COS/MOS INTEGRATED CIRCUITS

PRELIMINARY DATA

DUAL TONE MULTIFREQUENCY GENERATOR

- 2.5 TO 5V SUPPLY RANGE
- VERY LOW POWER CONSUMPTION
- INTERNAL PULL-UP OR PULL-DOWN RESISTOR WITH DIODE PROTECTION ON ALL KEY-BOARD INPUTS
- \bullet ON-CHIP CRYSTAL CONTROLLED OSCILLATOR (f_o= 4.433619 MHz) WITH INTEGRATED FEEDBACK RESISTOR AND LOAD CAPACITORS
- LOW HARMONIC DISTORTION
- FIXED PRE-EMPHASIS ON HIGH-GROUP TONES
- FAST START-UP TIME
- LOW POWER CONSUMPTION IN STAND-BY MODE
- MUTE OUTPUT (M761 ONLY)
- ONE CONTACT PER KEY

The M761-M761A provides all the tone frequency pairs required for a DTMF Dialling System. Tones are obtained from an inexpensive TV crystal (f_0 = 4.433619 MHz) followed by two independent programmable dividers. The dividing ratio is controlled by the selected key. Keyboard format is 4 rows x 4 columns and a key is valid when a column and a row are connected together.

Internal logic prevents the transmission of illegal tones when more than one key is pressed. Individual tones can be obtained by grounding a column input or connecting a row input to V_{DD} . If no key is selected the oscillator turns off and the linear parts are strobed to decrease the total power consumption. A debounce output is available, for M761 only, to indicate that a key has been selected. D/A conversion is accomplished by a capacitive network allowing very low power consumption, very low distortion and an exceptional stability of tone level against temperature variations.

The tones are mixed in a resistive network; a unity gain amplifier is provided to realize a two pole active filter with only four external passive components.

SGS-ATES has also developed the LS342, DTMF line interface, which provides the stabilized supply for the M761-M761A from the telephone line and amplifies the output tones to the standardized levels. The M761 can also be interfaced with LS156 speech circuit with MF interface avoiding the need of the common spring set.

The M761 utilizes low voltage COS/MOS technology and is available in 18 pin dual in-line plastic or ceramic package; the M761A is available in 16 pin dual in-line package.

ABSOLUTE MAXIMUM RATINGS*

V _{DD} **	Supply voltage	-0.5 to +5.5	v
$V_{I}^{}$	Input voltage	-0.3 to V _{DD} +0.5	V
Ptot	Power dissipation	400	mW
Top	Operating temperature range	-25 to +50	°C
T _{stg}	Storage temperature range	-55 to +125	°Ċ

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

** All voltages are referred to V_{SS} pin voltage.

ORDERING NUMBERS:	M761 M761A	$\binom{B1}{B1}$ for dual in-line plastic package
	M761 M761A	${F1 \atop F1}$ for dual in-line ceramic package (frit seal)

MECHANICAL DATA (dimensions in mm)

Dual in-line plastic package (M761A)

Dual in-line ceramic package frit seal (M761)

Dual in-line plastic package (M761)

PIN CONNECTIONS

BLOCK DIAGRAM

(*) Not connected in M761A.

ELECTRICAL CHARACTERISTICS (All parameters are tested at $T_{amb} = 25^{\circ}$ C)

		Parameter	Test condition	Min.	Typ.	Max.	Unit	
DC C	HARAC	TERISTICS						
Supply	VDD	Voltage supply voltage			2.5	3	5	V
	IDD	Operating supply current	V _{DD} = 2.5V				2	mA
	IDDO	Stand-by supply current					0.5	mA
Row inputs	Чн	High level input current	V _{DD} = 2.5V	V _{IH} = 2.5V		60	80	μA
	lı∟	Low level input current	V _{DD} = 2.5V	V _{IL} = 0V	-		1	μA
	VIH	High level input threshold voltage			1			v
Column inputs	Чн	High level input current	V _{DD} = 2.5V	V _{IN} = 2.5V			1	μA
	I _{IL}	Low level input current	V _{DD} = 2.5V	V _{1L} = 0V		-60	-80	μA
	VIL	Low level input threshold voltage					V _{DD} -1V	v
Oscillator	Ŀн	High level input current	V _{DD} = 3V	V _{IN} = 3V			1	μA
	1 _{IL}	Low level input current	V _{DD} = 3V	V _{IL} = 0V			1	μA
	юн	High level output	V _{DD} = 2.5V	V _{OH} = 2V	-300	-500		μA
	IOL	Low level output current	V _{DD} = 2.5V	V _{OL} = 0.5V	300	500		μA
Digit. freq. outp.	lol	Low level output current (open drain output)	V _{DD} = 3V	V _{OL} = 1V	200			μA
Filter	۷o	Output DC voltage without tones	V _{DD} = 2.5V				200	mV

ELECTRICAL CHARACTERISTICS (continued)

		Parameter	Test condition	ons (see note 1)	Min.	Typ.	Max.	Unit
Filter	vo	Output DC voltage with 2 tones	V _{DD} = 2.5V	(see note 2)	0.81	0.84	0.87	V
Mute outputs	юн	Output drive current	V _{DD} = 2.5V	V _{OH} = 1.5V	-100			μA
outh	IOL	Output sink current	V _{DD} ≃ 2.5V	V _{OL} = 1V	20			μA
AC C	HARAC	TERISTICS						
ator	R _F	Feedback oscillator resistance			4	4.5		MΩ
Oscillator	CI	Input capacitance to V_DD				9.5	10.5	рF
	Co	Output capacitance to V_{DD}				10.5	11.5	рF
Filter Mixer	Z _{O1}	Output dynamic impedance with 2 tones	V _{DD} = 2.5V			10		kΩ
Filter	Z _{O2}	Output dynamic impedance with 2 tones	V _{DD} = 2.5V			2.5		kΩ
Tone characteristics	ΔF F	Max. output tone deviation from standard R1 697 Hz R2 770 Hz R3 852 Hz R4 941 Hz C1 1209 Hz C2 1336 Hz C3 1477 Hz C4 1633 Hz	At crystal fred f = 4.433619				+0.5 -0.2 +0.5 -0.6 +0.6 -0.4 -0.3 +1.1	% % % % %
	VLF	Low frequency tones amplitude at filter out	V _{DD} = 2.5V	(see note 3)	150	175	200	mVpp
	VHF	High frequency tones amplitude at filter out	V _{DD} = 2.5V	(see note 3)	195	220	245	mVpp
e		Pre-emphasis			1	2	3	dB
Ton		Unwanted frequency components at f = 3.4 kHz at f = 50 kHz					-33 -80	dBm dBm
		Total harmonic distortion for a single frequency	V _{DD} = 2.5V				2	%
	ts	Start up time	V _{DD} = 2.5V (see fig. 1)	(see fig. 2)		3	5	ms
	tr	Supply voltage rise time	V _{DD} = 2.5∨				250	ms

Note 1: This device has been designed to be connected to LS342 MF tone dialler line interface, from which it takes a V_{DD} = 2.5V min. therefore many parameters are tested at this value.

The value of DC output component at two different conditions of supply voltages, with two tones activated, Note 2: can be related as follows:

$$V_{DC'} = V_{DC} \frac{V_{DD'}}{V_{DD}}$$

Note 3: The value of AC output components (V_{LF} , V_{HF}) at two different conditions of supply voltages can be related as follows: VLF VLF

$$= \frac{V_{DD'}}{V_{DD}} \qquad \qquad V_{HF'} = V_{HF} \frac{V_{DD'}}{V_{DD}}$$

The values are measured with one tone at the output.

FUNCTIONAL DESCRIPTION

Oscillator (OSC. IN - OSC. OUT)

The oscillator circuit has been designed to work with a 4.433619 MHz crystal ensuring both fast start-up time and low current consumption.

When V_{DD} is applied and a key is activated two inverters are paralleled (see fig. below) to decrease the total r_{on} resistance.

After oscillations have started one of the two buffers is switched off and the current consumption is reduced to 2/3 of the initial value.

Feedback resistance and load capacitances are integrated on the chip ensuring good temperature performance.

When the device is supplied but no key is activated, the oscillator is in the stand-by mode to minimize power consumption.

Keyboard inputs $(C_1, C_2, C_3, C_4 - R_1, R_2, R_3, R_4)$

Each keyboard input has an internal protection circuit; columns have pull-up resistances while rows have pull-down resistances.

If a column input is grounded the corresponding single tone is generated; the same applies when a row input is connected to V_{DD} . When a single column input is connected to a single row input a dual tone is generated.

When two or more column or row inputs are activated no tone is generated.

FUNCTIONAL DESCRIPTION (continued)

Digital frequency output

This output is intended for testing only; when a single tone is activated, at this output is available a digital signal whose frequency is 16 times the selected output tone frequency. This output is an open collector N-channel transistor.

Mixer output

The two reconstructed sine waves are buffered then mixed in a resistive array network that also restores the DC output level.

Filter (Filter input, filter output)

A unity gain amplifier is available to realize a two pole active filter (see fig. below). The output of this amplifier is held low until tones are valid, it than rises to about 0.85V at V_{DD} = 2.5V. Tones are superimposed on this DC.

The output DC component is very precise and stable to allow DC coupling with the LS342 DTMF line inteface and LS156 speech circuit with MF interface.

FUNCTIONAL DESCRIPTION (continued)

The output dynamic impedance of the filter is about 2.5 k Ω . The following equivalent circuit should be applied during filter design:

It is evident that R_1 and R_2 should be kept high to avoid undue influence of Mixer and Filter output impedances.

The following values are suggested:

 $R_1 = 430 \text{ k}\Omega \pm 2\% - R_2 = 82 \text{ k}\Omega \pm 2\% - C_1 = 820 \text{ pF} \pm 10\% - C_2 = 120 \text{ pF} \pm 10\%$

Mute output

Mute output becomes active when a key is activated eliminating keyboard bounces and remains active for all the duration of tone transmission.

If the key is released before the oscillator produces the correct control signals, mute output is disabled.

Fig. 1 - Start-up time measurement test set

Fig. 2 - Start-up time definition

TYPICAL APPLICATIONS

M761 application circuit with electronic speech circuit.

M 761 M 761A

M761A application circuit with LS342 line interface

