

M54HCT373 M74HCT373

OCTAL D-TYPE LATCH WITH 3-STATE OUTPUT

PRODUCT PREVIEW

- LOW POWER DISSIPATION $I_{CC} = 4 \mu A$ (MAX.) at $T_A = 25^{\circ}C$
- COMPATIBLE WITH TTL OUTPUTS V_{IH} = 2 V (MIN) V_{IL} = 0.8 V (MAX)
- OUTPUT DRIVE CAPABILITY 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN.)
- BALANCED PROPAGATION DELAYS tPLH = tPHL
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS373

DESCRIPTION

The M54/74HCT373 is a high speed CMOS OC-TAL D-TYPE LATCH WITH 3-STATE OUTPUT fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This 8-bit D-type latch is controlled by a latch enable input (LE) and an output enable input (OE). While the LE input is held high, the Q outputs will follow the data input precisely. When the LE is taken low, the Q outputs will be latched at the logic level of D input data.

While the OE input is low, the eight outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

The three-state output configuration and the wide choice of outlines makes bus-organized system simple.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

This integrated circuit has totally compatible, input and output characteristics, with standard 54/74 LSTTL logic families.

M54HCT/74HCT devices are designed to directly interface HSC²MOS systems with TTL and NMOS components. These devices are also plug in replacements for LSTTL devices giving a reduction in power consumption.

M54/74HCT373

TRUTH TABLE

	INPUTS		OUTPUTS			
ŌĒ	LE	D	Q (HCT373)			
Н	x	x	2			
L	L	x	No change [•]			
L	н	L	L			
L	Н	н	Н			

X: DON'T CARE

Z: HIGH IMPEDANCE

•: Q OUTPUT WAS LATCHED AT THE TIME WHEN THE LE INPUT IS TAKEN LOW LOGIC LEVEL.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	– 0.5 to 7	V	
VI	DC Input Voltage	- 0.5 to V _{CC} + 0.5	V	
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V	
l _{IK}	DC Input Diode Current	± 20	mA	
IOK	DC Output Diode Current	± 20	mA	
10	DC Output Source Sink Current Per Output Pin	± 35	mA	
ICC OF IGND	DC V _{CC} or Ground Current	± 70	mA	
PD	Power Dissipation	500 (*)	mW	
Tstg	Storage Temperature	- 65 to 150	°C	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: ≅ 65°C derate to 300 mW by 10 mW/°C: 65°C to 85°C

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage	4.5 to 5.5	V	
VI	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _A	Operating Temperature 74HC Series 54HC Series	- 40 to 85 - 55 to 125	°C	
t _r , t _f	Input Rise and Fall Time	0 to 500	ns	

RECOMMENDED OPERATING CONDITIONS

DC SPECIFICATIONS

Symbol	Parameter	Vcc	Test Condition		T _A = 25°C 54HC and 74HC			- 40 to 85°C 74HC		- 55 to 125°C 54HC		Unit
					Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
VIH	High Level Input Voltage	4.5 to 5.5			2.0	-	_	2.0	_	2.0	-	v
VIL	Low Level Input Voltage	4.5 to 5.5			_	-	0.8	-	0.8	_	0.8	v
V _{OH}	High Level Output Voltage	4.5	VIN	I _{OH}	4.4	4.5	_	4.4	_	4.4		
			V _{IH} or	– 20 μA							-	v
			VIL	– 6.0 mA	4.18	4.31	_	4.13	-	4.10	-	
V _{OL}	Low Level Output Voltage	4.5	VIN	IOL								
			V _{IH} or V _{IL}	20 µA	_	0.0	0.1	_	0.1	-	0.1	V
				6.0 mA	_	0.17	0.26	_	0.33	_	0.40	
loz	3-State Output Off-State Current	5.5	$\label{eq:VIN} \begin{array}{l} V_{IH} = V_{IH} \mbox{ or } V_{IL} \\ V_{OUT} = V_{\underline{C}\underline{C}} \mbox{ or } GND \end{array}$		_	_	±0.5	_	±5.0	-	±10.0	
I _{IN}	Input Leakage Current	5.5	V _{IN} = V _{CC} or GND		-	—	±0.1	_	±1	-	±1	μA
Icc	Quiescent Supply		$V_I = V_{CC}$ or GND		-	-	4	_	40		80	μA
lcc	Current	5.5	Per input: $V_{IN} = 0.5V$ or 2.4V Other input: V_{CC} or GND		-	_	2.0	_	2.9	-	3.0	mA

M54/74HCT373

Symbol	Parameter	v _{cc}	Test Condition	T _A = 25°C 54HC and 74HC			- 40 to 85°C 74HC		– 55 to 125°C 54HC		Unit
				Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	4.5		-	7	12	-	15	-	19	ns
t _{PLH} t _{PHL}	Propagation Delay Time (LE-Q)	4.5		-	23	35	-	44	_	53	ns
t _{PLH} t _{PHL}	Propagation Delay Time (D-Q)	4.5		-	23	35	_	44	_	53	ns
^t W(H)	Minimum Pulse Width (LE)	4.5		_	8	15	_	19	—	22	ns
t _s	Minimum Set-up Time	4.5		-	0	5	_	6	_	8	ns
t _h	Minimum hold Time	4.5		-	3	10	_	13	-	15	ns
t _{PZH}	3-State Output Enable Time	4.5	$R_L = 1 k\Omega$	_	23	35	_	44	_	53	ns
t _{PLZ} t _{PHZ}	3-State Output Disable Time	4.5	$R_L = 1k\Omega$	-	21	30	_	38	_	45	ns
CIN	Input Capacitance			_	5	10	_	10	_	10	pF
C _{OUT}	Output Capacitance			_	10	-	-	-	-	-	pF
C _{PD} (*)	Power Dissipation Capacitance			-	55	-	-	-	-	-	pF

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

Note (*) C_{PD} is defined as the value of IC's internal equivalent capacitance which is calculated from the operating current consumption without load (refer to Test Circuit).

Average opeating current is: I_{CC(opr.)} = C_{PD} • V_{CC} • f_{IN} + I_{CC}/8 (per Latch)

INPUT AND OUTPUT EQUIVALENT CIRCUIT

SGS-THOMSON

304

0V

VOH

VOL

SWITCHING CHARACTERISTICS TEST WAVEFORM

tPLH tPHE(LE-Q) ts, th, tw

tPHZ, tPHI

GND line.

OE

D

Q

The 1KΩ load resistors and the 50pF load capacitors

should be connected between each outputs and

All inputs except OE input should be connected to

V_{CC} or GND line such that output will be in high logic

6ns

90%

^tPHZ

level while OE input is held low.

6ns

tPZH-

S-10094

tel Z. tezi

The 1KΩ load resistors should be connected between outputs and V_{CC} line and the 50pF load capacitors should be connected between outputs and GND line. All inputs except OE input should be connected to Vcc line to GND line such that outputs will be in low logic level while OE input is held low.

TEST CIRCUIT ICC (Opr.)

