Complete 5 5 CMOS 10－Bit A／D Converter

12－Bit Resolution and 10－Bit Linearity
$5 \mu \mathrm{~s}$ Conversion Time
On－Chip $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Voltage Reference
－90ns Access Time
－ 215 mW （Max）Power Consumption
－24－Lead Narrow DIP and Wide SO Packages

Ordering Information

PART	TEMP．RANGE	PACKAGE＊	
MAX173CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	
MAX173CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	
MAX173C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{* *}$	
MAX173ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	
MAX173EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SO	
MAX173MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	
All devices -24 lead packages			
＊＊Consult factory for dice specifications．			

Complete 5 $\boldsymbol{\text { s }}$ CMOS 10－Bit A／D Converter

ABSOLUTE MAXIMUM RATINGS

$V_{\text {DD }}$ to DGND	-0.3 V to＋7V
$V_{S S}$ to DGND	+0.3 V to－17V
AGND to DGND	－0．3V， $\mathrm{V}_{\text {DO }}+0.3 \mathrm{~V}$
AIN to AGND	-15 V to +15 V
Digital Input Voltage to DGND （Pins 17，19－21）	$-0.3 V V_{D D}+0.3 V$
Digital Output Voltage to DGND （Pins 4－11，13－16，18，22）	$0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Operating Temperature Ranges	
MAX173XC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX173XE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX173XM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Power Dissipation（any Package）to $+75^{\circ} \mathrm{C}$	1000 mW
Derates Above $+75^{\circ} \mathrm{C}$ by	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Temperature（Soldering 10 seconds）	$+300^{\circ}$

Stresses above those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not tunctional operation of the device at these or any other conditions above those indicated in the operation
implied．Exposure to absolute maximum rating conditions ior extended periods may affect device reliability．
ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ACCURACY							
Resolution				12			Bits
No Missing Code Resolution				10			Bits
Integral Non－Linearity	INL					± 0.05	\％FSR
Offset Error（Note 1）						± 5	mV
Full Scale Error（Note 2）						± 0.4	\％
Full Scale Tempco（Notes 3，4）						± 45	ppm $/{ }^{\circ} \mathrm{C}$
ANALOG INPUT							
Input Voltage Range				0		5	v
Input Current		$\mathrm{AlN}=0 \mathrm{~V}$ to +5 V				3.5	mA
INTERNAL REFERENCE							
$\mathrm{V}_{\text {REF }}$ Output Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		－5．2	－5．25	－5．3	v
$\mathrm{V}_{\text {ReF }}$ Output Tempco（Note 5）					± 40		ppm $/{ }^{\circ} \mathrm{C}$
Output Current Sink Capability		（Note 6）				5	mA
LOGIC INPUTS							
Input Low Voltage	$V_{\text {L }}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN}$,				0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \mathrm{HBEN}$,		2.4			V
Input Capacitance（Note 7）	$\mathrm{Cin}_{\text {IN }}$	CS RD，HBEN，				10	pF
Input Current	In	$\begin{aligned} & \text { CS, } \overline{\text { RD, HBEN }} \\ & \text { CLKIN } \\ & \hline \end{aligned}$	$\mathrm{VIN}=0$ to V_{DD}			$\begin{array}{r} \pm 10 \\ \pm 20 \\ \hline \end{array}$	$\mu \mathrm{A}$
LOGIC OUTPUTS							
Output Low Voltage	V_{OL}	D11－D0／8，BUSY	SINK $=1.6 \mathrm{~mA}$			0.4	v
Output High Voltage	V_{OH}	D11－D0／8，BUS	$I_{\text {Source }}=200 \mu \mathrm{~A}$	4			V
Fioating State Leakage Current	ILkg	D11－D0／8，V Vut				± 10	$\mu \mathrm{A}$
Floating State Output Capacitance（Note 7）	Cout					15	pF
CONVERSION TIME							
MAX173	$t_{\text {conv }}$	Synchronous（ Asynchronous	$\begin{aligned} & \text { ycles) } \\ & \text { ck cycles) } \end{aligned}$	4.8		$\begin{gathered} 5 \\ 5.2 \end{gathered}$	$\mu \mathrm{S}$

[^0]
Complete 5 μ CMOS 10－Bit A／D Converter

ELECTRICAL CHARACTERISTICS（continued）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP．	MAX	UNITS
POWER SUPPLY REJECTION						
$V_{\text {DD }}$ Only		FS Change， $\mathrm{V}_{S S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V		± 0.01		\％
$V_{\text {SS }}$ Only		FS Change，$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \%$ to $+5 \%$		± 0.01		\％
POWER REQUIREMENTS						
$V_{\text {DD }}$		$\pm 5 \%$ for Specified Performance		5		V
$\mathrm{V}_{\text {SS }}$（Note 8）		$\pm 5 \%$ for Specified Performance		－12 or－15		V
I_{DD}		$\overline{\mathrm{CS}}=\overline{\mathrm{R}} \overline{\mathrm{D}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{AIN}=5 \mathrm{~V}$		5	7	mA
Iss		$\overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\mathrm{V}_{\text {DD }}, \mathrm{AIN}=5 \mathrm{~V}$		8	12	mA
Power Dissipation		$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$		145	215	mW

Note 1：\quad Typical change over temp is $\pm 1.2 \mathrm{mV}$ ．
Note 2：$\quad \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{FS}=+5.000 \mathrm{~V}$ ．Ideal last code transition $=\mathrm{FS}-1.8 \mathrm{mV}$ ．
Note 3：Full Scale $T C=\Delta F S / \Delta T$ ，where $\Delta F S$ is full scale change from $T_{A}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$
Note 4：Includes internal reference drift
Note 5：$\quad V_{\text {REF }} T C=\Delta V_{R E F} / \Delta T$ ，where $\Delta V_{\text {REF }}$ is reference voltage change from $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$ or $T_{\text {MAX }}$ ．
Note 6：Output current should not change during conversion
Note 7：Guaran
Note 8：Functional operation at $V_{S S}=-12 \mathrm{~V} \pm 5 \%$ is guaranteed by testing offset error and full scale error

TIMING CHARACTERISTICS（Note 9）（See MAX162 data sheet for $\mathbf{t}_{\mathbf{1}} \mathbf{t}_{10}$ description） $\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-12 \mathrm{~V}\right.$ or $-15 \mathrm{~V} ; \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ ，specifications in bold type are 100% tested，others are guaranteed

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MAX173C／E		MAX173M		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	Max	
$\overline{\text { CS }}$ to $\overline{\text { RD Setup Time }}$	t_{1}		0			0		0		ns
$\overline{\mathrm{RD}}$ to $\overline{\text { BUSY }}$ Delay（Note 12）	t_{2}	$\mathrm{C}_{L}=50 \mathrm{pF}$		90	190		230		270	ns
Data Access Time（Note 10）	t_{3}	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		60	90		110		120	ns
Data Access Time（Notes 10，12）	t_{3}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		70	125		150		170	ns
$\stackrel{\text { RD Pulse Width }}{ }$	t_{4}		t_{3}			t_{3}		t_{3}		
$\overline{\overline{C S}}$ to $\overline{\mathrm{RD}}$ Hold Time	t_{5}		0			0		0		ns
Data Setup Time After BūU （Notes 10，12）	t_{6}				80		105		120	ns
Bus Relinquish Time（Notes 11，12）	t_{7}				75		85		90	ns
HBEN to $\overline{\text { RD }}$ Setup Time	t_{8}		0			0		0		ns
HBEN to $\overline{\text { RD }}$ Hold Time	t_{9}		0			0		0		ns
Delay Between Read Operations	t_{10}		200			200		200		ns

Note 9：All input control signals are specified with $t_{f}=t_{r}=5 \mathrm{~ns}(10 \%$ to 90% of $+5 \mathrm{~V})$ and timed from a voltage level of +1.6 V
Note 10：t_{3} and t_{6} are measured with the load circuits of Figure 1 （see MAX162 data sheet）and defined as the time required for an output to cross 0.8 V or 2.4 V
Note 11： $\left.\begin{array}{l}t_{7} \text { is } \text { d } \\ \text { sheet })\end{array}\right)$.
For additional information on using the MAX173 please refer to MAX162 data sheet．

[^0]: 2

