300kHz 10-Bit A/D Converter with Reference and T/H

Stresses beyond those listed under "Absolute Maxirfum Ratings" may cause permanent damage to the device. These are stress ratings only, and Tunctional operation of the device at these or any other conditions beyond those indicated in the operation
Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ADC ACCURACY						
Resolution			10			Bits
Differential Nonlinearity	DNL	No missing codes guaranteed			± 1	LSB
Total Unadjusted Error	TUE	MAX151A MAX151B			$\begin{gathered} \pm 1 \\ \pm 1.5 \end{gathered}$	LSB
Power-Supply Rejection		$V_{D D}= \pm 5 \% \quad V_{S S}$ fixed $V_{S S}= \pm 5 \% \quad V_{D D}$ fixed			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & \hline \end{aligned}$	LSB
DYNAMIC PERFORMANCE ($\mathrm{f}_{\mathrm{s}}=300 \mathrm{kHz}, \mathrm{V}_{\mathbb{N}}=5 \mathrm{~V}_{\text {P-p }}$ at 40 kHz)						
Signal-to-Noise Plus Distortion Ratio	$\mathrm{S} /(\mathrm{N}+\mathrm{D})$		55	58		dB
Total Harmonic Distortion	THD	First 5 harmonics		-70	-60	dB
Peak Harmonic or Spurious Noise				-70	-60	dB
Full-Power Input Bandwidth	FPBW			5		MHz
ANALOG INPUT						
Analog Input Range			VREF-		VREF+	V
Input Resistance	RIN			10		$\mathrm{M} \Omega$
Input Capacitance	CAIN	In series with 150Ω		150		pF
Input Current	IAIN	AIN $=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			± 10	$\mu \mathrm{A}$
REFERENCE INPUT						
Ladder Resistance		VREF + to VREF-	0.5	1		k Ω
Negative Reference Voltage			$\mathrm{VagND}^{\text {- }}$. 1		$V_{\text {AGN }}+0.1$	\checkmark
Reference Voltage (Note 2)		VREF+ to VREF-	1		$V_{D D}$	\checkmark
INTERNAL REFERENCE						
Output Voltage		$T_{A}=25^{\circ} \mathrm{C}$	3.970	4.000	4.030	\checkmark
Temperature Coefficient (Note 3)					60	ppm $/{ }^{\circ} \mathrm{C}$
External Load Current		Must not change during conversion (In addition to ladder current)			2	mA
Power-Suppy Rejection		$V_{D D}= \pm 5 \% \quad V_{S S}$ fixed $V_{S S}= \pm 5 \% \quad V_{\text {DD }}$ fixed			$\begin{aligned} & \pm 3 \\ & \pm 2 \end{aligned}$	mV
Output Impedance				0.4	1.5	Ω

300kHz 10-Bit A/D Converter

 with Reference and T/H

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUTS						
Input High Voltage	V_{IH}	$\overline{\mathrm{CS}}, \overline{\mathrm{RO}}$	2.4			V
Input Low Voltage	$V_{\text {IL }}$	$\overline{C S}, \overline{\mathrm{RD}}$			0.8	V
Input Current	1 N	$\overline{C S}, \overline{R D} ; \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}			± 10	$\mu \mathrm{A}$
Input Capacitance (Note 1)	CIN	$\overline{C S}, \overline{\mathrm{RD}}$			10	pF
LOGIC OUTPUTS						
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	BUSY, DBO-DB9 $\mathrm{I}_{\mathrm{SINK}}=1.6 \mathrm{~mA}$			0.4	V
Output High Voltage	$\mathrm{V}_{\text {OH }}$	$\overline{B U S Y}, \mathrm{DBO}-\mathrm{DB9} \mathrm{I}_{\text {SRC }}=200 \mu \mathrm{~A}$	4.0			V
Floating State Current	ILKG	DB0-DB9 VOUT $=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			± 10	$\mu \mathrm{A}$
Floating Capacitance (Note 1)	COUT				15	pF
POWER REQUIREMENTS						
Positive Supply Voltage	$V_{\text {D }}$		4.75		5.25	v
Negative Supply Voltage	V_{ss}		-4.75		-5.25	V
Positive Supply Current	$\mathrm{IV}_{\text {D }}$	$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V}$ REFOUT connected to VREF +		30	45	mA
Negative Supply Current	IVss	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V} \\ & \text { REFOUT connected to VREF }+ \end{aligned}$		25	40	mA
Power Dissipation	PD	$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V}$, Including Ladder; REFOUT connected to VREF +		275	425	mW

TIMING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	t_{CS}		0			0		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time	t_{CH}		0			0		ns
Data Access Time (Notes 4, 5)	$\mathrm{t}_{\text {RD }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		70	120		180	ns
Bus Relinquish Time (Notes 4, 5)	t_{DH}				70		100	ns
Conversion Time (Note 4)	tconv			1.9	2.5		2.5	$\mu \mathrm{s}$
$\overline{\mathrm{RD}}$ to BUSY Delay (Note 4)	t ${ }_{\text {Busy }}$	$C_{L}=100 \mathrm{pF}$		70	140		200	ns
Data Setup Time After BUSY (Notes 4, 5)	t_{B}				30		50	ns
Delay Between Conversions	t_{0}	With $\mathrm{R}_{\mathrm{S}}<50 \Omega$	500			500		ns
		With $\mathrm{R}_{\mathrm{S}}<1 \mathrm{k} \Omega$	1.5			1.5		$\mu \mathrm{s}$
RD Pulse Width	$t_{\text {fpw }}$	To minimize digital coupling in ROM Mode			300		300	ns
Aperture Delay	$t_{\text {AP }}$			30				ns
Aperture Jitter				100				ps

Note 1: Guaranteed by design, not 100\% tested.
Note 2: Reduce accuracy at low reference voltages. See Typical Operating Characteristics
Note 3:VREF Tempco $=\Delta V R E F / \Delta T$, where $\triangle V$ REF is the change in the reference voltage from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$ Note 4: 100% production teste
Note 5: All input control signals are specified with $t_{t}=t_{t}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a voltage level of +1.6 V tno and t_{g} are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V . t_{H} is defined measured with the load circuits of Figure 1 and defined as the time required for an output to cros
\qquad

ELECTRICAL CHARACTERISTICS（Continued）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUTS						
Input High Voltage	V_{IH}	$\overline{\mathrm{CS}}, \overline{\mathrm{RO}}$	2.4			v
Input Low Voltage	V_{11}	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$			0.8	V
Input Current	1 N	$\overline{C S}, \overline{R D} ; \mathrm{V}_{1 N}=0 \mathrm{~V}$ to V_{DD}			± 10	$\mu \mathrm{A}$
Input Capacitance（Note 1）	CIN	CS，$\overline{\mathrm{RD}}$			10	pF
LOGIC OUTPUTS						
Output Low Voltage	Vol	$\overline{\text { BuSY，}}$ DB0－DB9 $\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$			0.4	V
Output High Voltage	V_{OH}	BUSY，DB0－DB9 ISRC $=200 \mu \mathrm{~A}$	4.0			V
Floating State Current	ILKG	DB0－DB9 VOUT $=0 \mathrm{~V}$ to V_{DD}			± 10	$\mu \mathrm{A}$
Floating Capacitance（Note 1）	COUT				15	pF
POWER REQUIREMENTS						
Positive Supply Voltage	$V_{\text {D }}$		4.75		5.25	v
Negative Supply Voltage	$\mathrm{V}_{S S}$		－4．75		－5．25	V
Positive Supply Current	$\mathrm{IV}_{\mathrm{DD}}$	$\begin{aligned} & \overline{\overline{\mathrm{CS}}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V} \\ & \text { REFOUT connected to VREF }+ \end{aligned}$		30	45	mA
Negative Supply Current	IVss	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V} \\ & \text { REFOUT connected to VREF }+ \end{aligned}$		25	40	mA
Power Dissipation	PD	$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=0, \mathrm{AIN}=0 \mathrm{~V}$ ，Including Ladder；REFOUT connected to VREF +		275	425	mW

timing Characteristics

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	t_{cs}		0			0		ns
$\overline{\mathrm{CS}}$ to RD Hold Time	t_{CH}		0			0		ns
Data Access Time（Notes 4，5）	$\mathrm{t}_{\text {RD }}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		70	120		180	ns
Bus Relinquish Time （Notes 4，5）	t_{DH}				70		100	ns
Conversion Time（Note 4）	tconv			1.9	2.5		2.5	$\mu \mathrm{s}$
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{BUSY}}$ Delay（Note 4）	tbusy	$C_{L}=100 \mathrm{pF}$		70	140		200	ns
Data Setup Time After BUSY（Notes 4，5）	t_{B}				30		50	ns
Delay Between Conversions	t_{0}	With $\mathrm{R}_{\mathrm{S}}<50 \Omega$	500			500		ns
		With $\mathrm{R}_{\mathrm{S}}<1 \mathrm{k} \Omega$	1.5			1.5		$\mu \mathrm{s}$
$\overline{\mathrm{RD}}$ Pulse Width	trpw	To minimize digital coupling in ROM Mode			300		300	ns
Aperture Delay	$t_{\text {AP }}$			30				ns
Aperture Jitter				100				ps

Note 1：Guaranteed by design，not 100% tested．

Note 3：VREF Tempco $=\triangle$ VREF／ΔT ，where $\triangle V R E F$ is the change in the reference voltage from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$ ．
Note 5：All input control signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a voltage level of $+1.6 \mathrm{~V} . \mathrm{t}_{R D}$ and t_{B} a
measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V ． I_{DH} is defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2.

300kHz 10-Bit A/D Converter with Reference and T/H.

300kHz 10－Bit A／D Converter with Reference and T／H

Pin Description

PIN	NAME	FUNCTION
1	TP	Test Pin，leave open．
2	VREF＋	Positive Ladder Input，upper limit of reference span．Set the full－scale input voltage． Range：1V t V VD．
3	AIN	（Sampling）Analog Input 4 REFOUT＋4V Reference Output，usu－ ally connected to VREF＋．
$7-6$	DBX	（Reserved for DB0－1，future 12－bit version，$=$ LOW．）
11	DB0－DB3	Three－State Data Output， Bits $0-3$
12	DGSY	Busy Status Output，low when conversion is in pro－ gress．

PIN	NAME	FUNCTION		
13	V $_{\text {SS }}$	Negative Supply，－5V．		
14	$\overline{\mathrm{CS}}$	Chip Select Input，must be low for the ADC to recog－ nize $\overline{\text { RD．}}$		
15	$\overline{\text { RD }}$	Active Low Read Input， starts conversion when $\overline{\text { CS }}$ is low． output drivers whables the low．		
$16-21$	DB4－DB9 is			Three－State Data Output，
:---				
Bits 4－9				

＿＿＿＿＿＿＿Detailed Description

ADC Operation

The MAX151 half－flash A／D converter contains 3 comparators．The analog input is sampled by each comparator and compared to a resistive ladder DAC．A 5 －bit coarse conversion result is then generated from the ladder DAC，subtracted from the analog input，and bits are output in 10－bit wide parallel output format． The voltage at the top and the bottom of the reference ladder determines the MAX151＇s zero－scale and full－ to +5 V ．An internal reference provides a 4.000 V nominal output and is used by connecting REFOUT to VREF＋ and VREF－to AGND．The reference provides up to 2 mA of externat cad current in addition to the current MAX151 in a typical application．

Analog Input－T／H
The MAX151 input can be modeled as a 150 pF load in series with 150Ω（Figure 4）．The comparator＇s input capacitance acts as a＂hold＂capacitor and must be completely charged by the input signal with every A／D conversion．
The input signal sees AIN as a capacitor which is switched between itself and AGND．Between con－ versions，the signal is tracked by connecting the capacitor to AIN．When a conversion begins，the capa citor disconnects from the analog input，and the A／D performs its conversion．At the end of the conversion，it

The MAX151 can digitize a variety of high－speed inpu signals without an external sample－and－hold．Although the conversion time for the MAX151 is $1.9 \mu \mathrm{~s}$ ，the time the input must be stable is much less．
The time needed for the T／H to acquire an input signal is a function of how quickly the input capacitance can be charged．If the input signal＇s source impedance is high e acquisition time lengthens and more time must b allowed betwe

$$
t_{A C Q}=10\left(R_{S}+150 \Omega\right) 150 \mathrm{pF}
$$

（but never less than 500 ns ）
Where R_{S}＝source impedance of the input signal The MAX151 samples the analog input approximately 30 ns after RD and CS（which are internally NANDed） are pulled low．This aperture delay is caused by th propagation delay of the internallogic．The vatis called aperture jitter，and it is typically less than 100ps．
The architecture of the MAX151 allows signals with high lew rates to be converted without error（Figure 4）．Th errors caused by fast input signals are far less than the errors caused in a conventional SAR type ADC withou sample－and－hold：a $1 \mu \mathrm{~S}$ SAR converter would be unable external sample－and－hold．With no external sample and－hold，the MAX151 can typically measure $5 \mathrm{~V}_{p-p}$ 100 kHz waveforms．

300kHz 10-Bit A/D Converter with Reference and T/H

Figure 1. Load Circuits for Data Access Time Test

Figure 2. Load Circuits for Bus Relinquish Time Test

Figure 3. MAX151 Operational Diagram
6

300kHz 10-Bit A/D Converter

 with Reference and T/H

Figure 4. $\pm 4 \mathrm{~V}$ Bipolar Input with Driving Amplifier

Figure 6. Internal Reference

Input Drive Requirements

To fully utilize the speed advantages of the MAX151, the input should be driven by a fast settling op amp. The OP-42 and AD711 are 10 -bit accurate op amps which can drive the MAX151. Both settle to 0.01% in less than $1 \mu \mathrm{~s}$.
On the other hand, since the acquisition time can be user controlled by adding delay between conversions, a slow amplifier or no amplifier can be used. For example, with a $1 \mathrm{k} \Omega$ driving impedance, waiting $1.5 \mu \mathrm{~s}$ between conversions ensures 10-bit accuracy. The AX400 amplifier works well as an input buffer at these reduced conversion rates.
The analog input can be easily offset by the driving 4 V bipolar input range for DSP applications (Figure 4)

Input Current
The MAX151 input behaves somewhat differently from conventional ADCs. Data-sampling comparators take varying amouis on current from the input. Figure starts, AIN is disconnected from the analog input signal. When BUSY goes high at the end of a conversion, AIN is connected to 312 pF capacitors. During
this tracking phase (BUSY = High), the input capacitors

Figure 5. Equivalent Input Circuit

Figure 7. Power Supply as Reference
must be charged to the input voltage through the esistance of the internal analog switches (typically 150Ω). In addition, about 90 pF of stray capacitance must be charged.

Internal Reference

The MAX151 has a +4.00 V buried zener reference. The reference output is available at REFOUT and must be bypassed to AGND with a $10 \mu \mathrm{~F}$ tantalum capacitor in minimize noise by providing a low impedance path to ground for high-frequency signals. These capacitors should be connected even if the internal reference is not used. A resistor must NOT be connected between the bypass capacitors and REFOUT. In addition to the current it supplies to the ladder, the internal reference output buffer can source up to 2 mA for external circuitry.
To use the on-chip reference, connect REFOUT to referenced to AGND. to ground. The 4.00 V output is ment applications, use the internal reference. If desired an external reference can be used as an alternative (Figures 6-8)

300kHz 10－Bit A／D Converter with Reference and T／H

Figure 8．External Reference 2．5V Full－Scale
The VREF＋and VREF－inputs set the full－scale and zero－input voltages of the A／D．More precisely，the output code of all Os，and the voltage at VREF＋defines the input which produces an output code of all is （Figure 9）．

Gain and Offset Adjustment

Figure 9 shows the nominal unipolar transfer function Figure 9 shows the nominal unipolar transfer function integer Least Significant Bit（LSB）values Output coding is natural binary with $1 \mathrm{LSB}=3.91 \mathrm{mV}(4 \mathrm{~V} / 1024)$ for a 4 V reference．
End－point errors are very low．But，if the end points （offset and full scale）need to be adjusted to compen－ use the following techniques．In applications where full－scale adjustment is required，the connection in Figure 10 provides $\pm 0.5 \%$ ，or ± 5 LSBs of adjustment range．If both offset and full－scale range need adjust－ ment，the circuit in Figure 11 is recommended．Offset （ 0 V to +4 V input range），apply $1 / 2 \mathrm{LSB}(2 \mathrm{mV}$ ）to the analog input and adjust R12 so the digital output code changes between 0000000000 and 0000000001 ．To adjust full－scale，apply FS－3／2LSB（ 3.994 mV ）and adjust R8 until the output code changes between 1111111110 and 11111 11111．There may be slight interaction the connection in Figure 11 can be simplified by removing R5 and R6．

Starting a Conversion

The ADC is controlled by the $\overline{C S}$ and $\overline{R D}$ inputs．The T／H holds the value of the input signal，and a conversion is triggered by the falling edge of CS and RD．The BUSY goes high at the end of the conversion，and the result is latched into three－state output buffers．

Digital Interface
The MAX151 has two basic interface modes：The Slow

Figure 9．Ideal Transfer Function

Memory Mode requires handshaking，but the ROM Mode does not．The length of the RD pulse tells the chip which mode is anticipated．In both modes，conversions are initiated by a falling RD and CS signal
In the Slow Memory Mode，the μ P actively holds $\overline{\mathrm{RD}}$ low until a complete conversion has been performed． During the conversion，the data outputs are active with the data from the previous conversion．After the con－
version ends（ t conv）the $\mu \mathrm{P}$ can read the result of the conversion．The BUSY signal is used as a handshake to tell the $\mu \mathrm{P}$ when a conversion ends．
In the ROM Mode，a short $\overline{\text { RD }}$ pulse starts a conversion the width of this pulse should not exceed 300 ns ．

300kHz 10-Bit A/D Converter with Reference and T/H

Figure 10. Trim Circuit for Full-Scale Only ($\pm 0.5 \%$)

Figure 11. Offset $(\pm 20 \mathrm{mV})$ and Gain $(\pm 0.5 \%)$ Trim Circuit

Figure 12. Timing Diagram-Slow Memory Mode
MIスXIVI

300kHz 10－Bit A／D Converter with Reference and T／H．

Figure 13．Timing Diagram－ROM Mode
Layout，Grounding and Bypassing
For best system performance，printed circuit boards should be used（wire－wrap boards are not recom－ mended）．In layout，separate the digital and analog signal lines as much as possible．Analog and digital not run underneath the ADC package．
Figure 14 shows the recommended power－supply
grounding connections．A single－point analog STAR ground should be established at AGND separate from the logic ground．All other analog grounds and DGND should be connected to this STAR ground．No other digital system grounds should be connected here．The ground should be low impedance and as short as pos sible for noise－free operation．
Power supplies should be bypassed to the analog STAR ground with 0.1μ f ave minimupass capacitors noise rejection．

Dynamic Performance

ADCs have traditionally been evaluated by specifications such as zero and full－scale error，Integral Nonlinearity （INL），and Differential Nonlinearity（DNL）．Such param－ eters are accepted for specifying performance with DC processing where the A／D＇s impact on the system transfer is the main concern．The significance of various DC errors does not translate well to the dynamic case， so different tests are required．

Figure 14．Power－Supply Grounding Practice
High－speed sampling capability and up to 333 ksam ples $/ \mathrm{sec}$ throughput make the MAX151 ideal for wide－ band signal processing．To support these and other related applications，Fast Fourier Transform（FFT）tes techniques are used to guarantee the A／D＇s dynamic frequency response，distortion and noise at the rated throughput．This involves applying a low－distortion
sine wave to the ADC input and recording the digital conversion results for a specified time．The data is then analyzed using an FFT algorithm to determine spectral content．Conversion errors are seen as spectral ele ments outside of the fundamental input frequency

ルハハ×IルI

300kHz 10－Bit A／D Converter with Reference and T / H

Figure 15．FFT Plot for the MAX151

Signal－to－Noise Ratio

plitude of the fundamental
The ratio of the RMS amplitude of the fundamental
input frequency to the RMS amplitude of all other A／D output signals is the Signal－to－Noise Ratio（SNR）．This includes distortion and noise components．For this reason，the ratio is also referred to as $S /(N+D)$ ，or Signal－to－Noise plus Distortion
The theoretical minimum A／D noise is caused by quantization error and a direct result of the A／D＇s resolution：

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits of resolution．A perfect 10 －bit A／D can do no better than 62 dB ．Figure 15 shows the result of sampling a pure 40 kHz sinusoid at a 300 kHz rate．The FFT plot of the output shows the output level in various spectral bands（Figure 15）
By transposing the equation which converts resolution to SNR，the effective resolution or the＂Effective Number of Bits＂the A／D provides can be determined from the measured SNR

$$
N=(\text { SNR }-1.76) / 6.02
$$

Figure 16 shows the Effective Number of Bits as a function of the input frequency for the MAX151

Total Harmonic Distortion

The ratio of the RMS sum of all harmonics of the input signal to the fundamental itself is Total Harmonic Distortion（THD）．This is expressed as：

$$
T H D=20 \log \left[\sqrt{\left(V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+\ldots+V_{N}{ }^{2}\right)} / V_{1}\right]
$$

where V_{1} is the fundamental RMS amplitude and V_{2} to V_{N} are the amplitudes of the 2nd through nth harmonics．

300kHz 10-Bit A/D Converter with Reference and T/H

[^0]
[^0]:

