# MMXINV <br> Opto-Isolated Serial Output 5.8 $\mu$ s 12-Bit A/D Converter 

The MAX171 is a complete 5.8 8 s, 12-bit analog-todigital converter (ADC) that provides over $1,500 \mathrm{~V}_{\text {RMS }}$ electrical isolation between its analog input and the digital interface pins. It combines a serial output 12bit ADC, three opto-couplers, and a low-drift buried zener voltage reference in a standard 16 -lead plastic DIP package ( $0.3^{\prime \prime}$ )
Required external components are limited to supply and reference decoupling capacitors and three resistors.
The 2.5 MHz clock input can be driven from an exThe 2.5 MHz clock input can be driven from an exclock. The MAX171 works with +5 V and -12 V to -15 V clock. The supply voltages and typically dissipates 265 mW . The MAX171 is useful in applications where an analog signal must be electrically isolated from control electronics to avoid hazardous electrical conditions, provide noise immunity, or bridge large differences in ground potential. These situations have traditionally required an instrumentation or isolation amplifier with
suitably high common mode rejection. If the analog signal must be digitized at some point in the signal shain, the MAX171 can replace these isolating amplifiers while providing high performance and lower cost.
_ Applications

Ground-Loop Interruption
Process Control
Isolated Industrial Data Acquisition
Electro-Mechanical Systems
Robotics
Automatic Test Equipment
Functional Diagram


- Optical Isolation to Over $\mathbf{1 , 5 0 0} \mathrm{V}_{\text {RMs }}$
- UL Recognized in File E118032 to UL1577
- 12-Bit Resolution and Linearity
- $5.8 \mu \mathrm{~s}$ Conversion Time
- No Missing Codes Over Temperature
- Serial Output
- Complete with On-Chip Reference
- Standard 16-Lead Plastic DIP Package


## Ordering Information

| PART | TEMP. RANGE | PACKAGE | ERROR |
| :---: | ---: | ---: | ---: |
| MAX171ACPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Plastic DIP | $\pm 1 / 2 \mathrm{LSB}$ |
| MAX 171 BCPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Plastic DIP | $\pm 1 \mathrm{LSB}$ |
| MAX 171 AEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Plastic DIP | $\pm 1 / 2 \mathrm{LSB}$ |
| MAX 171 BEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Plastic DIP | $\pm 1 \mathrm{LSB}$ |

## Pin Configuration



MIJXIノVI

## Opto－Isolated Serial Output 5．8

## 12－Bit A／D Converter

## LLLXVW

|  | -0.3 V to +7 V |
| :---: | :---: |
| $V_{\text {ISO }} \mathrm{y}$－to ISO GND | +0.3 V to－17V |
| AIN to ISO GND | $\pm 15 \mathrm{~V}$ |
| $V_{\text {CC }}$ to GND | -0.3 V to＋7V |
| DATA Output Current | 60 mA |
| DATA Output Voltage | 5 V |
| Digital Inputs： $\mathrm{S}^{+}$to $\mathrm{S}^{-}$ |  |
| LED Current | 15 mA |
| LED Reverse Voltage | 5 V |


Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings onty，and
functionaloperation of the deviee at these or any other conditions above those indicated in the operational sections of the specifications is no
implied Exposure to absolute maximum rating yonditions for extended periods may aftect device retiobity
mplied．Exposure to absolute maximum rating conditions for extended periods may affect device refiability．
ELECTRICAL CHARACTERISTICS

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ISOLATION（ $\mathrm{TA}_{\text {A }}=+25^{\circ} \mathrm{C}$ ，Note 1） |  |  |  |  |  |  |  |
| Test Voltage | VISO | 1 second withstand <br> 1 minute withstand | （Note 2） | $\begin{aligned} & 1500 \\ & 1200 \end{aligned}$ |  |  | VRMS $V_{\text {RMS }}$ |
| Leakage Current | IIso | $\mathrm{V}_{\text {ISO }}=130 \mathrm{~V}_{\text {RMS }}$ ， 60 Hz |  |  | 2 | 50 | $\mu \mathrm{A}_{\text {RMS }}$ |
| Resistance | $\mathrm{R}_{\text {ISO }}$ | $V_{\text {ISO }}=500 \mathrm{VDC}$ |  |  | 1010 |  | $\Omega$ |
| Capacitance | $\mathrm{Ciso}^{\text {a }}$ |  |  |  | 5 |  | pF |
| ACCURACY |  |  |  |  |  |  |  |
| Resolution |  |  |  | 12 |  |  | Bits |
| Integral Non－Linearity | INL |  | MAX171AC MAX171AE MAX171B |  |  | $\begin{gathered} \pm 1 / 2 \\ \pm 3 / 4 \\ \pm 1 \end{gathered}$ | LSB |
| Differential Non－Linearity | DNL | Guaranteed Monotoni Temperature Range | nic Over Specified |  |  | $\pm 1$ | LSB |
| Offset Error（Note 3） |  |  | MAX171A MAX171B |  |  | $\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$ | LSB |
| Full Scale Error（Note 4） |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  | $\pm 10$ | LSB |
| Full Scale Tempco （Notes 5，6） |  |  |  |  |  | $\pm 45$ | ppm $/{ }^{\circ} \mathrm{C}$ |
| Conversion Time | $\mathrm{t}_{\text {conv }}$ | 14 Clock Cycles＋ | Opto－Coupler Delay |  |  | 5.8 | $\mu \mathrm{s}$ |
| ANALOG INPUT |  |  |  |  |  |  |  |
| Input Voltage Range |  |  |  | 0 |  | ＋5 | V |
| Input Current |  | AiN $=0 \mathrm{~V}$ to +5 V |  |  |  | 3.5 | mA |
| INTERNAL REFERENCE |  |  |  |  |  |  |  |
| $\mathrm{V}_{\text {REF }}$ Output Voltage |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | －5．2 | －5．25 | －5．3 | V |
| $V_{\text {REF }}$ Output Tempco （Note 7） |  |  |  |  |  | $\pm 40$ | ppm $/{ }^{\circ} \mathrm{C}$ |
| Output Current Sink Capability |  | （Note 8） |  |  |  | 5 | mA |
| POWER SUPPLY REJECTION |  |  |  |  |  |  |  |
| Positive Supply Rejection | $V_{D D}$ | $\begin{array}{\|l\|} \hline \text { FS Change, } \\ V_{S S}=-15 \mathrm{~V} \text { or }-12 \mathrm{~V} \\ \hline \end{array}$ | $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V |  | $\pm 1 / 2$ |  | LSB |
| Negative Supply Rejection | $\mathrm{V}_{\text {ss }}$ | FS Change， $V_{D D}=+5 V$ | $\begin{aligned} & V_{S S}=-14.25 \mathrm{~V} \text { to }-15.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-11.4 \mathrm{~V} \text { to }-12.6 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & \pm 1 / 8 \\ & \pm 1 / 8 \end{aligned}$ |  | LSB |

2

## Opto-Isolated Serial Output 5.8 12-Bit A/D Converter



## Opto－Isolated Serial Output 5．8

## 12－Bit A／D Converter

| $\begin{aligned} & \text { PIN } \\ & \text { DIP } \end{aligned}$ | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | ISO DGND | Isolated Digital Ground |
| 2 | ISO $\mathrm{V}^{-}$ | Analog Negative Supply， －12V or－15V |
| 3 | ISO $\mathrm{V}^{+}$ | Analog Positive Supply， $+5 \mathrm{~V}$ |
| 4 | AIN | Analog Input， 0 V to +5 V Unipolar |
| 5 | REF | Reference Voltage Output， -5.25 V |
| 6 | $\begin{gathered} \text { ISO } \\ \text { AGND } \end{gathered}$ | Isolated Analog Ground． Normally tied to ISO DGND |
| 7 | TP | Test Pin．Leave unconnected |
| 8 | ISO DGND | Isolated Digital Ground |
| ELECTRICAL ISOLATION BARRIER |  |  |
| 9 | $\mathrm{V}_{\mathrm{CC}}$ | Digital Positive Supply． $+5 \mathrm{~V}$ |
| 10 | GND | Digital Ground |
| 11 | DATA | Serial Data Output |
| 12 | $\mathrm{CK}^{-}$ | Clock ${ }^{-1}$ Input |
| 13 | $\mathrm{CK}^{+}$ | Clock ${ }^{+}$Input |
| 14 | $\mathrm{S}^{+}$ | Conversion Start＋Input |
| 15 | $\mathrm{S}^{-}$ | Conversion Start ${ }^{-1}$ Input |
| 16 | N．C． | No Connect |

－Converter Operation
A／D Converter
The MAX171 combines a successive approximation A／D converter and three opto－couplers to convert an serial output code．The opto－coupled digital interface works with three interface signals：Conversion Start Input（ $\mathrm{S}^{+}, \mathrm{S}^{-}$），Clock Input（ $\mathrm{CK}^{+}, \mathrm{CK}^{-}$），and the Serial Data Output（DATA）．Most applications require only a few external passive components to perform the analog－to－digital function．Figure 1 shows the MAX171
in its simplest operational configuration．
Figure 2 shows the MAX171 analog equivalent circuit． The internal digital－to－analog converter（DAC）is con－ trolled by a successive approximation register（SAR） input is connected to the DAC output with a $2.5 \mathrm{k} \Omega$ resistor．The comparator is essentially a zero－crossing
detector with its output feeding back to the SAR detect
input．

## Opto－Couplers

The Start（ $\mathrm{S}^{+}, \mathrm{S}^{-}$）and Clock（ $\mathrm{CK}^{+}, \mathrm{CK}^{-}$）inputs to the MAX171 are unbuffered LEDs and require a series resistor of typically $470 \Omega$ to a TTL or 5 V －CMOS gate to tie the resistor from +5 V to the LED anode and then connect logic LED cathode as shown in Figure 1. Alternatively，Iogic drive current may be sourced to a grounded LED，but this requires opposite logic polarity from Figure 1 for both the Start and Clock signals．
The serial data output is an open－collector NPN bi－ polar transistor，and normally requires a $470 \Omega$ pull－up resistor to a +5 V supply．The external stray capacit－
ance at the DATA output pin should be kept below 10 pF for operation at the maximum clock rate．A low signal at the DATA output represents a logical＂1＂in the output word

## Power Supplies

The MAX171 requires three power supplies：+5 V and -12 V to -15 V is required on the isolated analog side of the package（ISO $\mathrm{V}^{+}$，ISO $\mathrm{V}^{-}$）．A separate +5 V voltage source $\left(V_{\mathrm{CC}}\right)$ is required on the digital side of
isolation barrier for the DATA output transmitter．

## Digital Interface

Clock－Data Skew While the opto－isolators used in the MAX171 are fast enough for the specified conversion speed of $5.8 \mu \mathrm{~s}$ ， operation．The A／D cannot begin processing a clock edge before it crosses the isolation barrier．Therefore， the digital I／O signals at the A／D lag／lead the digital signals at the input／output pins．For example，as each successive approximation decision is sent out，it appears at the DATA pin following a delay induced by the opto－coupler．At low conversion rates（below 1 MHz
clock）these delays are negligible and Clock and clock）these delays are negligible and Clock and
Start signals may be applied simultaneously to the MAX171 and to the output register．At clock speeds above 1 MHz ，these delays become a significant portion of the clock cycle and must be compensated for best performance．Figure 3 illustrates using delay lines in register．

## Timing and Control

A conversion cycle is initiated on the rising edge of the conversion start signal that is coincident with a falling edge of the Clock signal．Figure 4 shows a single conversion cycle with a continuous Clock Once started，a conversion cannot be stopped and CURRENT conversion is completed（minimum of 14 clock cycles from the last rising edge of the conversion start signal）．

## Opto－Isolated Serial Output 5．8 $\mu \mathrm{s}$ 12－Bit A／D Converter




Figure 2．MAX171 Analog Equivalent Circuit

The Conversion Start transition causes the SAR to se B11（MSB），driving the DAC output to half－scale．The analog input is compared to this value from the time of the conversion start transition until the second falling Clock edge which latches the MSB result and sets the SAR to compare the next bit．The MSB result
appears at the DATA output after a delay tpD from appears at the DATA output after a delay，tpD from sion proceeds similarly until all 12 bits of the DAC have been tried．The conversion is completed at the falling edge of the 13 th Clock cycle．The DATA outpu returns high at the falling edge of the 14th Clock cycle and remains so until the next conversion sends out its MSB result．
The next conversion can be started on the 14th Clock cycle of a previous conversion as shown in Figure 4 version per 14 Clock cycles．

## Opto－Isolated Serial Output 5．8 12－Bit A／D Converter



Figure 3．MAX171 Opto－－solated Conversion with Parallel Data Output


## Opto－Isolated Serial Output 5．8 $\mathbf{~ S}$ 12－Bit A／D Converter



Figure 5．MAX171 Timing Diagram
Conversion Start Timing
Conversion start transitions must arrive within the setup limits $\mathrm{tsco}_{\mathrm{sc}}$ and $\mathrm{tsc}_{\mathrm{sc}}$ relative to the falling edge o the Clock．This guarantees that the serial DATA output stream starts at the second Clock cycle，as shown in Figure 5．Limits on $\mathrm{t}_{s} \mathrm{co}_{0}$ and $\mathrm{t}_{\mathrm{sc}} 1$ apply whether a the 14th Clock，or if idle Clock pulses occur between conversions．Note that bringing the Start input high on the falling edge of the 14th Clock cycle allows the maximum time for the internal DAC to settle．

## Output Coding

The data output from MAX171 is in Straight Binary Code．Other common binary codes，such as 2 ＇s com plement，offset binary or complementary codes，can eblapriate bit（s）of the parallel data in software or hardware．

## Applications

## Unipolar Input Operation

Figure 6 shows the nominal input／output transfe unction of the MAX171．Code transitions occur half way between successive integer LSB values．The

Offset and Full Scale Adjustment
In applications where the offset and full scale range have to be adjusted for the ADC，use the circuit shown in Figure 7．Note that the amplifier shown could als have been a sample－and－hold．The offset should be adjusted first．Apply $1 / 2 \mathrm{LSB}(0.61 \mathrm{mV}$ ）at the analog nput and adjust the offset of the amplifier until the and 000000000001
To adjust the full scale range，apply FS $-3 / 2$ LSB
（ 4.9817 V ）at the analog input and adjust R1 until the （4．9817V）at the analog input and adjust R1 until the
output code changes between 11111111110 and 111111111111.


Figure 6．MAX171 Transfer Function

＊adoitional pins omitted for clarity
$\qquad$

## Opto－Isolated Serial Output 5．8us 12－Bit A／D Converter



Figure 8．MAX171 Non－Inverting Bipolar Operation Table 1．Resistor and Potentiometer Values Required
for Offset and Gain Adjustment of Figure 8

| $\begin{aligned} & V_{\text {IN Range }} \\ & \text { (Volts) } \end{aligned}$ | $\begin{array}{l\|} \mathbf{R 3}^{*} \\ (\mathrm{k} \Omega) \end{array}$ | $\begin{array}{\|l\|} \hline \mathbf{R 4}^{*} \\ (\mathrm{k} \Omega) \end{array}$ | $\begin{aligned} & \mathbf{R z}_{\mathbf{z}} \\ & (\Omega) \end{aligned}$ | $\begin{aligned} & \mathbf{R}_{\mathbf{G}} \\ & (\Omega) \end{aligned}$ | $\begin{aligned} & 1 / 2 L S B \\ & (\mathrm{mV}) \end{aligned}$ | $\begin{gathered} \text { FS/2-3/2LSBs } \\ \text { (Volts) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm 2.5$ | 3.83 | 8.25 | 500 | 500 | 0.61 | 2.49817 |
| $\pm 5.0$ | 33.2 | 16.9 | 500 | 1000 | 1.22 | 4.99634 |
| $\pm 10.0$ | 47.5 | 9.53 | 500 | 500 | 2.44 | 9.99268 |

EIA/MIL decade values.


Table 2．Resistor and Potentiometer Values Required

| $V_{\text {IN }}$ Range （Volts） | $\left.\begin{array}{\|c} \mathbf{R} 1^{*} \\ (\mathbf{k} \Omega) \end{array} \right\rvert\,$ | $\begin{aligned} & \mathbf{R 2}^{*} \\ & \mathbf{( k \Omega )} \end{aligned}$ | $\begin{aligned} & \mathbf{R 3}^{*} \\ & (\mathbf{k} \Omega \mathbf{)} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathbf{R}_{\mathbf{z}} \\ (\Omega) \end{array}$ | $\begin{aligned} & \mathbf{R}_{\mathbf{G}} \\ & \mathbf{( \Omega )} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 1/2LSB } \\ (\mathrm{mV}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { FS/2 } \\ -3 / 2 \text { LSBs } \\ \text { (Volts) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm 2.5$ | 20 | 20.5 | 42.2 | 2000 | 1000 | 0.61 | 2.49817 |
| $\pm 5.0$ | 20 | 10.2 | 21 | 1000 | 1000 | 1.22 | 4.99634 |
| $\pm 10.0$ | 20 | 5.11 | 10.5 | 500 | 1000 | 2.44 | 9.99268 | R1，R2 and R3 have a $0.1 \%$ tolerance．All resistors are standard EIA／MIL decade values

## Bipolar Input Operation

Bipolar operation can be achieved in two modes non－inverting and inverting．For both cases，the ampli－
fier shown in the circuits can be replaced by the fier shown in the circuits can be replaced by the
AD585 or HA5320 sample－and－hold amplifiers．Several different input ranges are possible by selecting the values for the scaling resistors as shown in Tables and 2.
Figure 8 shows the bipolar operation in the non－ inverting mode，where the output coding is offse binary．Figure 10 shows the ideal transfer function for this mode．
Figure 9 shows the bipolar operation in the inverting mode where the output coding is complementary offset binary．Figure 10 shows the ideal transfer func tion for the circuit in Figure
The resistors used in bipolar applications should be of the same type and from the same manufacturer to obtain low temperature drift． $0.1 \%$ resistors are rec－ adjustments must be made in bipolar circuits．If hig tolerances are used，larger value potentiometers mus be used and this results in poor sensitivity and higher temperature drifts．

Offset and Full Scale Adjustment
Offset should always be adjusted before full scale．For both circuits apply $+1 / 2$ LSB to the analog input（se flickers bewteen and adjust $R_{Z}$ until the output cod wing codes
For Non－Inverting（Figure 8） 100000000000
For Inverting（Figure 9）$\quad 011111111111$
Apply FS－3／2LSB（See Tables 1 and 2）to the input and adjust $R_{G}$ until the ADC output code flickers
between the following codes：
For Non－Inverting（Figure 8） 111111111110
$\begin{array}{ll}\text { For Inverting（Figure 9）} & 000000000001 \\ 000000000000\end{array}$

## Opto－Isolated Serial Output 5．8 $\mu$ s 12－Bit A／D Converter



Figure 10．Ideal Input／Output Transter Characteristics for the Bipolar Circuits in Figures 8 and 9

## MAX 171 to Sample－and－Hold Interface

The analog input to the MAX171 must be stable to The analog input to the MAX171 must be stable to
within $\pm 1 / 2 \mathrm{LSB}$ during the entire conversion for speci－ fied 12－bit accuracy．This limits the input signal band－ width to a few Hertz for sinusoidal inputs．For higher bandwidth signals a sample－and－hold should be used． The signal that starts a conversion can be used to provide the TRACK／HOLD signal to the sample－and－ hold amplifier．Note that this signal is not available on the isolated side of the barrier and must be separately coupled．The MAX171＇s DAC is switched at approxi－ mately the same time as the sample－and－hold ampli－ amplifier should switch to the HOLD mode before there are any disturbances on the input signal，other－ wise code dependent errors will be observed．These can be avoided by starting the MAX171 slightly after the TRACK／HOLD signal by using a gate delay．For syribed above，the maximum allowable hold settling time for the sample－and－hold is 600 ns ．

Circuit Layout
For best system performance printed circuit boards not re used for the MAX17．Wire wrap boards are ensure that digital and analog signal lines are separat ed from each other as much as possible．Care should be taken not to run analog and digital lines parallel to each other or digital lines underneath the MAX171 package．
The pin configuration of the MAX171 is designed to provide optimum electrical isolation in printed circuit layouts．To maintain this capability，connections from
the analog side（Pins 1－8）of the A／D should be separated from the digital side（Pins 9－16）and should not reach or run underneath the package．In some cases it may be best to＂notch＂or cut out the circuit

## Grounding

No special precautions are necessary for the ground connection on the digital side of the MAX171．Connect GND（Pin 10）near the ground of the device that will receive the data．The isolated analog ground（iso AGND，Pin 6）must be connected to the isolated digital ground pins（ISO DGND，Pins 1 and 8），and analog signal．No connection is needed between GND （Pin 10）and the isolated grounds．

## Power－Supply Bypassing

The comparator in the MAX171 is sensitive to high frequency noise in the analog power supplies（ISO $\mathrm{V}^{+}$，ISO $\mathrm{V}^{-}$）．These supplies should be bypassed close to the device with th．$\mu \mathrm{F}$ and $10 \mu \mathrm{~F}$ capacitors with resistor（ $10 \Omega$ to $20 \Omega$ ）or inductor can be connected in series to form a low－pass filter with the by－pass ca－ pacitors．The digital +5 V supply（ $\mathrm{V}_{\mathrm{CC}}$ ）should be bypassed to GND with $0.1 \mu \mathrm{~F}$ for best performance．

## Internal Reference

The MAX171＇s on－chip reference is laser－trimmed to $-5.25 \mathrm{~V} \pm 1 \%$ ．The reference output is available at REF （Pin 5）as a reference source for other components and also drives the internal DAC
For minimum noise，REF must be bypassed with a capacitor to maintain a low impedance at high fre－ quencies（Figure 1）．This capacitance also stabilizes the internal reference buffer amplifier preventing oscil－ lations．No series resistance should be used between REF and the bypass capacitors．

Driving the Analog Input
The input signal leads to AIN and GND should be as short as possible to minimize noise pick－up．If the leads must be long use shielded cables to minimize noise pick－up
The input impedance at the AIN pin is typically $2.5 \mathrm{k} \Omega$ ． The amplifier driving AIN must have low enough DC output impedance for low gain error．Furthermore low $A C$ output impedance is also required since the analog input current is modulated at the clock rate driving amplifier is reduced by the loop gain at the frequency of interest．With a maximum clock rate of 2.5 MHz ，amplifiers like the OP－42，AD711，or OP－27 are recommended．At a 1 MHz clock rate，a MAX400

LH17 Module Product Reliability

## Opto-Isolated Serial Output 5.8 $\boldsymbol{\mu}$

## 12-Bit A/D Converter


$\stackrel{0035 \pm \pm 005}{10.655 \pm 031}$
$\rightarrow 1$


16 Lead Plastic DIP (PE) $\theta_{\mathrm{JA}}=135^{\circ} \mathrm{C} / \mathrm{W}$ $\theta_{J C}=65^{\circ} \mathrm{C} / \mathrm{W}$

