General Description The MAX1968/MAX1969 are highly integrated and costeffective, high-efficiency, switch-mode drivers for Peltier thermoelectric cooler (TEC) modules. Both devices utilize direct current control to eliminate current surges in the TEC. On-chip FETs minimize external components while providing high efficiency. A 500kHz/1MHz switching frequency and a unique ripple cancellation scheme reduce component size and noise. The MAX1968 operates from a single supply and provides bipolar ±3A output by biasing the TEC between the outputs of two synchronous buck regulators. Bipolar operation allows for temperature control without "dead zones" or other nonlinearities at low load currents. This arrangement ensures that the control system does not hunt when the set point is very close to the natural operating point, requiring a small amount of heating or cooling. An analog control signal precisely sets the TEC current. The MAX1969 provides unipolar output up to 6A. Reliability is optimized with settable limits for both TEC voltage and current, with independently set limits for heating and cooling current. An analog output also monitors TEC current. The MAX1968/MAX1969 are available in a low-profile 28-pin TSSOP-EP package and is specified over the -40°C to +85°C temperature range. The thermallyenhanced TSSOP-EP package with exposed metal pad minimizes operating junction temperature. An evaluation kit is available to speed designs. ### **Applications** Fiber Optic Laser Modules WDM, DWDM Laser Diode Temperature Control Fiber Optic Network Equipment **EDFA Optical Amplifiers** Telecom Fiber Interfaces ATE Pin Configuration and Functional Diagram appear at end of datasheet. Biotech Lab Equipment MIXIM #### Features - **♦ Direct Current Control Prevents TEC Current** Surges - **♦ On-Chip Power MOSFETs** - ♦ High-Efficiency Switch-Mode Design - **♦** Ripple Cancellation for Low Noise - ♦ No Dead-Zone or Hunting at Low-Output Current - **♦ Adjustable TEC Voltage Limit** - ♦ Separately Adjustable Heating and Cooling **Current Limits** - **♦ ITEC Output Monitors TEC Current** - ♦ 1% Accurate Voltage Reference - ♦ 500kHz/1MHz Switching Frequency - **♦** ±3A Output Current (MAX1968) - ♦ 6A Output Current (MAX1969) - **♦ Thermally Enhanced TSSOP-EP Package** ### **Ordering Information** | PART | TEMP RANGE | PIN-PACKAGE | |------------|----------------|--------------| | MAX1968EUI | -40°C to +85°C | 28 TSSOP-EP* | | MAX1969EUI | -40°C to +85°C | 28 TSSOP-EP* | ^{*}EP = exposed paddle ### **Typical Operating Circuit** Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | V _{DD} to GND | 0.3V to +6V | |---|---------------------------| | SHDN, MAXV, MAXIP, MAXIN, CTLI, | | | FREQ to GND | 0.3V to +6V | | COMP, OS1, OS2, CS, REF, | | | ITEC to GND | 0.3V to $(V_{DD} + 0.3V)$ | | PV _{DD} 1, PV _{DD} 2 to GND | 0.3V to $(V_{DD} + 0.3V)$ | | PV _{DD} 1, PV _{DD} 2 to V _{DD} | | | PGND1, PGND2 to GND | | | COMP, REF, ITEC Short to GND | Indefinite | | | | | Peak LX Current (MAX1968) (Note 1)±4.5 | iΑ | |---|----| | Peak LX Current (MAX1969) (Note 1)+9 |)A | | Continuous Power Dissipation ($T_A = +70$ °C) | | | 28-Pin TSSOP-EP (derate 23.8mW/°C above +70°C)1.9 | W | | Operating Temperature Range40°C to +85° | ,C | | Maximum Junction Temperature+150° | ,C | | Storage Temperature Range65°C to +150° | ,C | | Lead Temperature (soldering 10s)+300° | ,C | | | | **Note 1:** LX has internal clamp diodes to PGND and PV_{DD}. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{DD} = PV_{DD}1 = PV_{DD}2 = \overline{SHDN} = 5V, PGND1 = PGND2 = FREQ = GND, CTLI = MAXV = MAXIP = MAXIN = REF, C_{REF} = 1\mu F, C_{COMP} = 0.1\mu F, L_{LX} = 3.3\mu H, C_{CS} = C_{OS2} = 1\mu F, I_{TEC} < 3A_{RMS} (MAX1968), I_{TEC} < 6A_{RMS} (MAX1969), T_{A} = 0^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_{A} = +25^{\circ}C.)$ | PARAMETER | SYMBOL | CONI | MIN | TYP | MAX | UNITS | | |-------------------------------|------------------------|---|---|-------|-------|-------|-----------------| | Input Supply Range | V_{DD} | | | 3.0 | | 5.5 | V | | | | $V_{DD} = 5V$, $I_{TEC} = 0$ to $\pm 3A$,
$V_{OUT} = V_{OS1} - V_{OS2}$ (MAX1968) | | -4.3 | | +4.3 | | | Outrout Valtage Benge | V | V _{DD} = 5V, I _{TEC} = 0 to 6A,
V _{OUT} = V _{OS1} (MAX1969) | | | | 4.3 | V | | Output Voltage Range | Vout | V _{DD} = 3V, I _{TEC} = 0
V _{OUT} = V _{OS1} - V _{OS} | * | -2.3 | | +2.3 | V | | | | V _{DD} = 3V, I _{TEC} = 0
V _{OUT} = V _{OS1} (MAX | , | | | 2.3 | | | Maximum TEC | MAX1968 | | | | ±3 | Α | | | Current ITEC(MAX) | | MAX1969 | | | | 6 | А | | Reference Voltage | V _{REF} | $V_{DD} = 3V \text{ to } 5.5V, I_{REF} = 150\mu\text{A}$ | | 1.485 | 1.500 | 1.515 | V | | Reference Load
Regulation | ΔV_REF | $V_{DD} = 3V \text{ to } 5.5V, I_{REF} = +10\mu\text{A to -1mA}$ | | | 1.2 | 5 | mV | | | | Maria | V _{MAXI} _ = V _{REF} | 140 | 150 | 160 | | | Current-Sense | | Vos1 < Vcs | V _{MAXI} = V _{REF} /3 | 40 | 50 | 60 | mV | | Threshold Accuracy | | Vos1 > Vcs | V _{MAXI} _ = V _{REF} | 140 | 150 | 160 | | | | | VOS1 > VCS | V _{MAXI} _ = V _{REF} /3 | 40 | 50 | 60 | | | Switch-Fault Reset
Voltage | | | | 50 | 150 | 250 | mV | | NEET On Desistance | D | V _{DD} = 5V, I = 0.5A | | | 0.04 | 0.07 | 0 | | NFET On-Resistance | R _{DS} (ON-N) | V _{DD} = 3V, I = 0.5A | | | 0.06 | 0.08 | Ω | | PFET On-Resistance | R _{DS(ON-P)} | V _{DD} = 5V, I = 0.5A | | | 0.06 | 0.10 | Ω | | | | V _{DD} = 3V, I = 0.5A | | | 0.09 | 0.12 | | | NEET Lookago | L EALCAS | $I_{LEAK(N)}$ $V_{LX} = V_{DD} = 5V, T_A = +25^{\circ}C$ $V_{LX} = V_{DD} = 5V, T_A = +85^{\circ}C$ | | | 0.02 | 10 | ^ | | NFET Leakage | ILEAK(N) | | | 1 | | | μΑ | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DD} = PV_{DD}1 = PV_{DD}2 = \overline{SHDN} = 5V, PGND1 = PGND2 = FREQ = GND, CTLI = MAXV = MAXIP = MAXIN = REF, C_{REF} = 1\mu F, C_{COMP} = 0.01\mu F, L_{LX} = 3.3\mu H, C_{CS} = C_{OS2} = 1\mu F, I_{TEC} < 3A_{RMS} (MAX1968), I_{TEC} < 6A_{RMS} (MAX1969), T_{A} = 0^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_{A} = +25^{\circ}C.)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |--|--|--|---------------------------|------|---------------------------|-------|--| | | | $V_{LX} = 0, T_A = +25^{\circ}C$ | | 0.02 | 10 | | | | PFET Leakage | ILEAK(P) | $V_{LX} = 0$, $T_A = +85^{\circ}C$ | | 1 | | μΑ | | | | | | | | | | | | No Load Supply | IDD | $V_{DD} = 5V$ | | 32 | 100 | mA | | | Current | (NO LOAD) | $V_{DD} = 3.3V$ | | 20 | 30 | | | | Shutdown Supply
Current | I _{DD-SD} | V _{DD} = 5V (Note 2) | | 2 | 3 | mA | | | Thermal Shutdown | TSHUTDOWN | Hysteresis = 15°C | | +165 | | °C | | | UVLO Threshold | V _{UVLO} | V _{DD} rising | 2.4 | 2.6 | 2.8 | V | | | OVEO IIII estiloid | VUVLO | V _{DD} falling | 2.25 | 2.5 | 2.75 | V | | | Switching Frequency
Internal Oscillator | fsw-INT | FREQ = GND | 400 | 550 | 650 | kHz | | | OS1, OS2, CS Input
Current | I _{OS1} ,
I _{OS2} , I _{CS} | 0 or V _{DD} | -100 | | +100 | μΑ | | | SHDN, FREQ Input
Current | I <mark>SHDN</mark> ,
IFREQ | 0 or V _{DD} | -5 | | +5 | μΑ | | | SHDN, FREQ Input
Low Voltage | VIL | V _{DD} = 3V to 5.5V | | | V _{DD} x
0.25 | V | | | SHDN, FREQ Input
High Voltage | VIH | V _{DD} = 3V to 5.5V | V _{DD} x
0.75 | | | V | | | MAXV Threshold | | $V_{MAXV} = V_{REF} \times 0.67$, V_{OS1} to $V_{OS2} = \pm 4V$, $V_{DD} = 5V$ | -2 | | +2 | % | | | Accuracy | | $V_{MAXV} = V_{REF} \times 0.33$, V_{OS1} to $V_{OS2} = \pm 2V$, $V_{DD} = 3V$ | -2 | | +2 | % | | | MAXV, MAXIP, MAXIN
Input Bias Current | I _{MAXV-BIAS} ,
I _{MAXIBIAS} | $V_{MAXV} = V_{MAXI} = 0.1V \text{ or } 1.5V$ | -0.1 | | +0.1 | μΑ | | | CTLI Gain Accuracy | Actli | V _{CTLI} = 0.5V to 2.5V (Note 3) | 9.5 | 10 | 10.5 | V/V | | | CTLI Input Resistance | RCTLI | 1M Ω terminated at REF | 0.5 | 1.0 | 2.0 | МΩ | | | Error-Amp
Transconductance | Яm | | 50 | 100 | 175 | μΑ/V | | | ITEC Accuracy | | V_{OS1} to $V_{CS} = +100$ mV or -100 mV | -10 | | +10 | % | | | ITEC Load Regulation | ΔVITEC | V_{OS1} to V_{CS} = +100mV or -100mV,
I _{ITEC} = ±10 μ A -0.1 | | +0.1 | % | | | #### **ELECTRICAL CHARACTERISTICS** $(V_{DD} = PV_{DD}1 = PV_{DD}2 = \overline{SHDN} = 5V, \ PGND1 = PGND2 = FREQ = GND, \ CTLI = MAXV = MAXIP = MAXIN = REF, \ C_{REF} = 1\mu F, \ C_{COMP} = 0.1\mu F, \ L_{LX} = 3.3\mu H, \ C_{CS} = C_{OS2} = 1\mu F, \ I_{TEC} < 3A_{RMS} \ (MAX1968), \ I_{TEC} < 6A_{RMS} \ (MAX1969), \ T_{A} = -40^{\circ}C \ to +85^{\circ}C, \ unless otherwise noted.) \ (Note 4)$ | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | | | |--|--|--|--|-------|-----|-------|-------|--|--| | Input Supply Range | V_{DD} | | | 3.0 | | 5.5 | V | | | | | | $V_{DD} = 5V$, $I_{TEC} = 0$ to $\pm 3A$,
$V_{OUT} = V_{OS1} - V_{OS2}$ (MAX1968) | | -4.3 | | +4.3 | | | | | Output Valtage Denge | | V _{DD} = 5V, I _{TEC} = 0 to 6A,
V _{OUT} = V _{OS1} (MAX1969) | | | | 4.3 | V | | | | Output Voltage Range | Vout | V _{DD} = 3V, I _{TEC} = 0 to :
V _{OUT} = V _{OS1} - V _{OS2} (N | , | -2.3 | | +2.3 | V | | | | | | V _{DD} = 3V, I _{TEC} = 0 to V _{OUT} = V _{OS1} (MAX196 | | | | 2.3 | | | | | Maximum TEC | ITEC(MAX) | MAX1968 | | | | ±3 | Δ | | | | Current | TEC(IVIAX) | MAX1969 | | | | 6 | А | | | | Reference Voltage | V _{REF} | $V_{DD} = 3V \text{ to } 5.5V, I_{REF}$ | = 150μA | 1.475 | | 1.515 | V | | | | Reference Load
Regulation | ΔV _{REF} | V_{DD} = 3V to 5.5V, I _{REF} | $= +10\mu A \text{ to -1mA}$ | | | 5 | mV | | | | | | Vaa. 4Vaa | V _{MAXI} = V _{REF} | 135 | | 165 | | | | | Current-Sense | | Vos1 < Vcs | V _{MAXI} = V _{REF} / 3 | 35 | | 65 | ma\/ | | | | Threshold Accuracy | | Vos1 > Vcs | V _{MAXI} _ = V _{REF} | 135 | | 165 | mV | | | | | | | V _{MAXI} _ = V _{REF} / 3 | 35 | | 65 | | | | | Switch-Fault Reset
Voltage | | | | 50 | | 250 | mV | | | | | Б | V _{DD} = 5V, I = 0.5A
V _{DD} = 3V, I = 0.5A | | | | 0.07 | | | | | NFET On-Resistance | R _{DS} (ON-N) | | | | | 0.08 | Ω | | | | DEET On Desistance | D | V _{DD} = 5V, I = 0.5A | | | | 0.07 | Ω | | | | PFET On-Resistance | RDS(ON-P) | V _{DD} = 3V, I = 0.5A | | | | 0.12 | | | | | NEET Lookogo | V _{LX} = V _{DD} = 5V, T _A = +25°C | +25°C | | | 10 | μΑ | | | | | NFET Leakage | ILEAK(N) | $V_{LX} = V_{DD} = 5V, T_A = -40^{\circ}C$ | | | | 10 | μΑ | | | | PFET Leakage | l. = (p) | V _L X = 0, T _A = +25°C | | | | 10 | μΑ | | | | FFET Leakage | I _{LEAK(P)} | V _L X = 0, T _A = -40°C | | | | 10 | | | | | No Load Supply | I _{DD(NO}
LOAD) | DD(NO) $VDD = 5V$ | | | | 100 | mA | | | | Current | | V _{DD} = 3.3V | | | | 30 | | | | | Shutdown Supply
Current | I _{DD-SD} | SHDN = GND, V _{DD} = 5V (Note 2) | | | | 3 | mA | | | | UVLO Threshold | V _{UVLO} | V _{DD} rising | | 2.4 | | 2.8 | \/ | | | | | | V _{DD} falling | | 2.25 | | 2.75 | V | | | | Switching-Frequency
Internal Oscillator | f _{SW-INT} | FREQ = GND | | 400 | | 650 | kHz | | | MIXIM ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DD} = PV_{DD}1 = PV_{DD}2 = \overline{SHDN} = 5V, PGND1 = PGND2 = FREQ = GND, CTLI = MAXV = MAXIP = MAXIN = REF, C_{REF} = 1\mu F, C_{COMP} = 0.01\mu F, L_{LX} = 3.3\mu H, C_{CS} = C_{OS2} = 1\mu F, I_{TEC} < 3A_{RMS} (MAX1968), I_{TEC} < 6A_{RMS} (MAX1969), T_{A} = -40^{\circ}C to +85^{\circ}C, unless otherwise noted.) (Note 4)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|--|--|---------------------------|-----|------|-------| | OS1, OS2, CS Input
Current | los ₁ ,
los ₂ , los | 0 or V _{DD} | -100 | | +100 | μΑ | | SHDN, FREQ Input
Current | ISHDN,
IFREQ | 0 or V _{DD} | -5 | | +5 | μΑ | | SHDN, FREQ Input
Low Voltage | VIL | V _{DD} = 3V to 5.5V | | | | | | SHDN, FREQ Input
High Voltage | VIH | V _{DD} = 3V to 5.5V | V _{DD} x
0.75 | | | V | | MAXV Threshold | | $V_{MAXV} = V_{REF} \times 0.67$, V_{OS1} to $V_{OS2} = \pm 4V$, $V_{DD} = 5V$ | -2 | . 2 | % | | | Accuracy | | $V_{MAXV} = V_{REF} \times 0.33$, V_{OS1} to $V_{OS2} = \pm 2V$, $V_{DD} = 3V$ | | +2 | /6 | | | MAXV, MAXIP, MAXIN
Input Bias Current | IMAXV-BIAS,
IMAXIBIAS | $V_{MAXV} = V_{MAXI} = 0.1V \text{ or } 1.5V$ | -0.1 | | +0.1 | μΑ | | CTLI Gain Accuracy | A _{CTLI} | V _{CTLI} = 0.5V to 2.5V (Note 3) | 9.5 | | 10.5 | V/V | | CTLI Input Resistance | R _{CTLI} | 1MΩ terminated at REF | 0.5 | | 2.0 | ΜΩ | | Error-Amp
Transconductance | 9m | | 50 | | 175 | μA/V | | ITEC Accuracy | | V_{OS1} to $V_{CS} = +100$ mV or -100 mV | -10 | | +10 | % | Note 2: Includes power FET leakage. Note 3: CTLI Gain is defined as: $$A_{CTLI} = \frac{(V_{CTLI} - V_{REF})}{V_{OS1} - V_{CS}}$$ **Note 4:** Specifications to -40°C are guaranteed by design, not production tested. ### **Typical Operating Characteristics** $(V_{DD} = 5V, V_{CTLI} = 1V, V_{FREQ} = GND, R_{LOAD} = 1\Omega, circuit of Figure 1, T_A = +25°C, unless otherwise noted.)$ ### Typical Operating Characteristics (continued) $(V_{DD} = 5V, V_{CTLI} = 1V, V_{FREQ} = GND, R_{LOAD} = 1\Omega$, circuit of Figure 1, $T_A = +25$ °C, unless otherwise noted.) ### Typical Operating Characteristics (continued) $(V_{DD} = 5V, V_{CTLI} = 1V, V_{FREQ} = GND, R_{LOAD} = 1\Omega, circuit of Figure 1, T_A = +25$ °C, unless otherwise noted.) #### THERMAL STABILITY, ROOM TEMPERATURE ## Pin Description | PIN | NAME | FUNCTION | |------------|--------------------|---| | 1 | V _{DD} | Analog Supply Voltage Input | | 2 | GND | Analog Ground. Connect to underside metal slug. | | 3 | CTLI | TEC Current Control Input. Sets differential current into the TEC. Center point is 1.50V (no TEC current). The current is given by: ITEC = (VOS1 - VCS) / RSENSE = (VCTLI - 1.50) / (10 x RSENSE). When (VCTLI - VREF) > 0, VOS2 > VOS1 > VCS. | | 4 | REF | 1.50V Reference Output. Bypass REF to GND with a 1µF ceramic capacitor. | | 5, 7 | PGND2 | Power Ground 2. Internal synchronous rectifier ground connections. Connect all PGND pins together at power ground plane. | | 6, 8, 10 | LX2 | Inductor Connection. Connect all LX2 pins together. For MAX1969, connect LX1 and LX2 pins together. | | 9, 11 | PV _{DD} 2 | Power 2 Inputs. Must be same voltage as V _{DD} . Connect all PV _{DD} 2 inputs together at the V _{DD} power plane. | | 12 | FREQ | Switching Frequency Select. High = 1MHz, Low = 500kHz. | | 13 | ITEC | TEC Current Monitor Output. The ITEC output voltage is a function of the voltage across the TEC current-
sense resistor. $V_{ITEC} = 1.50V + (V_{OS1} - V_{CS}) \times 8$. | | 14 | OS2 | Output Sense 2. OS2 senses one side of the differential TEC voltage. OS2 is a sense point, not a power output. For MAX1969, connect OS2 to GND. | | 15 | OS1 | Output Sense 1. OS1 senses one side of the differential TEC voltage. OS1 is a sense point, not a power output. | | 16 | CS | Current-Sense Input. The current through the TEC is monitored between CS and OS1. The maximum TEC current is given by 150mV / RSENSE and is bipolar. | | 17 | SHDN | Shutdown Control Input. Active-low shutdown control. | | 18, 20 | PV _{DD} 1 | Power 1 Inputs. Must be same voltage as V _{DD} . Connect all PV _{DD} 1 inputs together at the V _{DD} power plane. | | 19, 21, 23 | LX1 | Inductor Connection. Connect all LX1 pins together. For MAX1969, connect all LX1 and LX2 pins together. | | 22, 24 | PGND1 | Power Ground 1. Internal synchronous rectifier ground connections. Connect all PGND pins together at power ground plane. | | 25 | COMP | Current Control-Loop Compensation. For most designs connect a 0.01µF capacitor from COMP to GND. | | 26 | MAXIN | Maximum Negative TEC Current. Connect MAXIN to REF to set default negative current limit -150mV / Rsense. For MAX1969, connect MAXIN to GND. | | 27 | MAXIP | Maximum Positive TEC Current. Connect MAXIP to REF to set default positive current limit +150mV / RSENSE. | | 28 | MAXV | Maximum Bipolar TEC Voltage. Connect an external resistive-divider from REF to GND to set the maximum voltage. The maximum TEC voltage is $4 \times V_{MAXV}$. | ## Functional Diagram ### **Detailed Description** The MAX1968/MAX1969 TEC drivers consist of two switching buck regulators that operate together to directly control TEC current. This configuration creates a differential voltage across the TEC, allowing bidirectional TEC current for controlled cooling and heating. Controlled cooling and heating allow accurate TEC temperature control within the tight tolerances of laser driver specifications. The voltage at CTLI directly sets the TEC current. An external thermal-control loop is typically used to drive CTLI. Figures 1 and 2 show examples of thermal control-loop circuits. #### **Ripple Cancellation** Switching regulators like those used in the MAX1968/MAX1969 inherently create ripple voltage on the output. The regulators in the MAX1968 switch in phase and provide complementary in-phase duty cycles so ripple waveforms at the TEC are greatly reduced. This feature suppresses ripple currents and electrical noise at the TEC to prevent interference with the laser diode. #### **Switching Frequency** FREQ sets the switching frequency of the internal oscillator. With FREQ = GND, the oscillator frequency is set to 500kHz. The oscillator frequency is 1MHz when FREQ = V_{DD} . #### **Voltage and Current-Limit Settings** Both the MAX1968 and MAX1969 provide control of the maximum differential TEC voltage. Applying a voltage to MAXV limits the maximum voltage across the TEC. The MAX1968 provides control of the maximum positive and negative TEC current. The voltage at MAXIP and MAXIN sets the maximum positive and negative current through the TEC. These current limits can be independently controlled. The MAX1969 only controls TEC current in one direction. The maximum TEC current is controlled by MAXIP. Connect MAXIN to GND when using the MAX1969. #### **Current Monitor Output** ITEC provides a voltage output proportional to the TEC current (ITEC). See the *Functional Diagram* for more detail: $$V_{ITEC} = 1.5V + 8 \times (V_{OS1} - V_{CS})$$ #### **Reference Output** The MAX1968/MAX1969 include an on-chip voltage reference. The 1.50V reference is accurate to 1% over temperature. Bypass REF with 1 μ F to GND. REF may be used to bias an external thermistor for temperature sensing as shown in Figures 1 and 2. #### **Design Procedure** #### **Inductor Selection** Small surface-mount inductors are ideal for use with the MAX1968/MAX1969. 3.3µH inductors are suitable for most applications. Select the output inductors so that the LC resonant frequency of the inductance and the output capacitance is less than 1/5 the selected switching frequency. For example, 3.3µH and 1µF have a resonance at 87.6kHz, which is adequate for 500kHz operation $$f = \frac{1}{2\pi\sqrt{LC}}$$ where: f = resonant frequency of output filter. #### **Capacitor Selection** #### Filter Capacitors Decouple each power-supply input (VDD, PVDD1, PVDD2) with a 1 μ F ceramic capacitor close to the supply pins. In some applications with long distances between the source supply and the MAX1968/MAX1969, additional bypassing may be needed to stabilize the input supply. In such cases, a low-ESR electrolytic capacitor of 100 μ F or more at VDD is usually sufficient. #### Compensation Capacitor A compensation capacitor is needed to ensure current control-loop stability. Select the capacitor so that the unity-gain bandwidth of the current control loop is less than or equal to 1/12th the resonant frequency of the output filter: $$C_{COMP} \ge \left(\frac{g_m}{f}\right) \times \left(\frac{R_{TEC}}{2\pi \times R_{SENSE}}\right)$$ where: f = loop frequency, less than or equal to the output filter resonant frequency gm = loop transconductance, typically 100µA/V CCOMP = value of the compensation capacitor RTEC = TEC series resistance Rsense = sense resistor #### **Setting Voltage and Current Limits** Certain TEC parameters must be considered to guarantee a robust design. These include maximum positive current, maximum negative current, and the maximum voltage allowed across the TEC. These limits should be used to set the MAXIP, MAXIN, and MAXV voltages. #### Setting Max Positive and Negative TEC Current MAXIP and MAXIN set the maximum positive and negative TEC currents, respectively. The default current limit is $\pm 150 \text{mV}$ / RSENSE when MAXIP and MAXIN are connected to REF. To set maximum limits other than the defaults, connect a resistor-divider from REF to GND to set V_{MAXI} . Use resistors in the $10 \text{k}\Omega$ to $100 \text{k}\Omega$ range. V_{MAXI} is related to ITEC by the following equations: VMAXIP = 10(ITECP(MAX) x RSENSE) VMAXIN = 10(ITECN(MAX) x RSENSE) where ITECP(MAX) is the maximum positive TEC current and ITECN(MAX) is the negative maximum TEC current. Positive TEC current occurs when CS is less than OS1: ITEC x RSENSE = CS - OS1 when I_{TEC} < 0. ITEC x RSENSE = OS1 - CS when ITEC > 0. The MAX1969 controls the TEC current in one direction (unipolar). Set the maximum unipolar TEC current by applying a voltage to MAXIP. Connect MAXIN to GND. The equation for setting MAXIP is the same for the MAX1968 and MAX1969. Take care not to exceed the positive or negative current limit on the TEC. Refer to the manufacturer's data sheet for these limits. #### **Setting MAX TEC Voltage** Apply a voltage to the MAXV pin to control the maximum differential TEC voltage. MAXV can vary from 0 to REF. The voltage across the TEC is four times V_{MAXV} and can be positive or negative: $|V_{OS1} - V_{OS2}| = 4 \times V_{MAXV}$ Set V_{MAXV} with a resistor-divider between REF and GND using resistors from 10k Ω to 100k Ω . V_{MAXV} can vary from 0 to REF. #### **Control Inputs/Outputs** #### Output Current Control The voltage at CTLI directly sets the TEC current. CTLI is typically driven from the output of a temperature control loop. For the purposes of the following equations, it is assumed that positive TEC current is heating. The transfer function relating current through the TEC (ITEC) and VCTLI is given by: ITEC = (VCTLI - VREF)/(10 x RSENSE) where V_{RFF} is 1.50V and: ITEC = (Vos1 - Vcs)/Rsense CTLI is centered around REF (1.50V). I_{TEC} is zero when CTLI = 1.50V. When VCTLI > 1.50V the MAX1968 is heating. Current flow is from OS2 to OS1. The voltages on the pins relate as follows: Vos2 > Vos1 > Vcs The opposite applies when cooling. When V_{CTLI} < 1.50V current flows from OS1 to OS2: Vos2 < Vos1 < Vcs #### Shutdown Control The MAX1968/MAX1969 can be placed in a power-saving shutdown mode by driving SHDN low. When the MAX1968/MAX1969 are shut down, the TEC is off (OS1 and OS2 decay to GND) and supply current is reduced to 2mA (typ). #### ITEC Output ITEC is a status output that provides a voltage proportional to the actual TEC current. ITEC = REF when TEC current is zero. The transfer function for the ITEC output is: $$V_{ITEC} = 1.50 + 8 \times (V_{OS1} - V_{CS})$$ Use ITEC to monitor the cooling or heating current through the TEC. The maximum capacitance that ITEC can drive is 100pF. Figure 1. Typical Application Circuit for MAX1968 Figure 2. Typical Application Circuit for MAX1969 14 _______**/\/\/** ### **Applications Information** Chip Information The MAX1968/MAX1969 typically drive a thermoelectric cooler inside a thermal control loop. TEC drive polarity and power are regulated based on temperature information read from a thermistor, or other temperature-measuring device to maintain a stable control temperature. Temperature stability of 0.01°C can be achieved with carefully selected external components. There are numerous ways to implement the thermal loop. Figures 1 and 2 show a design that employs precision op amps, along with a DAC or potentiometer to set the control temperature. The loop may also be implemented digitally, using a precision A/D to read the thermistor or other temperature sensor, a microcontroller to implement the control algorithm, and a DAC (or filtered PWM signal) to send the appropriate signal to the MAX1968/MAX1969 CTLI input. Regardless of the form taken by the thermal control circuitry, all designs are similar in that they read temperature, compare it to a set-point signal, and then send an error-correcting signal to the MAX1968/MAX1969 that moves the temperature in the appropriate direction. TRANSISTOR COUNT: 2959 PROCESS: BICMOS ### Pin Configuration ### Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.