service Routines for a detailed
description of interrupt handling.

5.16.1 Debug Strobes

Debug strobes allows the measuring of the interrupt duration on the user
specified GPIO port and pin utilizing scope. At the beginning of the
interrupt the strobe signal is asserted and when finished it is deasserted.
To specify the debug strobes, the following code has to be added into
appconfig.h file.

Debug Strobe Port and Pin Specification:

#define INT ADC DEBUG PORT PORT
#define INT ADC DEBUG PIN Pin Number
example of setting the debug strobe signal on PortA - piné:
#define INT ADC DEBUG PORT A
#define INT ADC DEBUG PIN 4
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
134 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

2 |

Freescale Semiconductor, Inc.

On-Chip Drivers
ADC Interrupt Handling

5.16.2 Debug Mode

The debug mode helps the user to find the unhandled interrupts. If the
INTERRUPT_DEBUG_MODE is defined in appconfig.h and an
unhandled interrupt occurs, the program will run an endless loop.

#define INT DEBUG MODE

5.16.3 User Callbacks

User can define two different types of callbacks for executing in his own
interrupt code.

1. This definition in appconfig.h file installs the user callback
function function_name_1 before the SDK routine and SDK
reload flag service.

#define INT ADC CALLBACK 1 function name 1

2. This definition in appconfig.h file installs the user callback
function function_name_2 after the SDK routine and SDK reload
flag service.

#define INT ADC CALLBACK 2 function name 2

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA On-Chip Drivers 135

For More Information On This Product,
Go to: www.freescale.com



A\ ¥ 4
4\ Freescale Semiconductor, Inc.

On-Chip Drivers

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

136 On-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

]

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK Targeting M68HCO08 Applications

6.1 Contents

6.2 Introduction

Section 6. Off-Chip Drivers

6.2 Introduction. ........... ... ... 137
6.3  Light-Emitting Diode (LED) Driver . .................... 138
6.3.1 APIDefinition . . ... ... 138
6.3.2 Static Initialization. . . ......... .. ... .. . 138
6.3.3 API Specification ............ .. ... . 140
6.3.4 Functional Description . . ......... ... .. ... . .. ..., 142
6.4 Switch Driver. . . ... ... . .. . 143
6.4.1 APIDefinition . . ... ... 143
6.4.2 Static Initialization. . . .......... ... . .. . 143
6.4.3 API Specification ............ .. .. . 145
6.4.4 Functional Description . . ......... ... .. ... . . . ..., 147
6.4.4.1 switchCheck. . ....... . ... ... .. . ... . .. ... 147
6.4.4.2 switchFilt . ....... ... ... . . . 147

One strength of the 8-bit SDK is that it provides a high degree of
architectural and hardware independence for the application code. This
portability is achieved by the 8-bit SDK modular design which, in this
case, isolates external periphery into a set of defined, tested, and
documented application programming interfaces (APIs).

This section describes the APIs for off-chip drivers, forming the interface
between hardware and application software. All drivers for external
periphery allow pin assignments which, provides the drivers universal
usage.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA

Off-Chip Drivers 137

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Off-Chip Drivers

6.3 Light-Emitting Diode (LED) Driver

The light-emitting diode (LED) driver performs the standard LED
functions (e.g., LED on, LED off, and blinking). The user can assign a pin
and polarity for each LED.

6.3.1 API Definition

Required Files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "portdrv.h"
#include "leddrv.h"

NOTE: The included files must be kept in order.

6.3.2 Static Initialization

Call(s:)

SByte ledInit (void) ;

Description:
The ledlInit function sets port direction as an output for all pins
assigned to LED’s. The required pin and LED polarity assignment are
defined in appconfig.h (see Table 6-1).

Returns: O

Global Data: None

Arguments: None

Range Issues: None

Special Issues: None

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

138 Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

Example 22. Static Initialization of the LED Driver

Off-Chip Drivers
Light-Emitting Diode (LED) Driver

Following definition have to be in appconfig.h to assign the LED name to specified I/0

port and pin.

/* Modules for Static Configuration */
#define INCLUDE LED

/**************;*************************************************************

* LED Initialization
*****************************************************************************/

#define LED RED

#define SET LED RED POLARITY

#define LED MASK PORTC

C_PTC6

LED POSITIVE /* LED POSITIVE / LED NEGATIVE */

BIT4|BIT5|BIT6

NOTE:

LED name for pin 6.

Table 6-1. LED Driver Const

The previous definition assigns pins 4, 5, and 6 of port C for LED and the

ants Definition

Constant Name

Value

Description

LED_FLASHING

0..255

Number of calling function RefreshLed() between
toggle of flashing LED’s

LED LEDName

PTA_PTAO .. PTF_PTF5

Pin assignment
example:
#define LED_GREEN PTC_PTC6

SET_LEDName_POLARITY

LED_POSITIVE / LED_NEGATIVE

Polarity of LED definition

example:

#define SET_LED_GREEN_POLARITY
LED_POSITIVE

LED_MASK_PORTX

BSETO|BSET1|...|BSET7

Mask of pins used for LED at the port
example:

x=ABCDEF #define LED_MASK_PORTC BSET4|BSET5|BSET6
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Off-Chip Drivers 139

For More Information On
Go to: www.frees

This Product,
cale.com



\¥ 4
PR

Freescale Semiconductor, Inc.

Off-Chip Drivers

6.3.3 API Specification

NOTE:

User’'s Guide

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)

LED GET STATE (led)

LED SET STATE (led, value)

LED SET ON(led)

LED SET OFF (led)

LED TOGGLE (led)

LED SET FLASHING (led)

LED CLEAR FLASHING (led)

void ledRefresh (UByte LedFlashing) ;

Description:

All commands and appropriate parameters are given in Table 6-2.
The table uses the following conventions:

e Implementation
f — function
M — Macro

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

140

Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

Off-Chip Drivers
Light-Emitting Diode (LED) Driver

Table 6-2. LED Driver Macros and Functions
. Description 1
Function / MACRO Parameters (Value in Hex) Notes(?)
. DDRx =
Sbyte ledinit() None DDRX|LED_MASK_PORTX f
ledFlashing — perioda of LED’s | read actual state of all ports
. . flashing. The assigned to a switch
void ledRefresh(UByte ledFlashing) LED_FLASHING defined in have to be called in a timer f
appconfig.h can be used interrupt.
LED_OFF LEDName (User pin name) PTXPINy = LED_POLARITY M
(Const)
LED_ON LEDName (User pin name) PTXPINy = ILED_POLARITY M
(Const)
LED_TOGGLE LEDName (User pin name) PTXPINy = IPTX_PINy M
(Const)
LEDName (User pin name) Relevant bit in LedFlash=1;
LED_SET_FLASHING (Const) Switch on the LED M
LEDName (User pin name) Relevant bit in LedFlash=0;
LED_CLEAR_FLASHING (Const) Switch off the LED M
1) LEDName (User pin name)
LED_SET_STATE (LEDName, NewState) (Const.) PTXPINy = ILED_POLARITY S
example: 2) value: PTxPINY = LED POLARITY M@, 3), 4
LED_SET_STATE (LED_GREEN, _ON); _ON/ y= -
_OFF/ (Ubyte, in)
. return PTXPINy # )
return LED_GET_STATE (LEDName) LEDName (User pin name) LED_POLARITY M

1. f = function
M = macro

2. Users have to make sure that no interrupt, where the same register is affected, can occur during this command

3. The port is read before writing, that means that if some pins are defined as inputs its actual state is read and written to the
output register. It can change port state if the port direction is changed.

4. Name and polarity of the LED must be defined (see 6.3.2 Static Initialization).

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

User’'s Guide

MOTOROLA

Off-Chip Drivers

For More Information On This Product,
Go to: www.freescale.com

141



\¥ 4
PR

Freescale Semiconductor, Inc.

Off-Chip Drivers

6.3.4 Functional Description

Call(s:)

void ledRefresh (void)

Description:
The function toggles all flashing LED’s every ledFlashing call of the
function.

Return: None

Range Issues: None

Special Issues: None

NOTE: In Example 23 the LED_GREEN will be toggled every 200 ms (20

function calls).

Example 23. Static Initialization of the LED Driver

/* appconfig.h */

/* LED port assignment */

#define
#define
#define
#define

#define

#define

LED RED C_PTC6
SET LED RED POLARITY LED POSITIVE
LED GREEN C PTC4

SET LED GREEN POLARITY LED POSITIVE
LED MASK PORTC BIT4|BIT6

LED FLASHING 20 /* Periode of led flashing */

/* main.c */
void main (void)

LED SET FLASHING(LED GREEN) /* Set the geen led as flashing led */

void IsrTimerB Overflow (void)
{ /* 100Hz ISR */

ledRefresh (LED FLASHING) ;

User’'s Guide

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

142

Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



O
]

Freescale Semiconductor, Inc.

Off-Chip Drivers
Switch Driver

6.4 Switch Driver

The switch driver performs standard switch controlling. The user can
assign pin and polarity for each switch.

6.4.1 API Definition

Required files:

#include "types.h"
#include "sys.h"
#include "arch.h"
#include "appconfig.h"
#include "config.h"
#include "portdrv.h"
#include "switchdrv.h"

NOTE: The included files must be kept in order.

6.4.2 Static Initialization

Call(s:)

SByte switchInit (void) ;

Description:
The switchlinit function fill switch state structure by constants defined
in appconfig.h. In appconfig.h, the required pin, switch polarity
assignment and switch debounce are defined. See Table 6-1.

Returns: O

Global Data: None

Arguments: None

Range Issues: None

Special Issues: None

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Off-Chip Drivers 143

For More Information On This Product,
Go to: www.freescale.com



\ ¥ 4
4\ Freescale Semiconductor, Inc.

Off-Chip Drivers

Example 24. Static Initialization of the Switch Driver

The following definition has to be in appconfig.h in order to assign the
switches to a specific I/O port and pin.

NOTE: This definition assigns pins 4 and 5 of port A for switch and name of

switch.

/* Modules for Static Configuration */
#define INCLUDE SWITCH

/****************************************************************************

* LED Initialization
*****************************************************************************/

#define SWITCH REV_FWD SWITCH PTA4
#define SET SWITCH REV FWD POLARITY SWITCH POSITIVE
#define SWITCH START STOP SWITCH PTAS5
#define SET SWITCH START STOP POLARITY SWITCH POSITIVE

#define SWITCH MASK PORTA BIT4|BIT5

#define SWITCH DEBOUNCE 5 /*Filter for Switch ports*/

Table 6-3. Switch Driver Constants Definition

Constant Name Value Description

Number of unchanged pin states for accepting new

SWITCH_DEBOUNCE
- State

0..255

SWITCH_SwitchName bit assignment

The SwitchName can be
arbitrary name defined by user

SWITCH_PTAO .. SWITCH_PTF5

example:
#define SWITCH_START_STOP SWITCH_PTAS

SET_SwitchName_POLARITY
The SwitchName can be
arbitrary name defined
by user

SWITCH_POSITIVE /
SWITCH_NEGATIVE

polarity of switch definition

example:

#define SET_SWITCH_START_STOP_POLARITY
SWITCH_POSITIVE

SWITCH_MASK_PORTx

BSETO|BSETL]...|BSET7

Mask of pins used for switches at the PORT
example:

x=A.B.CD.EF #define SWITCH_MASK_PORTA BSET4|BSET5
User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications
144 Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

]

Freescale Semiconductor, Inc.

Off-Chip Drivers
Switch Driver

6.4.3 API Specification

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

e out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Call(s:)

SWITCH GET STATE (switchpin)

UByte switchCheck (void);

UByte SwitchFilt (switch sState * switchState, UByte
portState) ;

Description:
All commands and appropriate parameters are shown in Table 6-4.
The table uses the following conventions:

e Implementation

f — function

M — Macro
8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide
MOTOROLA Off-Chip Drivers 145

For More Information On This Product,
Go to: www.freescale.com



vy
4\

Freescale Semiconductor, Inc.

Off-Chip Drivers

Table 6-4. Switch Drivers Macros and Functions

: Description 1
Function / MACRO Parameters (Value in Hex) Notes®
INitSWITCHY() None DDRx = DDRX|LED_MASK_PORTXx f
Read actual state of all ports
switchCheck() None assigned to a switch which has to f
be called in a timer interrupt.
switchState — structure with state
of switches at actual port and
required parameters.
Insert: switchStatePTx, where x can Read actual state of defined port
SwitchFilt() be A,B,C,D,E,F which has to be called in a timer f
portState — state of actual port interrupt.
Insert: IOCTL(PORTYX,
PORT_GET_DATA, NULL),
where x can be A,B,C,D,E,F
return SWITCH_GET_STATE SwitchName (User pin name) Return portFiltState.Bits.Bitx » @
(SwitchName) P SWITCH_POLARITY M
1. f = function
M = macro
2. Name and polarity of the SWITCH must be defined (see 6.4.2 Static Initialization)
Table 6-5. Memory Consumption and Execution
Time of Functions
Cycles
Function Size Note
Min Typ Max
switchCheck() nx16 nx94 nx94 nx114 @
SwitchFilt() 58 82 82 102

1. n is the number of ports used for switches

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

146 Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



o

2 |

Freescale Semiconductor, Inc.

Off-Chip Drivers
Switch Driver

6.4.4 Functional Description

6.4.4.1 switchCheck

Call(s:)

void switchCheck (void)

Description:

The function calls the function SwitchFilt() for all ports assigned to a
switch.

Return:
0 if all switches are in stable position.
Range Issues: None

Special Issues: None
Example:

void IsrTimerB Overflow (void)
/* 1kHz ISR */
UByte checkSwitchResult;

checkSwitchResult = switchCheck () ;

6.4.4.2 switchFilt

Call(s:)

UByte switchFilt (switch sState * switchState, UByte portState)

Description:

The function compares the port’s current state and previous state
when the counter expires function and updates the filtered state of the
port.

Return:

Number of function calls necessary to update the filtered state of the
switches. If all swithes at the port are stable, returns O.

8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications User's Guide

MOTOROLA Off-Chip Drivers 147

For More Information On This Product,
Go to: www.freescale.com



\¥ 4
p

A Freescale Semiconductor, Inc.
Off-Chip Drivers
Parameters:

*switchState (in/out) — pointer to a structure where the status of
switches is for an actual port. Choose one from the next list:

&switchStatePTA
&switchStatePTB
&switchStatePTC
&switchStatePTD
&switchStatePTE
&switchStatePTF

portState(in) — actual state of port. To get the port state use one of
the following commands:

IOCTL
IOCTL
IOCTL
IOCTL
IOCTL
IOCTL

PORTA, PORT GET DATA, NULL
PORTB, PORT GET DATA, NULL
PORTC, PORT GET DATA, NULL
PORTD, PORT GET DATA, NULL
PORTE, PORT GET DATA, NULL
PORTF, PORT GET DATA, NULL

~ o~~~ o~ —~
L= = —

Range Issues: None
Special Issues: None
Example:

void IsrTimerB Overflow (void)
{ /* 1kHz ISR */
UByte checkSwitchResult;

SwitchFilt (&switchStatePTA, IOCTL(PORTA, PORT GET DATA, NULL)) ;

User's Guide 8-Bit Software Development Kit for Motor Control Targeting M68HCO08 Applications

148 Off-Chip Drivers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



[ ]

2 |

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com



[ ]

L |

Freescale Semiconductor, Inc.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;

Silicon Harbour Centre, 2 Dai King Street,

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software
implementers to use Motorola products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

0 MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

SDKHCO08AUG/D

For More Information On This Product,
Go to: www.freescale.com



	Revision History
	List of Sections
	Table of Contents
	List of Figures and Tables
	Section 1. General Description
	1.1 Contents
	1.2 Introduction
	1.3 Overview
	1.3.1 Features
	1.3.1.1 Core-System Infrastructure
	1.3.1.2 On-Chip Drivers
	1.3.1.3 Off-Chip Drivers
	1.3.1.4 Sample Applications
	1.3.1.5 PC Master Software


	1.4 Quick Start
	1.4.1 Installing CodeWarrior Development Tools
	1.4.2 Installing HC08 SDK
	1.4.2.1 Supplementary HC08 SDK Installation Steps
	1.4.2.2 Installing PC Master

	1.4.3 Required Hardware
	1.4.4 Building and Running Sample Application

	1.5 Rules and Coding Standards
	1.5.1 Rules
	1.5.1.1 Use of the C Language
	1.5.1.2 Use of Peripherals by Algorithms
	1.5.1.3 Use of Peripherals by Applications

	1.5.2 Coding Standards
	1.5.2.1 Naming Conventions
	1.5.2.2 Formatting
	1.5.2.3 Entry/Exit
	1.5.2.4 Self Modification
	1.5.2.5 Source Statements per Line
	1.5.2.6 Arithmetic Calculations
	1.5.2.7 Reserve Word Redefinition
	1.5.2.8 Recursion
	1.5.2.9 Data Initialization
	1.5.2.10 Global Variables
	1.5.2.11 Use of Parentheses
	1.5.2.12 GOTO
	1.5.2.13 Switch Statements
	1.5.2.14 Headers
	1.5.2.15 Data Typing
	1.5.2.16 Portability
	1.5.2.17 Macro Usage
	1.5.2.18 Re-entrance
	1.5.2.19 Code Comments



	Section 2. Directory Structure
	2.1 Contents
	2.2 Introduction
	2.3 Root Directory
	2.4 Applications Directory
	2.5 Src Directory
	2.6 Stationery Directory
	2.7 Docs Directory

	Section 3. Developing Software
	3.1 Contents
	3.2 Introduction
	3.3 Creating a New Project
	3.3.1 Metrowerks CodeWarrior IDE
	3.3.2 Cosmic Software Idea CPU08

	3.4 On-Chip Peripheral Initialization
	3.5 On-Chip Drivers Interface Description
	3.6 Interrupts and Interrupt Service Routines
	3.7 appconfig.h file

	Section 4. Core System Infrastructure
	4.1 Contents
	4.2 Introduction
	4.3 Boot Sequence
	4.3.1 peripheralInit()
	4.3.2 main()- User’s Application Code

	4.4 Data Types
	4.5 ArchIO and ArchCore Register Structures
	4.6 General Periphery Functions
	4.6.1 periphMemRead() - memory read
	4.6.2 periphMemWrite() - memory write

	4.7 Interrupts
	4.7.1 Processing Interrupts
	4.7.1.1 Interrupt Callbacks
	4.7.1.2 Interrupt Flag Service
	4.7.1.3 Interrupt Debug Strobes
	4.7.1.4 Interrupt Debug Mode
	4.7.1.5 Interrupt Processing Flow



	Section 5. On-Chip Drivers
	5.1 Contents
	5.2 Introduction
	5.3 Phase Locked Loop (PLL) Drivers
	5.3.1 API Definition
	5.3.2 Static Initialization
	5.3.3 API Specification

	5.4 PLL Interrupt Handling
	5.4.1 Debug Strobes
	5.4.2 Debug Mode
	5.4.3 User Callbacks

	5.5 Pulse-Width Modulator (PWM) Driver
	5.5.1 API Definition
	5.5.2 Static Initialization
	5.5.3 API Specification
	5.5.4 Functional Description
	5.5.4.1 PwmChargeBootStrap
	5.5.4.2 PwmUpdateScaledValue
	5.5.4.3 PwmUpdateScaledValue_8


	5.6 PWM Interrupt Handling
	5.6.1 Debug Strobes
	5.6.2 Debug Mode
	5.6.3 User Callbacks
	5.6.4 PWM Reload Flag

	5.7 Timer Drivers
	5.7.1 API Definition
	5.7.2 Static Initialization
	5.7.3 API Specification

	5.8 Timer Interrupt Handling
	5.8.1 Debug Strobes
	5.8.1.1 Timer Overflow Interrupts
	5.8.1.2 Channel Interrupts

	5.8.2 Debug Mode
	5.8.3 User Callbacks
	5.8.3.1 Timer Overflow Interrupts
	5.8.3.2 Channel Interrupts


	5.9 Serial Peripheral Interface (SPI) Drivers
	5.9.1 API Definition
	5.9.2 Static Initialization
	5.9.3 API Specification

	5.10 SPI Interrupt Handling
	5.10.1 Debug Strobes
	5.10.1.1 SPI Receive Interrupt
	5.10.1.2 SPI Transmit Interrupt

	5.10.2 Debug Mode
	5.10.3 User Callbacks
	5.10.3.1 SPI Receive Interrupt
	5.10.3.2 SPI Transmit Interrupt


	5.11 Serial Communications Interface (SCI) Driver
	5.11.1 API Definition
	5.11.2 Configuration Items
	5.11.3 API Specification
	5.11.3.1 SCI Input/Output Control Commands
	5.11.3.2 Read — Non-Blocking or Blocking Read from SCI Module
	5.11.3.3 Write — Non-Blocking or Blocking Write to SCI Module


	5.12 SCI Interrupt Handling
	5.12.1 Debug Strobes
	5.12.2 Debug Mode
	5.12.3 User Callbacks

	5.13 Port Drivers
	5.13.1 API Definition
	5.13.2 Static Initialization
	5.13.3 Input/Output Control (IOCTL)
	5.13.4 API Specification

	5.14 WDO Driver
	5.14.1 API Definition

	5.15 Analog-to-Digital Converter (ADC) Driver
	5.15.1 API Definition
	5.15.2 Configuration Items
	5.15.3 API Specification
	5.15.3.1 ADC — Non-Buffered Mode
	5.15.3.2 ADC — Buffered Mode


	5.16 ADC Interrupt Handling
	5.16.1 Debug Strobes
	5.16.2 Debug Mode
	5.16.3 User Callbacks


	Section 6. Off-Chip Drivers
	6.1 Contents
	6.2 Introduction
	6.3 Light-Emitting Diode (LED) Driver
	6.3.1 API Definition
	6.3.2 Static Initialization
	6.3.3 API Specification
	6.3.4 Functional Description

	6.4 Switch Driver
	6.4.1 API Definition
	6.4.2 Static Initialization
	6.4.3 API Specification
	6.4.4 Functional Description
	6.4.4.1 switchCheck
	6.4.4.2 switchFilt




