
intel

M8251 PROGRAMMABLE COMMUNICATION INTERFACE

Synchronous and Asynchronous Operation

- Synchronous: 5-8 Bit Characters Internal or External Character Synchronization Automatic Sync Insertion
- Asynchronous: 5-8 Bit Characters Clock Rate — 1,16 or 64 Times Baud Rate Break Character Generation 1, 1¹/₂, or 2 Stop Bits False Start Bit Detection
- Baud Rate DC to 56k Baud (Sync Mode) DC to 8.1k Baud (Async Mode)
- Full Duplex, Double Buffered, Transmitter and Receiver
- Error Detection Parity, Overrun, and Framing
- Fully Compatible with 8080 CPU
- All Inputs and Outputs Are TTL Compatible
- Full Military Temperature Range -55°C to +125°C
- ±10% Power Supply Tolerance

The M8251 is a Universal Synchronous/Asynchronous Receiver/Transmitter (USART) Chip designed for data communications in microcomputer systems. The USART is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM Bi-Sync). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data transmission errors and control signals such as SYNDET, TxEMPT. The chip is constructed using N-channel silicon gate technology.

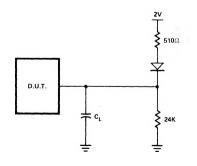
ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias55°C to +125°C
Storage Temperature
Voltage On Any Pin
With Respect to GND0.5V to +7V
Power Dissipation

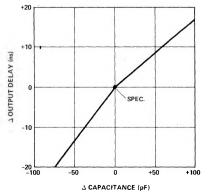
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$; $V_{CC} = 5.0V \pm 10\%$; GND = 0V


Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	5		0.8	v	
VIH	Input High Voltage	2.0		V _{CC}	V	
VOL	Output Low Voltage			0.45	v	I _{OL} = 1.6mA
Voн	Output High Voltage	2.4			V	I _{OH} = -100μA
I _{DL}	Data Bus Leakage			-50 10	μΑ μΑ	$V_{OUT} = .45V$ $V_{OUT} = V_{CC}$
I _{LI}	Input Load Current			10	μΑ	V _{IN} = 5.5V
Icc	Power Supply Current		45	80		

CAPACITANCE


 $T_A \approx 25^{\circ}C; V_{CC} = GND = 0V$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
GN	Input Capacitance			10	рF	fc = 1MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to GND.

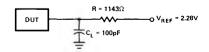
TEST LOAD CIRCUIT:

TYPICAL & OUTPUT DELAY VS. & CAPACITANCE (dB)

A.C. CHARACTERISTICS [2]

TA	= -55°C to	+125°C; '	V _{CC} = 5.0V	±10% ;	GND = 0V
----	------------	-----------	------------------------	--------	----------

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
t _{CY}	Clock Period	.420		1.35	μs	
t _{φW}	Clock Pulse Width	220			ns	
t _R ,t _F	Clock Rise and Fall Time	0		50	ns	
twR	WRITE Pulse Width	400			ns	
t _{DS}	Data Set-Up Time for WRITE	200			ns	
t _{DH}	Data Hold Time for WRITE	40			ns	
t _{AW}	Address Stable before WRITE	20			ns	
twA	Address Hold Time for WRITE	20			ns	
t _{RD}	READ Pulse Width	430			ns	
t _{DD}	Data Delay from READ			350	ns	
t _{DF}	READ to Data Floating [3]	25		200	ns	C _L =15pF to 100p
t _{AR}	Address (CE, C/D) Stable before READ	50			ns	
t _{RA}	Address (CE, C/D) Hold Time for READ	5			ns	
t _{DTx}	TxD Delay from Falling Edge of TxC			1	μs	
t _{SRx}	Rx Data Set-Up Time to Sampling Pulse	2			μs	
t _{HRx}	Rx Data Hold Time to Sampling Pulse	2			μs	
f _{Tx} [1]	Transmitter Clock Frequency 1X Baud Rate 16X and 64X Baud Rate	DC DC		56 529	KHz KHz	
f _{Rx} [1]	Receiver Clock Frequency 1X Baud Rate 16X and 64X Baud Rate	DC DC		56 529	KHz KHz	
t _{Tx}	TxRDY Delay from Center of Data Bit			16	CLK Period	
t _{Rx}	RxRDY Delay from Center of Data Bit	15		20	CLK Period	
t _{IS}	Internal Syndet Delay from Center of Data Bit	20		25	CLK Period	
t _{ES}	External Syndet Set-Up Time before Falling Edge of RxC			16	CLK Period	


Note 1: The TxC and RxC frequencies have the following limitation with respect to CLK.

For ASYNC Mode, t_{T_X} or $t_{R_X} \ge 4.5 t_{CY}$

For SYNC Mode, t_{Tx} or $t_{Rx} \ge 30 t_{CY}$

2. AC timings are measured at V_{OH} = 2.0V, V_{OL} = 0.8V, and load circuit of Figure 1. 3. Float timings are measured at V_{OH} = 2.48V, V_{OL} = 2.08V

Figure 1. Test Load Circuit.

