General Description

The MAX161 and MX7581 are CMOS single-chip 8-bit, 8 -channel data acquisition systems (DAS). Each chip includes an 8 -bit A/D converter, 8 -channel multiplexer, 8×8 dual port RAM with contention logic, and microprocessor compatible $1 / O$ logic. When combined with a voltage reference, a complete data acquisition of microprocessors.
Conversions take place on a continuous, channel sequencing basis using a microprocessor clock or port RAM so that any channel can be read at any time under microprocessor control.
The MAX161 is an enhanced, pin-compatible version of the MX7581. Improvements include faster conversion and interface timing, lower zero error and drift, reduced power dissipation, and availability in military temperature grades. All devices are available in 28 pin DIP and Small Outline (SO) packages

Applications
Digital Signal Processing
Data Loggers
Automatic Test Equipmen
Robotics
Process Contro

- Fast Conversion Time: 20 $\mathbf{\mu s e c}$ (MAX161)
- No Missing Codes Over Temperature
- On Chip 8×8 Dual Port RAM
- Interfaces Directly To Z80/8085/6800
- Ratiometric Capability
- Interleaved DMA Operation

Ordering Information

PART	TEMP. RANGE	PACKAGE*	ERROR
MAX161ACPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$17 / 8$ LSB
MAX161BCPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	3/4
MAX161CCPI	$0^{\circ} \mathrm{C}$	tic DIP	1/2 LSB
MAX161ACWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Oution	$1 / 8$
MAX161BCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outin	/4
MAX161CCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outlin	1/2 LS
MAX161CC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	$17 / 8$ LS
MAX161AEP1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	17/8LS
MAX161BEPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	astic DIP	14
MAX161CEPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	astic D	1/2 LSB
Max161AEW	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outlir	$17 / 8$ LSB
Max161BEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outi	3/4 L
MAX161CEWI	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outlin	1/2 LSB
MAX161AMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP*	17/8 L
MAX161BMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	3/4 LSB
MAX161CMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$1 / 2$ LSB
* All devices - 28 lead packages ** Maxim reserves the right to ship Coramic Packages in lieu of CERDIP Packages. Ordering information continued on last page.			

Pin Configuration

CMOS 8-Bit 8-Channel
Data Acquisition System

ABSOLUTE MAXIMUM RATINGS	
V_{00} to AGND	+7V
$V_{\text {DD }}$ to DGND	
AGND to DGND	$-0.3 V^{2} V_{D 0}$
Digital Input Voltage to DGND	
Digital Output Voltage to DGND (pins 12,20-27)	
CLK (pin 15) input voltage to DGND	-0.3v, $\mathrm{V}_{\text {D }}$
$V_{\text {fef }}(\mathrm{pin} \mathrm{10})$ to AGND	. $\pm 25 \mathrm{~V}$
$V_{\text {bofs }}($ in 1 1) to AGND	$\pm 17 \mathrm{~V}$

Operating Temperature Range	
MAX161XC, M $\times 7581 \mathrm{~J} / \mathrm{K} / \mathrm{L}$	$10+70^{\circ} \mathrm{C}$
M $\times 7581 \mathrm{~A} / \mathrm{B} / \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX161XE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX161XM, M $\times 75815 / \mathrm{T} / \mathrm{U}$	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 secs)	$+300^{\circ}$
Power Dissipation (Package)	
Plastic DIP (Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	1200 mW
Ceramic (Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	1000 mW
CERDIP (Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stross ratings only and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied Exposure to EIECTRICAL CHARACTERISTICS

CMOS 8-Bit 8-Channel Data Acquisition System

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNITS
DIGITAL OUTPUTS ((STAT, DBO-DB7)						
Output HIGH Voltage	V_{OH}	$\mathrm{I}_{\text {SOUACE }}=40 \mu \mathrm{~A}$	4.5	4.8		v
Output LOW Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$		0.2	0.6	V
Fioating State Leakage	ILKG	DBO-DB7		0.3	10	$\mu \mathrm{A}$
Floating State Capacitance		DBO-DB7, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$		5	10	pF
Output Code		See Figure 5 See Figure 7 See Figure 9		Binary entary ary		
POWER REQUIREMENTS						
Supply Voltage	V_{00}		+4.5	+5.0	+5.5	v
Supply Current	$\mathrm{Ido}^{\text {d }}$	MAX161, M×7581 Static MAX161 Dynamic (fclk $=4.0 \mathrm{MHz}$) MX7581 Dynamic (fflk $=1.2 \mathrm{MHz}$)		3 3 3	5 5 8	mA

Note 1. Typical offset temperature coefficient is $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for the MAX 161 and $\pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for the MX 7581 .
Note 2. Gain error is measured atter offset calibration. Maximum full scale change for any channel from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MN }}$ or $T_{\text {MAX }}$ is ± 2 LSBs.
Note 3. Typical change in $\mathrm{B}_{\text {ofs }}$ gain from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or $T_{\text {MAx }}$ is ± 2 LSBS.
Note 4. $\mathrm{R}_{\text {Bofs }} / \mathrm{R}_{\text {Ain }}$ mismatch causes transfer function rotation about positive full scale. The effect is an offset and a gain term when using the Note 5. Gircuits of Figure 7 and 9 .

TIMING CHARACTERISTICS - MAX161 (C $C_{L}=100 \mathrm{pF}$, See Figure 1)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
ALE Pulse Width	t_{H}	50	35		ns
Address Valld to Latch Set-Up Time	$\mathrm{tals}^{\text {als }}$	45	30		ns
Address Valid to Latch Hold Time	$t_{\text {alh }}$	10	0		ns
Address Latch to CS Set-Up Time	tics	10	0		ns
CS to Output Propagation Delay	$t_{\text {acc }}$		125	200	ns
C̄S Pulse Width	${ }^{\text {c/w }}$	250	175		ns
CS to Output Float Propagation Delay	${ }_{\text {t }}^{\text {c }}$ F		30	50	ns
CS to Low Impedance Bus	tclz		70	100	ns
Clock Frequency (Note 6)	'clk		6	4.0	MHz

TIMING CHARACTERISTICS - MX7581 (C $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, See Figure 1)

PARAMETER	SYMBOL	MIN	TYP	Max	UNITS
ALE Pulse Width	t_{H}	80	50		ns
Address Valic to Latch Ser-Up Time	$\mathrm{t}_{\text {ALS }}$	70	45		ns
Address Valid to Latch Hold Time	$\mathrm{t}_{\text {ALL }}$	20	10		ns
Address Latch to $\overline{\mathrm{CS}}$ Set-Up Time	tLCS	20	10		ns
$\overline{\overline{C S}}$ to Output Propagation Delay	$t_{\text {acc }}$		200	250	ns
CS' Pulse Wicth	${ }_{\text {tow }}$	280	250		ns
$\overline{\text { CS }}$ to Output Float Propagation Delay	$\mathrm{t}_{\text {cr }}$		50	80	ns
CS to Low impedance Bus	taz		100	150	ns
Clock Frequency (Note 6)	$\mathrm{faLk}^{\text {che }}$		1.6	1.2	MHz

CMOS 8－Bit 8－Channel

Data Acquisition System

Detailed Description

Basic Operation
The MAX161 and MX7581 sequentially convert analog signals on 8 input channels into separate 8 －bit data words．The data is continually updated in on－chip RAM，with each channel＇s conversion result assigned to a separate RAM address．Consequently，the con－ version process is user transparent in that output data is read directly from RAM．The device can run
directly from a microprocessor clock 6800 type directly from a control signal（ALE in 8085 type systems） A functional diagram of the MAX161 and MX7581 is shown on the front page．

A／D Conversion
Internally，the conversion process is divided into 10 phases，each 8 clock periods long．In the first phase， the input multiplexer is decremented and the control logic is reset．STAT（pin 12）goes low for 8 clock cycles at the beginning of this period．（STAT also goes low for 72 clock periods after channel is version then takes place during phases 2 through 9 ． Finally，data is loaded into RAM during phase 10 ．
A single channel conversion takes 80 input clock periods while a complete scan through all channels initializes the converter within 800 clock periods after power is applied．

Digital Interface

Channel Selection
Table 1 shows the truth table for channel selection． RAM locations are addressed by AO－A2．In systems with a multiplexed address／data bus，the address is and data busses are separate the address latches can be made transparent by tying ALE HIGH．

Table 1：
Channel Selection Truth Table

A2	A1	A0	ALE	CHANNEL DATA TO BE READ
0	0	0	1	Channel 0
0	0	1	1	Channel 1
0	1	0	1	Channel 2
0	1	1	1	Channel 3
1	0	0	1	Channel 4
1	0	1	1	Channel
1	1	0	1	Channel 6
1	1	1	1	Channel 7 7

Timing And Control
Control timing for the MAX161 and M $\times 7581$ is shown in Fiqure 1．When CS（pin 13）is $H \| G H$ ，the three－
state data drivers are in their high impedance state The drivers switch to the active state when CS goes

switching terminology
t_{H} ：ALE pulse width requirement．
tALS：Address valid to latch set－up time
LCS：Address latch to Chip Select set－up time
ow：Chip Select pulse width requirement．
$t_{\text {Acc：}}$ Chip Select to valid data propagation delay．
tcF：$_{\text {Chip }}$ Select to output data float propagation delay． tcF：Chip select to output data float propagat
tolz：Chip Select to low impedance data bus．

Figure 1．Interface Timing Diagram
Data Read Operation
The MAX161 and MX7581 continuously scan and convert analog input signals without regard to the Channel being selected for data output．The on－chip asynchronously with respect to the conversion pro－ cess．The output data（RAM contents）is simply the most recent conversion result for the selected channel． Automatic interleaved DMA is provided by internal Automatic interleaved DMA is provided by internal
logic to ensure that memory updates do not take logic to ensure that memory updates do not take
place when the memory is being addressed by a microprocessor．RAM is normally updated on a rising clock edge， 6 clock periods prior to STAT going LOW，provided CS is HIGH（i．e．data is not being read）．If $\overline{C S}$ is LOW（read operation in progress）， then the memory update is delayed by 3 clock periods．By delaying the update，data will not be
written in RAM during a READ as long as CS is kept shorter than 3 clock periods．The possibility of a ＂contention＂error with an asynchronous READ is therefore eliminated if CS is less than 3 clock periods long．Although asynchronous reading errors are eliminiated with this feature，it in no way restricts compatibility with other manufacturers＇MX7581s

CMOS 8-Bit 8-Channel Data Acquisition System

Figure 2. STAT Timing Diagram

Figure 3. Hardware Channel Identification

Figure 4. Software Channel Identification

Operating Circuits

For the following circuits, the offset and gain adjustments shown in Figures 5, 7 and 9 are often not needed (The offset and gain error of the MAX161C are 1 LSB and 2LSB respectively). In those cases, A and R1-R12 can be omitted. Note that in all cases where full scale is adjusted, offset must be trimmed first.

Unipolar Binary Operation
Figures 5 and 6 show the analog circuit connections Figures 5 and 6 show the analog circuit connections
and the resulting transfer characteristic for basic uniand the resulting transfer characteristic for basic
polar operation (0 to +10 V input). $\mathrm{A}-10 \mathrm{~V}$ reference is connected to pin 10 through resistor R9 and a clock is connected to pin 15. Calibration is as follows:

Offset (zero error) is trimmed using the bipolar offse pin, Bofs. Resistors R10-R12 form a voltage divider buffered by A1 which drives BoFs. AO-A2 are taken LOW and latched using ALE so that channel 0 is continuously monitored. With AINO $=+19.5 \mathrm{mV}$ (i.e. $1 / 2$ LSB for 10 V full scale) adjust R11 until DB7-DB1 channels is identical so one adjustment takes care of all eight inputs.

Apply +9.941 V ($\mathrm{FS}-3 / 2 \mathrm{SB}$) to all inputs (AINO-AIN7)
Apply +9.941 V (F.S. $-3 / 2 \mathrm{LSB}$) to all inputs (AINO-AIN 7) address with ALE. Adjust trimmer RN of the selected input so that DB7-DB1 are HIGH and DB0 (LSB) flickers. Repeat for other channels

CMOS 8-Bit 8-Channel Data Acquisition System

MAX161/MX7581

Figure 6. Unipolar (0 to +10 V) Transfer Characteristic

Approximate bit weights are shown.
Bit weight for $\mathrm{a} \pm 5 \mathrm{~V}$ full scale is $\approx 39.1 \mathrm{~m}$

CMOS 8－Bit 8－Channel Data Acquisition System

（Complimentary Binary）Operation igures 7 and 8 show the analog circuit connections and typical transfer characteristic for unipolar（0 to -10 V input）complementary binary operation．Calibra－ tion is as follows：

Offset
A0－A2 are taken LOW and latched using ALE activating channel 0 ．The offset voltage is identica for all channels so only one trim is needed．With AINO $=-9.98 \mathrm{~V}$（．．e．- F．S． $1 / 2 L$ BB），adjust $R 1$ so th

Full Scale
Apply $-58.6 \mathrm{mV}(3 / 2 \mathrm{LSB}$ ）to all channels（AINO－AIN7） all channels（AINO－AIN7） and select the required channel using AO－A2 and atch the address with ALE．Adjust trimmer RN of the selected channel until DB7－DB1 are HIGH and the

Bipolar（Offset Binary）Operation

Figures 9 and 10 show the analog circuit conn and typical transfer characteristic for +5 V bipolar operation．Calibration is as follows：

Ottset

AO－A2 are taken LOW and latched using ALE，selec ing channel 0 ．The offset error is identical for all hannels so only one trim is needed．With AlNo $=$ 4.980 V （i．e．－F．S．＋1／2LSB），adjust R11 so that DB1－DB7 are LOW and DB0（LSB）flickers．

Full Scale
Apply $+4.941 \mathrm{~V}(+F . S .-3 / 2 L S B)$ to all channels（AINO AiN7）and select the required channel using A0－A2 and latch the address with ALE．Adjust trimmer RN of the selected channel until DB1－DB7 are HIGH and BO（LSB）flickers．Apply -19.5 mV to each gain between 01111111 and 1000000 ，repeat the calibration procedure．

Application Hints

Analog and Digital Ground
AGND and DGND should be connected together at he device to prevent the possibility of injecting noise into the A／D converter．In systems where the AGND－ GND connection is not local，connect clamp diodes

VDD（pin 28）should be bypassed to AGND using a
$10 \mu \mathrm{~F}$ electrolytic and $0.1 \mu \mathrm{~F}$ ceramic capacitor．Lead lengths should be kept as short as possible．

Logic Deglitching In μ P Applications Unspecified states on the address bus（due to different ise and fall times）can cause glitches at the CS pin nitiating unwanted reads．These glitches can be RD（8085A）or VMA（6800）as shown in Figures 11 and 12.

Figure 11． 8085 A intertace

Figure 12.6800 it terface
CMOS 8-Bit 8-Channel Data Acquisition System

PART	temp. RANGE	PaCKAGE*	ERROR
M 77581 JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	17/8 LSB
MX7581KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	3/4 LSB
MX7581LN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	1/2 LSB
MX7581JCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	17/8 LSB
M $\times 7581 \mathrm{KCWI}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outine	3/4 LSB
MX7581LCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	1/2 LSB
Mx7581J/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	$17 / 8 \mathrm{LSB}$
M 77581 AD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	$17 / 8 \mathrm{LSB}$
M M 7581 BD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	3/4 LSB
M $\times 7581 \mathrm{CD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	1/2 LSB
M $\times 7581 \mathrm{AQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	17/8 LSB
M $\times 7581 \mathrm{BQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	3/4 LSB
M 77581 CQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	1/2 LSB
M 77581 SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$17 / 8$ LSB
M 7 7581 TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	3/4 LSB
MX7581UQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$1 / 2 \mathrm{LSB}$
- All devices - 28 lead packages * Maxim reserves the right to ship Ceramic Packages in lieu of CERDIP Packages.			

[^0]
[^0]: Waxm cannot assume responsiblity for usc of any circuity othor than circuiry ontroly cmbodico
 8 \qquad

