+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Abstract

General Description The MAX1249 10-bit data-acquisition system combines a 4-channel multiplexer, high-bandwidth track/hold, and serial interface with high conversion speed and ultra-low power consumption. It operates from a single +2.7 V to +5.25 V supply, and its analog inputs are software configurable for unipolar/bipolar and single-ended/differential operation. The 4 -wire serial interface directly connects to $\mathrm{SPI}^{\text {TM }}$, QSPI ${ }^{\text {TM }}$, and Microwire ${ }^{\text {TM }}$ devices without external logic. A serial strobe output allows direct connection to TMS320family digital signal processors. The MAX1249 works with an external reference, and uses either the internal clock or an external serial-interface clock to perform successive-approximation analog-to-digital conversions. This device provides a hard-wired SHDN pin and a soft-ware-selectable power-down and can be programmed to automatically shut down at the end of a conversion. Accessing the serial interface automatically powers up the MAX1249, and the quick turn-on time allows it to be shut down between all conversions. This technique can cut supply current to under $10 \mu \mathrm{~A}$ at reduced sampling rates. The MAX1249 is available in a 16 -pin DIP and a very small QSOP that occupies the same board area as an 8-pin SO. For an 8-channel version of this device, see the MAX148 data sheet. For a pin- and software-compatible 12-bit upgrade, see the MAX1247 data sheet.

Applications

Portable Data Logging
Data Acquisition
Medical Instruments
Pen Digitizers
Battery-Powered Instruments System Supervision

Pin Configuration

Features

- 4-Channel Single-Ended or 2-Channel Differential Inputs
- Single +2.7V to +5.25 V Operation
- Low Power: 0.9mA (133ksps, +3V supply) $10 \mu \mathrm{~A}$ ($1 \mathrm{ksps},+3 \mathrm{~V}$ supply) $1 \mu \mathrm{~A}$ (power-down mode)
- Internal Track/Hold, 133kHz Sampling Rate
- SPI/QSPI/Microwire/TMS320-Compatible 4-Wire Serial Interface
- Software-Configurable Unipolar or Bipolar Inputs
- 16-Pin QSOP Package (same area as 8 -pin SO)

Ordering Information

PART †	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX1249ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX1249BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX1249ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX1249BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 1

Ordering Information continued at end of data sheet.
\dagger Contact factory for availability of alternate surface-mount packages.

Typical Operating Circuit

SPI and QSPI are registered trademarks of Motorola, Inc. Microwire is a registered trademark of National Semiconductor Corp.

+2.7V to +5.25V, Low-Power,
 4-Channel, Serial 10-Bit ADC in QSOP-16

ABSOLUTE MAXIMUM RATINGS

QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................... 667 mW
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 800 mW
Operating Temperature Ranges
MAX1249_C_E... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX1249_E_E...................................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX1249_MJE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range ... $+300^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{COM}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$, external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), VREF $=2.500 \mathrm{~V}$ applied to VREF pin, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DC ACCURACY (Note 1)					
Resolution			10		Bits
Relative Accuracy (Note 2)	INL	MAX1249A		± 0.5	LSB
		MAX1249B		± 1.0	
Differential Nonlinearity	DNL	No missing codes over temperature		± 1	LSB
Offset Error		MAX1249A		± 1	LSB
		MAX1249B		± 2	
Gain Error (Note 3)		MAX1249A	0.125	± 1	LSB
		MAX1249B		± 2	
Gain Temperature Coefficient			± 0.25		ppm $/{ }^{\circ} \mathrm{C}$
Channel-to-Channel Offset Matching			± 0.05		LSB
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 0 Vp -p to $2.500 \mathrm{Vp}-\mathrm{p}, 133 \mathrm{ksps}, 2.0 \mathrm{MHz}$ external clock, bipolar input mode)					
Signal-to-Noise + Distortion Ratio	SINAD		66		dB
Total Harmonic Distortion	THD	Up to the 5th harmonic	-70		dB
Spurious-Free Dynamic Range	SFDR		-70		dB
Channel-to-Channel Crosstalk		65 kHz , 2.500Vp-p (Note 4)	-75		dB
Small-Signal Bandwidth		-3dB rolloff	2.25		MHz
Full-Power Bandwidth			1.0		MHz
CONVERSION RATE					
Conversion Time (Note 5)	tconv	Internal clock, $\overline{\text { SHDN }}=$ FLOAT	5.5	7.5	$\mu \mathrm{s}$
		Internal clock, $\overline{\text { SHDN }}=$ VDD	35	65	
		External clock $=2 \mathrm{MHz}, 12$ clocks/conversion	6		
Track/Hold Acquisition Time	$\mathrm{t}_{\text {ACQ }}$			1.5	$\mu \mathrm{s}$
Aperture Delay			30		ns
Aperture Jitter			<50		ps
Internal Clock Frequency		$\overline{\text { SHDN }}=$ FLOAT	1.8		MHz
		$\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$	0.225		
External Clock Frequency			0.1	2.0	MHz
		Data transfer only	0	2.0	

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{COM}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$, external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), VREF $=2.500 \mathrm{~V}$ applied to VREF pin, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG/COM INPUTS							
Input Voltage Range, SingleEnded and Differential (Note 6)		Unipolar, COM = 0V		0 to VREF			V
		Bipolar, COM = VREF / 2		\pm VREF / 2			
Multiplexer Leakage Current		On/off leakage current, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}			± 0.01	± 1	$\mu \mathrm{A}$
Input Capacitance		(Note 7)		16			pF
EXTERNAL REFERENCE							
VREF Input Voltage Range (Note 8)				1.0		$\begin{aligned} & \mathrm{VDD}+ \\ & 50 \mathrm{mV} \end{aligned}$	V
VREF Input Current		VREF $=2.500 \mathrm{~V}$			100	150	$\mu \mathrm{A}$
VREF Input Resistance				18	25		$\mathrm{k} \Omega$
Shutdown VREF Input Current					0.01	10	$\mu \mathrm{A}$
DIGITAL INPUTS (DIN, SCLK, $\overline{C S}$, SHDN)							
DIN, SCLK, $\overline{C S}$ Input High Voltage	VINH	$\mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		2.0			V
		VDD $>3.6 \mathrm{~V}$		3.0			
DIN, SCLK, $\overline{\mathrm{CS}}$ Input Low Voltage	VINL					0.8	V
DIN, SCLK, $\overline{\mathrm{CS}}$ Input Hysteresis	$\mathrm{V}_{\text {HYST }}$				0.2		V
DIN, SCLK, $\overline{C S}$ Input Leakage	In	VIN $=0 \mathrm{~V}$ or V_{DD}			± 0.01	± 1	$\mu \mathrm{A}$
DIN, SCLK, $\overline{\mathrm{CS}}$ Input Capacitance	CIN	(Note 7)				15	pF
$\overline{\text { SHDN }}$ Input High Voltage	VINH			VDD - 0.4			V
$\overline{\text { SHDN }}$ Input Low Voltage	$\mathrm{V}_{\text {INL }}$					0.4	V
$\overline{\text { SHDN }}$ Input Current	In	$\overline{\text { SHDN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$		± 4.0			$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Mid Voltage	VIM			1.1		D-1.1	V
$\overline{\text { SHDN }}$ Voltage, Floating	VFLT	$\overline{\text { SHDN }}=$ open		$\mathrm{V}_{\mathrm{DD}} / 2$			V
$\overline{\text { SHDN }}$ Maximum Allowed Leakage, Mid Input		$\overline{\text { SHDN }}=$ open				± 100	nA
DIGITAL OUTPUTS (DOUT, SSTRB)							
Output Voltage Low	VOL	ISINK $=5 \mathrm{~mA}$				0.4	V
		ISINK $=16 \mathrm{~mA}$				0.8	
Output Voltage High	V_{OH}	ISOURCE $=0.5 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Three-State Leakage Current	IL	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}$			± 0.01	± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}($ Note 7)				15	pF
POWER REQUIREMENTS							
Positive Supply Voltage	$V_{\text {DD }}$			2.70		5.25	V
Positive Supply Current	IDD	Operating mode, full-scale input	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$		1.8	2.5	mA
			VDD $=3.6 \mathrm{~V}$		0.9	1.5	
		Power-down	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$		3.5	15	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1.2	10	
Supply Rejection (Note 9)	PSR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.25 V , full-scale input, external reference $=2.500 \mathrm{~V}$			± 0.3		mV

+2.7V to +5.25V, Low-Power,
 4-Channel, Serial 10-Bit ADC in QSOP-16

0) TIMING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Acquisition Time	$\mathrm{t}_{\mathrm{ACQ}}$			1.5			$\mu \mathrm{s}$
DIN to SCLK Setup	tDS			100			ns
DIN to SCLK Hold	tD					0	ns
SCLK Fall to Output Data Valid	tDo	Figure 1	MAX1249_C/E	20		200	ns
			MAX1249_M	20		240	
$\overline{\overline{C S}}$ Fall to Output Enable	tDV	Figure 1				240	ns
$\overline{\mathrm{CS}}$ Rise to Output Disable	t ${ }^{\text {r }}$	Figure 2				240	ns
$\overline{\overline{C S}}$ to SCLK Rise Setup	tcss			100			ns
$\overline{\mathrm{CS}}$ to SCLK Rise Hold	tcSH			0			ns
SCLK Pulse Width High	t_{CH}			200			ns
SCLK Pulse Width Low	tcL			200			ns
SCLK Fall to SSTRB	tsstri	Figure 1				240	ns
$\overline{\text { CS }}$ Fall to SSTRB Output Enable	tSDV	External	gure 1			240	ns
$\overline{\text { CS }}$ Rise to SSTRB Output Disable	tSTR	External	gure 2			240	ns
SSTRB Rise to SCLK Rise	tsck	Internal	te 7)	0			ns

Note 1: Tested at $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} ; \mathrm{COM}=0 \mathrm{~V}$; unipolar single-ended input mode.
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has been calibrated.
Note 3: External reference (VREF $=+2.500 \mathrm{~V}$), offset nulled.
Note 4: Ground "on" channel; sine wave applied to all "off" channels.
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.
Note 6: The common-mode range for the analog inputs is from AGND to VDD.
Note 7: Guaranteed by design. Not subject to production testing.
Note 8: ADC performance is limited by the converter's noise floor, typically $300 \mu \mathrm{Vp}-\mathrm{p}$.
Note 9: Measured as $\mid \mathrm{V}_{\mathrm{FS}}(2.7 \mathrm{~V})$ - $\mathrm{V}_{\mathrm{FS}}(5.25 \mathrm{~V}) \mid$.

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

+2.7V to +5.25V, Low-Power,
 4-Channel, Serial 10-Bit ADC in QSOP-16

PIN	NAME	
1,9	VDD	Positive Supply Voltage
$2-5$	CH0-CH3	FUNCTION
6	COM	Ground reference for analog inputs. Sets zero-code voltage in single-ended mode. Must be stable to $\pm 0.5 \mathrm{LSB}$.
7	$\overline{\text { SHDN }}$	Three-Level Shutdown Input. Pulling $\overline{\text { SHDN low shuts the MAX1249 down; otherwise, the MAX1249 is }}$ fully operational. Letting $\overline{\text { SHDN float sets the internal clock frequency to 1.8MHz. Pulling SHDN high }}$ sets the internal clock frequency to 225kHz. See Hardware Power-Down section.
8	VREF	External Reference Voltage Input for analog-to-digital conversion.

Figure 1. Load Circuits for Enable Time

Figure 2. Load Circuits for Disable Time

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Abstract

Detailed Description The MAX1249 analog-to-digital converter (ADC) uses a successive-approximation conversion technique and input track/hold (T/H) circuitry to convert an analog signal to a 10-bit digital output. A flexible serial interface provides easy interface to microprocessors ($\mu \mathrm{Ps}$). No external hold capacitors are required. Figure 3 is a block diagram of the MAX1249.

Pseudo-Differential Input

The sampling architecture of the ADC's analog comparator is illustrated in the equivalent input circuit (Figure 4). In single-ended mode, $\mathrm{IN}+$ is internally switched to $\mathrm{CHO}-\mathrm{CH} 3$, and IN - is switched to COM. In differential mode, $\operatorname{IN}+$ and $I N$ - are selected from two pairs: $\mathrm{CH} 0 / \mathrm{CH} 1$ and $\mathrm{CH} 2 / \mathrm{CH} 3$. Configure the channels with Tables 2 and 3 . Please note that the codes for $\mathrm{CH} 0-\mathrm{CH} 3$ in the MAX1249 correspond to the codes for $\mathrm{CH} 2-\mathrm{CH} 5$ in the MAX148.
In differential mode, IN - and $\operatorname{IN}+$ are internally switched to either of the analog inputs. This configuration is pseudo-differential to the effect that only the signal at $\operatorname{IN+}$ is sampled. The return side ($\mathrm{IN}-$) must remain stable within $\pm 0.5 \mathrm{LSB}$ ($\pm 0.1 \mathrm{LSB}$ for best results) with respect to AGND during a conversion. To accomplish this, connect a $0.1 \mu \mathrm{~F}$ capacitor from IN- (the selected analog input) to AGND.
During the acquisition interval, the channel selected as the positive input ($\mathrm{IN}+$) charges capacitor Chold. The acquisition interval spans three SCLK cycles and ends on the falling SCLK edge after the last bit of the input control word has been entered. At the end of the
acquisition interval, the T/H switch opens, retaining charge on CHOLD as a sample of the signal at $\operatorname{IN}+$.
The conversion interval begins with the input multiplexer switching Chold from the positive input ($\left(\mathrm{N}_{+}\right)$to the negative input (IN-). In single-ended mode, IN - is simply COM. This unbalances node ZERO at the comparator's input. The capacitive DAC adjusts during the remainder of the conversion cycle to restore node ZERO to 0 V within the limits of 10 -bit resolution. This action is equivalent to transferring a charge of $16 \mathrm{pF} \times\left[\left(\mathrm{V}_{\mathbb{N}+}\right)-\left(\mathrm{V}_{\mathrm{IN}}-\right)\right]$ from CHOLD to the binary-weighted capacitive DAC, which in turn forms a digital representation of the analog input signal.

Track/Hold

The T/H enters its tracking mode on the falling clock edge after the fifth bit of the 8 -bit control word has been shifted in. It enters its hold mode on the falling clock edge after the eighth bit of the control word has been shifted in. If the converter is set up for single-ended inputs, IN - is connected to COM, and the converter samples the " + " input. If the converter is set up for differential inputs, IN - connects to the "-" input, and the difference of $|\mathrm{IN}+-\operatorname{IN}-|$ is sampled. At the end of the conversion, the positive input connects back to $\mathrm{IN}+$, and ChOLD charges to the input signal.
The time required for the T / H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens, and more time must be allowed between conversions. The acquisition time,

Figure 3. Block Diagram

Figure 4. Equivalent Input Circuit

MAXIM

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

$t_{A C Q}$, is the maximum time the device takes to acquire the signal, and is also the minimum time needed for the signal to be acquired. It is calculated by:

$$
t_{A C Q}=7 \times(R s+R I N) \times 16 p F
$$

where RIN $=9 k \Omega$, RS $=$ the source impedance of the input signal, and tACQ is never less than $1.5 \mu \mathrm{~s}$. Note that source impedances below $4 \mathrm{k} \Omega$ do not significantly affect the ADC's AC performance.
Higher source impedances can be used if a $0.01 \mu \mathrm{~F}$ capacitor is connected to the individual analog inputs. Note that the input capacitor forms an RC filter with the input source impedance, limiting the ADC's signal bandwidth.

Input Bandwidth
The ADC's input tracking circuitry has a 2.25 MHz small-signal bandwidth, so it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Analog Input Protection Internal protection diodes, which clamp the analog input to VDD and AGND, allow the channel input pins to swing from AGND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ without damage.

However, for accurate conversions near full scale, the inputs must not exceed VDD by more than 50 mV or be lower than AGND by 50 mV .
If the analog input exceeds 50 mV beyond the supplies, do not forward bias the protection diodes of off channels over 2 mA , as excessive current will degrade the conversion accuracy of the on channel.

How to Start a Conversion

A conversion is started by clocking a control byte into DIN. With $\overline{C S}$ low, each rising edge on SCLK clocks a bit from DIN into the MAX1249's internal shift register. After $\overline{\mathrm{CS}}$ falls, the first arriving logic "1" bit defines the control byte's MSB. Until this first "start" bit arrives, any number of logic " 0 " bits can be clocked into DIN with no effect. Table 1 shows the control-byte format.
The MAX1249 is compatible with SPI ${ }^{T M}$, QSPI ${ }^{T M}$, and Microwire ${ }^{\text {TM }}$ devices. For SPI, select the correct clock polarity and sampling edge in the SPI control registers: set CPOL $=0$ and $C P H A=0$. Microwire, SPI, and QSPI all transmit a byte and receive a byte at the same time. Using the Typical Operating Circuit, the simplest software interface requires only three 8-bit transfers to perform a conversion (one 8-bit transfer to configure the ADC, and two more 8 -bit transfers to clock out the 10-bit conversion result). See Figure 16 for MAX1249 QSPI connections.

Figure 5. 24-Clock External-Clock-Mode Conversion Timing (Microwire and SPI Compatible, QSPI Compatible with fCLK $\leq 2 \mathrm{MHz}$)
SPI and QSPI are trademarks of Motorola, Inc.
Microwire is a trademark of National Semiconductor Corp.

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Table 1. Control-Byte Format
$\left.\begin{array}{|lllllll|}\hline \begin{array}{l}\text { BIT 7 } \\ \text { (MSB) }\end{array} & \text { BIT 6 } & \text { BIT 5 } & \text { BIT 4 } & \text { BIT 3 } & \text { BIT 2 } & \text { BIT 1 }\end{array} \begin{array}{l}\text { BIT 0 } \\ \text { (LSB) }\end{array}\right]$

Table 2. Channel Selection in Single-Ended Mode (SGL/DIF = 1)

SEL2	SEL1	SELO	CH0	CH1	CH2	CH3	COM
0	0	1	+			-	
1	0	1		+		-	
0	1	0			+	-	
1	1	0				-	

Table 3. Channel Selection in Differential Mode (SGL/DIF $=0$)

SEL2	SEL1	SEL0	CH0	CH1	CH2	CH3
0	0	1	+	-		
0	1	0			+	-
1	0	1	-	+		
1	1	0			+	+

+2.7V to +5.25V, Low-Power,
 4-Channel, Serial 10-Bit ADC in QSOP-16

Simple Software Interface

Make sure the CPU's serial interface runs in master mode so the CPU generates the serial clock. Choose a clock frequency from 100 kHz to 2 MHz .

1) Set up the control byte for external clock mode and call it TB1. TB1 should be of the format: 1XXXXX11 binary, where the Xs denote the particular channel and conversion mode selected.
2) Use a general-purpose I/O line on the CPU to pull $\overline{\mathrm{CS}}$ low.
3) Transmit TB1 and, simultaneously, receive a byte and call it RB1. Ignore RB1.
4) Transmit a byte of all zeros ($\$ 00 \mathrm{hex}$) and, simultaneously, receive byte RB2.
5) Transmit a byte of all zeros ($\$ 00$ hex) and, simultaneously, receive byte RB3.
6) Pull $\overline{C S}$ high.

Figure 5 shows the timing for this sequence. Bytes RB2 and RB3 will contain the result of the conversion padded with one leading zero and three trailing zeros. The total conversion time is a function of the serial clock frequency and the amount of idle time between 8 -bit transfers. To avoid excessive T/H droop, make sure the total conversion time does not exceed $120 \mu \mathrm{~s}$.

Digital Output

In unipolar input mode, the output is straight binary (Figure 13). For bipolar inputs, the output is two's complement (Figure 14). Data is clocked out at the falling edge of SCLK in MSB-first format.

Clock Modes

The MAX1249 may use either an external serial clock or the internal clock to perform successive-approximation conversion. In both clock modes, the external clock shifts data in and out of the MAX1249. The T/H acquires the input signal as the last three bits of the control byte are clocked into DIN. Bits PD1 and PD0 of the control byte program the clock mode. Figures 6-9 show the timing characteristics common to both modes.

External Clock
In external clock mode, the external clock not only shifts data in and out, it also drives the analog-to-digital conversion steps. SSTRB pulses high for one clock period after the last bit of the control byte. Successive-approximation bit decisions are made and appear at DOUT on each of the next 12 SCLK falling edges (Figure 5). SSTRB and DOUT go into a high-impedance state when $\overline{\mathrm{CS}}$ goes high; after the next $\overline{\mathrm{CS}}$ falling edge, SSTRB will output a logic low. Figure 7 shows the SSTRB timing in external clock mode.

Figure 6. Detailed Serial-Interface Timing

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Figure 7. External-Clock-Mode SSTRB Detailed Timing

Figure 8. Internal Clock Mode Timing

The conversion must complete in some minimum time, or droop on the sample-and-hold capacitors may degrade conversion results. Use internal clock mode if the serial clock frequency is less than 100 kHz , or if serial-clock interruptions could cause the conversion interval to exceed $120 \mu \mathrm{~s}$.

Internal Clock

In internal clock mode, the MAX1249 generates its own conversion clock internally. This frees the $\mu \mathrm{P}$ from the burden of running the SAR conversion clock and allows the conversion results to be read back at the processor's convenience, at any clock rate from 0 MHz to 2 MHz . SSTRB goes low at the start of the conversion and then goes high when the conversion is complete. SSTRB will be low for a maximum of $7.5 \mu \mathrm{~s}(\overline{\mathrm{SHDN}}=\mathrm{FLOAT})$, during
which time SCLK should remain low for best noise performance.
An internal register stores data when the conversion is in progress. SCLK clocks the data out of this register at any time after the conversion is complete. After SSTRB goes high, the next falling clock edge will produce the MSB of the conversion at DOUT, followed by the remaining bits in MSB-first format (Figure 8). $\overline{\mathrm{CS}}$ does not need to be held low once a conversion is started. Pulling $\overline{\mathrm{CS}}$ high prevents data from being clocked into the MAX1249 and three-states DOUT, but it does not adversely affect an internal clock-mode conversion already in progress. When internal clock mode is selected, SSTRB does not go into a high-impedance state when $\overline{\mathrm{CS}}$ goes high.

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Figure 9 shows the SSTRB timing in internal clock mode. In this mode, data can be shifted in and out of the MAX1249 at clock rates exceeding 2.0 MHz , provided that the minimum acquisition time, $\mathrm{t}_{\mathrm{ACQ}}$, is kept above $1.5 \mu \mathrm{~s}$.

Data Framing
The falling edge of $\overline{\mathrm{CS}}$ does not start a conversion on the MAX1249. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the control byte. A conversion starts on the falling edge of SCLK, after the eighth bit of the control byte (the PDO bit) is clocked into DIN. The start bit is defined as:

The first high bit clocked into DIN with $\overline{\mathrm{CS}}$ low any time the converter is idle; e.g., after VDD is applied. OR
The first high bit clocked into DIN after bit 3 of a conversion in progress is clocked onto the DOUT pin.
If $\overline{\mathrm{CS}}$ is toggled before the current conversion is complete, the next high bit clocked into DIN is recognized as a start bit; the current conversion is terminated, and a new one is started.
The fastest the MAX1249 can run with $\overline{\mathrm{CS}}$ held low between conversions is 15 clocks per conversion.

Figure 10a shows the serial-interface timing necessary to perform a conversion every 15 SCLK cycles in external clock mode. If $\overline{C S}$ is tied low and SCLK is continuous, guarantee a start bit by first clocking in 16 zeros.
Most microcontrollers require that conversions occur in multiples of 8 SCLK clocks; 16 clocks per conversion will typically be the fastest that a microcontroller can drive the MAX1249. Figure 10b shows the serial-interface timing necessary to perform a conversion every 16 SCLK cycles in external clock mode.

Applic ations Information

Power-On Reset

When power is first applied, and if SHDN is not pulled low, internal power-on reset circuitry will activate the MAX1249 in internal clock mode, ready to convert with SSTRB = high. After the power supplies have been stabilized, the internal reset time is $10 \mu \mathrm{~s}$, and no conversions should be performed during this phase. SSTRB is high on power-up and, if $\overline{\mathrm{CS}}$ is low, the first logical 1 on DIN will be interpreted as a start bit. Until a conversion takes place, DOUT will shift out zeros.

Figure 9. Internal Clock Mode SSTRB Detailed Timing

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Figure 10a. External Clock Mode, 15 Clocks/Conversion Timing

Figure 10b. External Clock Mode, 16 Clocks/Conversion Timing

Power-Down

The MAX1249's automatic power-down mode can save considerable power when operating at speeds below the maximum sampling rate. Figure 12 shows the average supply current as a function of the sampling rate. You can save power by placing the converter in a lowcurrent shutdown state between conversions.
Select power-down via bits 1 and 0 of the DIN control byte with SHDN high (Tables 1 and 4). Pull SHDN low at any time to shut down the converter completely. $\overline{\text { SHDN }}$ overrides bits 1 and 0 of the control byte (Table 6).
Power-down mode turns off all chip functions that draw quiescent current, reducing IDD typically to less than $5 \mu \mathrm{~A}$. Figures 11a and 11b illustrate the various power-down sequences in both external and internal clock modes.

Software Power-Down
Software power-down is activated using bits PD1 and PD0 of the control byte. As shown in Table 4, PD1 and PD0 also specify the clock mode. When software shutdown is asserted, the ADC will continue to operate in the last specified clock mode until the conversion is complete. Then the ADC powers down into a low quiescent-current state. In internal clock mode, the interface remains active and
conversion results may be clocked out after the MAX1249 has entered a software power-down.
The first logical 1 on DIN is interpreted as a start bit and powers up the MAX1249. No additional start-up time is required. Following the start bit, the data input word or control byte also determines clock mode and power-down states. For example, if the DIN word contains PD1 $=1$, then the chip remains powered up. If PD0 = PD1 = 0, a power-down resumes after one conversion.

Hardware Power-Down

Pulling SHDN low places the converter in hardware power-down. Unlike software power-down mode, the conversion is not completed; it stops coincidentally with SHDN being brought low. SHDN also controls the clock frequency in internal clock mode. Letting SHDN float sets the internal clock frequency to 1.8 MHz . When returning to normal operation with SHDN floating, there is a tRC delay of approximately $2 \mathrm{M} \Omega \times \mathrm{C}_{\mathrm{L}}$, where CL_{L} is the capacitive loading on the SHDN pin. Pulling SHDN high sets the internal clock frequency to 225 kHz . This feature eases the settling-time requirement for the reference voltage. The MAX1249 can be considered fully powered up within $2 \mu \mathrm{~s}$ of actively pulling SHDN high.
+2.7V to +5.25V, Low-Power,
4-Channel, Serial 10-Bit ADC in QSOP-16
MAX1249

Figure 11a. Timing Diagram Power-Down Modes, External Clock

Figure 11b. Timing Diagram Power-Down Modes, Internal Clock

Table 4. Software Power-Down and Clock Mode

PD1	PD0	DEVICE MODE
1	1	External Clock
1	0	Internal Clock
0	1	Unassigned
0	0	Power-Down

Table 5. Hard-Wired Power-Down and Internal Clock Frequency

SHDN STATE	DEVICE MODE	INTERNAL CLOCK FREQUENCY
1	Enabled	225 kHz
Floating	Enabled	1.8 MHz
0	Power-Down	N / A

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Table 6. Full Scale and Zero Scale

UNIPOLAR MODE		BIPOLAR MODE		
Full Scale	Zero Scale	Positive Full Scale	Zero Scale	Negative Full Scale
VREF + COM	COM	VREF / 2 + COM	COM	-VREF / 2 + COM

External Reference

An external reference is required for the MAX1249. The reference voltage range is 1 V to V_{DD}.
At VREF, the input impedance is a minimum of $18 \mathrm{k} \Omega$ for DC currents. During a conversion, the reference must be able to deliver up to $250 \mu \mathrm{~A}$ DC load current and have an output impedance of 10Ω or less. If the reference has higher output impedance or is noisy, bypass it close to the VREF pin with a $0.1 \mu \mathrm{~F}$ capacitor.

Transfer Function

Table 6 shows the full-scale voltage ranges for unipolar and bipolar modes using a 2.5 V reference.
The external reference must have a temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to achieve accuracy to within 1 LSB over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Figure 13 depicts the nominal, unipolar input/output (I/O) transfer function, and Figure 14 shows the bipolar input/output transfer function. Code transitions occur halfway between successive-integer LSB values. Output coding is binary, with $1 \mathrm{LSB}=2.44 \mathrm{mV}(2.500 \mathrm{~V} /$ 1024) for unipolar operation and $1 \mathrm{LSB}=2.44 \mathrm{mV}$ [(2.500V / $2-2.500 \mathrm{~V} / 2) / 1024]$ for bipolar operation.

Layout, Grounding, and Bypassing

For best performance, use printed circuit boards. Wire-wrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package.
Figure 15 shows the recommended system ground connections. Establish a single-point analog ground ("star" ground point) at AGND, separate from the logic ground. Connect all other analog grounds and DGND to the star ground. No other digital system ground should be connected to this ground. The ground return to the power supply for the star ground should be low impedance and as short as possible for noise-free operation.

Figure 12. Average Supply Current vs. Conversion Rate

Figure 13. Unipolar Transfer Function, Full Scale (FS) $=$ VREF + COM, Zero Scale $(Z S)=C O M$
+2.7V to +5.25V, Low-Power,
4-Channel, Serial 10-Bit ADC in QSOP-16

Figure 14. Bipolar Transfer Function, Full Scale (FS) $=$ VREF/ $2+$ COM, Zero Scale $(Z S)=$ COM

High-frequency noise in the VDD power supply may affect the ADC's high-speed comparator. Bypass the supply to the star ground with $0.1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ capacitors close to pin 1 of the MAX1249. Minimize capacitor lead lengths for best supply-noise rejection. If the +3 V power supply is very noisy, a 10Ω resistor can be connected as a lowpass filter (Figure 15).

Figure 15. Power-Supply Grounding Connection

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

Figure 16. MAX1249 QSPI Connections

High-Speed Digital Interfacing with QSPI
The MAX1249 can interface with QSPI using the circuit in Figure 16 (fclk $=2.0 \mathrm{MHz}, \mathrm{CPOL}=0, \mathrm{CPHA}=0)$. This QSPI circuit can be programmed to do a conversion on each of the four channels. The result is stored in memory without taxing the CPU, since QSPI incorporates its own micro-sequencer.
The MAX1249 is QSPI compatible up to its maximum external clock frequency of 2.0 MHz .

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

TMS320LC3x-to-MAX1249 Interface

Figure 17 shows an application circuit to interface the MAX1249 to the TMS320 in external clock mode. The timing diagram for this interface circuit is shown in Figure 18. Use the following steps to initiate a conversion in the MAX1249 and to read the results:

1) The TMS320 should be configured with CLKX (transmit clock) as an active-high output clock and CLKR (TMS320 receive clock) as an active-high input clock. CLKX and CLKR on the TMS320 are tied together with the MAX1249's SCLK input.
2) The MAX1249's $\overline{\mathrm{CS}}$ pin is driven low by the TMS320's XF_I/O port, to enable data to be clocked into the MAX1249's DIN.
3) An 8-bit word ($1 \times X X X X 11$) should be written to the MAX1249 to initiate a conversion and place the device into external clock mode. Refer to Table 1 to select the proper XXXXX bit values for your specific application.
4) The MAX1249's SSTRB output is monitored via the TMS320's FSR input. A falling edge on the SSTRB output indicates that the conversion is in progress and data is ready to be received from the MAX1249.
5) The TMS320 reads in one data bit on each of the next 16 rising edges of SCLK. These data bits represent the $10+2$-bit conversion result followed by four trailing bits, which should be ignored.
6) Pull $\overline{\mathrm{CS}}$ high to disable the MAX1249 until the next conversion is initiated.

Figure 17. MAX1249-to-TMS320 Serial Interface

Figure 18. TMS320 Serial-Interface Timing Diagram

+2.7V to +5.25V, Low-Power,
 4-Channel, Serial 10-Bit ADC in QSOP-16

_Ordering Information (continued)

PART †	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX1249AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX1249BEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX1249AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX1249BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX1249AMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP	$\pm 1 / 2$
MAX1249BMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP ${ }^{*}$	± 1

\dagger Contact factory for availability of alternate surface-mount packages.

* Contact factory for availability of CERDIP package, and for processing to MIL-STD-883B.
\qquad Chip Information

TRANSISTOR COUNT: 2554

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADC in QSOP-16

				INCHES			MILLIMETERS	
				MIN		MAX	MIN	MAX
			A			0.200		5.08
			A1	0.015			0.38	
			A2	0.125		0.175	3.18	4.45
			A3	0.055		0.080	1.4	2.03
			B	0.016		0.02	0.41	0.56
			B1	0.04		0.06	1.14	1.65
			C	0.00		0.01	0.20	0.30
			D1	0.005		0.08	0.13	2.03
			E	0.300		0.325	7.62	8.26
			E1	0.240		0.310	6.10	7.87
				0.100			2.54	
			eA	0.300		-	7.62	-
			eB			0.400	-	10.16
			L	0.1		0.15	2.92	3.81
			DIM	PIN		CHES	MILLIM	TERS
					MIN	MAX	MIN	MAX
	TI	P	D	8	0.348	0.390	8.84	9.91
	DUAL-IN-LINE	P	D	14	0.735	0.765	18.67	19.43
		P	D	16	0.74	0.765	18.92	19.43
		P	D	18	0.885	0.915	22.48	23.24
	(P	D	20	1.015	1.045	25.78	26.54
		N	D	24	1.14	1.265	28.96	32.13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1996 Maxim Integrated Products
Printed USA
MIAXIAI is a registered trademark of Maxim Integrated Products.

