General Description

The MAX3286/MAX3296 series of products are highspeed laser drivers for fiber optic LAN transmitters optimized for Gigabit Ethernet applications. Each device contains a bias generator, laser modulator, and comprehensive safety features. Automatic power control (APC) adjusts the laser bias current to maintain average optical power at a constant level, regardless of changes in temperature or laser properties. For lasers without a monitor photodiode, these products offer a constant-current mode. The circuit can be configured for use with conventional shortwave (780nm to 850nm) or longwave (1300nm) laser diodes, as well as verticalcavity surface-emitting lasers (VCSELs).

The MAX3286 series (MAX3286–MAX3289) is optimized for operation at 1.25Gbps, and the MAX3296 series (MAX3296–MAX3299) is optimized for 2.5Gbps operation. Each device can switch 30mA of laser modulation current at the specified data rate. Adjustable temperature compensation is provided to keep the optical extinction ratio within specifications over the operating temperature range. This series of devices is optimized to drive lasers packaged in low-cost TO-46 headers. Deterministic jitter (DJ) for the MAX3286 is typically 22ps, allowing a 72% margin to Gigabit Ethernet DJ specifications.

These laser drivers provide extensive safety features to guarantee single-point fault tolerance. Safety features include dual enable inputs, dual shutdown circuits, and a laser-power monitor. The safety circuit detects faults that could cause dangerous light output levels. A programmable power-on reset pulse initializes the laser driver at startup.

The MAX3286/MAX3296 are available in a compact, 5mm × 5mm, 28-pin QFN package; a 5mm × 5mm, 32-pin TQFP package; or in die form. The MAX3287/MAX3288/ MAX3289 and MAX3297/MAX3298/MAX3299 are available in a 16-pin TSSOP-EP package.

Gigabit Ethernet Optical Transmitter Fibre Channel Optical Transmitter ATM LAN Optical Transmitter

Typical Application Circuits and Selector Guide appear at end of data sheet.

Features

- 7ps Deterministic Jitter (MAX3296)
 22ps Deterministic Jitter (MAX3286)
- +3.0V to +5.5V Supply Voltage
- Selectable Laser Pinning (Common Cathode or Common Anode) (MAX3286/MAX3296)
- 30mA Laser Modulation Current
- Temperature Compensation of Modulation Current
- Automatic Laser Power Control or Constant Bias Current
- Integrated Safety Circuits
- Power-On Reset Signal
- QFN Package Available

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3286CGI	0°C to +70°C	28 QFN (5mm x 5mm)**
MAX3286CHJ	0°C to +70°C	32 TQFP (5mm x 5mm)
MAX3286C/D	0°C to +70°C	Dice*

Ordering Information continued at end of data sheet.

*Dice are designed to operate from $T_J = 0^{\circ}C$ to +110°C, but are tested and guaranteed only at $T_A = +25^{\circ}C$. **Exposed pad.

Pin Configurations

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage at V_{CC}-0.5V to +7.0V Voltage at EN, EN, PORDLY, FLTDLY, LV, IN+, IN-,

RĚF, POL, POL, MD, MON, BIASDRV, MODSET, TC.....-0.5V to (V_{CC} + 0.5V) Voltage at OUT+, OUT-.....(V_{CC} - 2V) to (V_{CC} + 2V) Current into FAULT, FAULT, POR, SHDNDRV....-1mA to +25mA Current into OUT+, OUT-......60mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
32-Pin TQFP (derate 14.3mW/°C above +70°C)1100mW
28-Pin QFN (derate 28.7mW/°C above +70°C)
16-Pin TSSOP (derate 27mW/°C above +70°C)2162mW
Operating Temperature Range0°C to +70°C
Operating Junction Temperature Range0°C to +150°C
Processing Temperature (die)+400°C
Storage Temperature Range55°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.0V to +5.5V, $T_A = 0^{\circ}C$ to +70°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, R_{TC} = open and T_A = +25°C; see Figure 1a.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	Figure 1a, $R_{MOD} = 1.82 k\Omega$		52	75	mA
Data Input Voltage Swing	VID	Total differential signal, peak-to-peak, Figure 1a	200		1660	mV
TTL Input Current		$0 \le V_{PIN} \le V_{CC}$	-100		+100	μΑ
TTL Input High Voltage	VIH		2			V
TTL Input Low Voltage	VIL				0.8	V
FAULT, FAULT Output High Voltage	V _{OH}	I _{OH} = -100μA	2.4			V
FAULT, FAULT Output Low Voltage	V _{OL}	I _{OL} = 1mA			0.4	V
BIAS GENERATOR (Note 1)						
BIASDRV Current, Shutdown		EN = GND	-1		+1	μΑ
BIASDRV Current Sink		FAULT = low, V _{BIASDRV} ≥ 0.6V	0.8			mA
BIASDRV Current Source		FAULT = low, $V_{BIASDRV} \le V_{CC} - 1V$	0.8			mA
REF Voltage		$I_{REF} \le 2mA, MON = V_{CC}$	2.45	2.65	2.85	V
MD Nominal Voltage	V _{MD}	APC loop is closed	1.55	1.7	1.85	V
MD Voltage During Fault		Common-cathode configuration		0.4	1.2	V
ND Vollage During Fault		Common-anode configuration	2	V _{CC} - 0.8		v
MD Input Current		Normal operation (FAULT = low)	-2	+0.16	+2	μΑ
MON Input Current		V _{MON} = V _{CC}		0.44	6	μA
POWER-ON RESET						
POR Threshold		LV = GND	3.9		4.5	V
T ON THIESHOLD		LV = open	2.65		3.00	v
POR Hysteresis				150		mV
FAULT DETECTION						
REF Fault Threshold					2.95	V
MD High Fault Threshold			V _{MD} + 59	% V _M	⊃ + 20%	
MD Low Fault Threshold			V _{MD} - 20	% V	MD - 5%	
MON Fault Threshold		MAX3286/MAX3288/MAX3296/MAX3298	V _{CC} - 600		V _{CC} - 480	mV
MODSET, TC Fault Threshold					0.9	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +5.5V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V, R_{TC} = \text{open and } T_A = +25^{\circ}C;$ see Figure 1a.)

SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
	ISHDNDRV = 10µA, F	AULT asserted	Vcc - 0.4	1		
	ISHDNDRV = 15mA, F	AULT not asserted	0	V	CC - 1.2	V
	ISHDNDRV = 1mA, FAULT not asserted		0	V	CC - 2.4	
	1					
	MAX3286 series			1.25		
	MAX3296 series			2.5		Gbp
					2	mA
	$R_L \le 25\Omega$		30			mA
	$B_{MOD} = 1.9 k\Omega (I_{MOI})$	а = 30mA)	-10		+10	
			-15		+15	%
				130	-	
	20% to 80%		_	90	150	ps
		$R_{MOD} = 13k\Omega$		46	65	
	MAX3286 series	$R_{MOD} = 4.1 k\Omega$		29	45	-
		$R_{MOD} = 1.9 k\Omega$		22	35	
		$R_{MOD} = 13k\Omega$		14	35	ps
M	MAX3296 series	$R_{MOD} = 4.1 k\Omega$		8	22	
		$R_{MOD} = 1.9 k\Omega$		7	20	
	MAX3286 series	,		2	8	
RMS					4	ps
					200	μA
	Tempco = max BMC	= open: Figure 5				
						ppm/
			620		980	Ω
	Single ended					Ω
						V
L	1		I	00 1.0		
	PORDLY = open		0.3	1.25		μs
t PORDLY	$C_{PORDLY} = 0.01 \mu F,$		3	5.5		ms
t FAULT	(Note 4)	,		22		μs
						, p.5
	RMS	ISHDNDRV = 10µA, F ISHDNDRV = 15mA, F ISHDNDRV = 15mA, F ISHDNDRV = 1mA, F WAX3286 series MAX3296 series MAX3296 series RL ≤ 25Ω RMOD = 1.9kΩ (IMOD RMOD = 13kΩ (IMOD RMOD = 13kΩ (IMOD Q0% to 80% MAX3286 series MAX3286 series MAX3296 series Single ended Single ended PORDLY = 001µF, MAX3286/MAX3296	ISHDNDRV = 10µA, FAULT asserted ISHDNDRV = 15mA, FAULT not asserted ISHDNDRV = 1mA, FAULT not asserted ISHDNDRV = 1mA, FAULT not asserted ISHDNDRV = 1mA, FAULT not asserted IMAX3286 series MAX3296 series MAX3296 series MAX3296 series RL ≤ 25Ω RMOD = 1.9kΩ (IMOD = 30mA) RMOD = 1.9kΩ (IMOD = 5mA) RMOD = 1.9kΩ (IMOD = 5mA) MAX3286 series MAX3286 series MAX3286 series MAX3286 series RMOD = 1.9kΩ (IMOD = 5mA) MAX3286 series RMOD = 1.9kΩ (IMOD = 5mA) RMOD = 1.9kΩ (IMOD = 5mA) <t< td=""><td>$\begin{array}{ c c c } & SHDNDRV = 10\mu\text{A}, FAULT asserted & V_{CC} - 0.4 \\ \hline \\ SHDNDRV = 15m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1080 & [SHDNDRV = 100] \\ \hline \\ SHDDPRDEX State &$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c } \hline$</td></t<>	$ \begin{array}{ c c c } & SHDNDRV = 10\mu\text{A}, FAULT asserted & V_{CC} - 0.4 \\ \hline \\ SHDNDRV = 15m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1m\text{A}, FAULT not asserted & 0 \\ \hline \\ SHDNDRV = 1080 & [SHDNDRV = 100] \\ \hline \\ SHDDPRDEX State & $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c } \hline $

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +3.0V to +5.5V, $T_A = 0^{\circ}C$ to +70°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, R_{TC} = open and T_A = +25°C; see Figure 1a.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
FLTDLY Duration	t FLTDLY	C _{FLTDLY} = 0	0.2	1		110
	UFLIDLY	$C_{FLTDLY} = 270 pF$	100	140		μs
EN or EN Minimum Pulse Width Required to Reset a Latched		MAX3286/MAX3296 only, Figure 1b, CFLTDLY = open		6	10	ns
Fault	^t EN_RESET	MAX3286/MAX3296 only, Figure 1b, $C_{FLTDLY} = 0.01 \mu F$		6		μs
FAULT Reset after EN, EN, or POR Transition	t RESET	MAX3286/MAX3296 only, Figure 1b		1	2	μs
SHDNDRV Asserted after EN = Low or \overline{EN} = High	t SHUTDN	MAX3286/MAX3296 only, Figure 1b		3.5	5.5	μs

Note 1: Common-anode configuration refers to a configuration where POL = GND, $\overline{POL} = V_{CC}$, and an NPN device is used to set the laser bias current. Common-cathode configuration refers to a configuration where POL = V_{CC} , $\overline{POL} = GND$, and a PNP device is used to set the laser bias current.

Note 2: Deterministic jitter measured with a repeating K28.5 bit pattern 0011111010100000101. Deterministic jitter is the peak-topeak deviation from the ideal time crossings per ANSI X3.230, Annex A.

Note 3: For Fibre Channel and Gigabit Ethernet applications, the peak-to-peak random jitter is 14.1 times the RMS jitter.

Note 4: Delay from a fault on MD until FAULT is asserted high.

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

Typical Operating Characteristics (continued)

100ps/div

	P	IN			
QFN MAX3286 MAX3296	TQFP MAX3286 MAX3296	TSSOP-EP MAX3287 MAX3297 MAX3289 MAX3299	TSSOP-EP MAX3288 MAX3298	NAME	FUNCTION
1	1	—		FAULT	Inverting Fault Indicator. See Table 1.
	2, 16, 19			N.C.	No Connect
2	3	—	_	FAULT	Noninverting Fault Indicator. See Table 1.
3	4	_	_	POR	Power-On Reset. POR is a TTL-compatible output. See Figure 14.
4, 13, 19	5, 14, 22, 30	1, 6	1, 6	GND	Ground
5	6		_	EN	Enable TTL Input. The laser output is enabled only when EN is high and $\overline{\text{EN}}$ is low. If EN is left unconnected, the laser is disabled.
6	7	_	_	ĒN	Inverting Enable TTL Input. The laser output is enabled only when $\overline{\text{EN}}$ is low or grounded and EN is high. If $\overline{\text{EN}}$ is left unconnected, the laser is disabled.
7	8	_	_	PORDLY	Power-On Reset Delay. To extend the delay for the power-on reset circuit, connect a capacitor to PORDLY. See the <i>Design</i> <i>Procedure</i> section.

Pin Description (continued)

	Р	IN			
QFN MAX3286 MAX3296	TQFP MAX3286 MAX3296	TSSOP-EP MAX3287 MAX3297 MAX3289 MAX3299	TSSOP-EP MAX3288 MAX3298	NAME	FUNCTION
8	9	2	2	FLTDLY	Fault Delay Input. Determines the delay of the FAULT and FAULT outputs. A capacitor attached to FLTDLY ensures proper startup (see the <i>Typical Operating Characteristics</i>) FLTDLY = GND: holds FAULT low and FAULT high. When FLTDLY = GND, EN = high, \overline{EN} = low, and V _{CC} is within the operational range, the safety circuitry is inactive.
9	10	_	_	LV	Low-Voltage Operation. Connect to GND fo 4.5V to 5.5V operation. Leave open for 3.0V to 5.5V operation (Table 2).
10, 22, 23, 26	11, 25, 26, 29	3, 11, 14	3, 11, 14	Vcc	Supply Voltage
11	12	4	4	IN+	Noninverting Data Input
12	13	5	5	IN-	Inverting Data Input
14	15	7	7	REF	Reference Voltage. A resistor connected at REF to MD determines the laser power whe APC is used with common-cathode lasers.
15	17			POL	Polarity Input. POL is used for programming the laser-pinning polarity (Table 4).
16	18	_	_	POL	Inverting Polarity Input. POL is used for programming the laser-pinning polarity (Table 4).
17	20	8	8	MD	Monitor Diode Connection. MD is used for automatic power control.
18	21		9	MON	Laser Bias Current Monitor. Used for programming laser bias current in VCSEL applications.
20	23	9		SHDNDRV	Shutdown Driver Output. Provides a redundant laser shutdown.
21	24	10	10	BIASDRV	Bias-Controlling Transistor Driver. Connects to the base of an external PNP or NPN transistor.

Pin Description (continued)

	Р	IN			
QFN MAX3286 MAX3296	TQFP MAX3286 MAX3296	TSSOP-EP MAX3287 MAX3297 MAX3289 MAX3289	TSSOP-EP MAX3288 MAX3298	NAME	FUNCTION
24	27	12	12	OUT+	Modulation-Current Output. See the <i>Typical Application Circuits</i> .
25	28	13	13	OUT-	Modulation-Current Output. See the <i>Typical</i> Application Circuits.
27	31	15	15	MODSET	Modulation-Current Set. The resistor at MODSET programs the temperature-stable component of the laser modulation current.
28	32	16	16	тс	Temperature-Compensation Set. The resistor at TC programs the temperature-increasing component of the laser modulation current.
EP	_	EP	EP	Exposed Pad Ground. This must be soldered to the board ground for proper thermal performance. See <i>Layout Consideration</i>	

Table 1. Typical Fault Conditions

PIN	FAULT CONDITION	
Vcc	$LV = GND$ and $V_{CC} < 4.5V$	
REF	V _{REF} > 2.95V	
POL and \overline{POL}	$POL = \overline{POL}$	
MON	V _{MON} < V _{CC} - 540mV	
MD	$V_{MD} > 1.15 \times V_{MD(nom)},$ $V_{MD} < 0.85 \times V_{MD(nom)}$	
EN and $\overline{\text{EN}}$	$EN = low or open, \overline{EN} = high or open$	
MODSET and TC	V_{MODSET} and $V_{TC} \le 0.8V$	

Table 2. LV Operating Range

LV	OPERATING VOLTAGE RANGE (V)
Open	>3.0
Grounded	>4.5

Figure 1a. Output Load for AC Specification

Figure 1b. Fault Timing

Detailed Description

The MAX3286/MAX3296 series of laser drivers contain a bias generator with APC, laser modulator, power-on reset (POR) circuit, and safety circuitry (Figures 2a and 2b).

Bias Generator

Figure 3 shows the bias generator circuitry containing a power-control amplifier, controlled reference voltage, smooth-start circuit, and window comparator. The bias generator combined with an external PNP or NPN transistor provides DC laser current to bias the laser in a light-emitting state. When there is a monitor diode (MD) in the laser package, the APC circuitry adjusts the laser-bias current to maintain average power over temperature and changing laser properties. The MD input is connected to

Figure 2a. Simplified Laser Driver Functional Diagram

the anode or cathode of a monitor photodiode or to a resistor-divider, depending on the specific application circuit. Three application circuits are supported: common-cathode laser with photodiode, common-cathode laser with photodiode, and common-anode laser with photodiode (as shown in the *Design Procedure* section). The POL and POL inputs determine the laser pinning (common cathode, common anode) (Table 4).

The smooth-start circuitry prevents current spikes to the laser during power-up or enable; this ensures compliance with safety requirements and extends the life of the laser.

The power-control amplifier drives an external transistor to control the laser bias current. In a fault condition, the power-control amplifier's output is disabled (high

Figure 2b. Laser Driver Functional Diagram

impedance). This ensures that the PNP or NPN transistor is turned off, removing the laser-bias current. (See the *Applications Information* section.)

The REF pin provides a controlled reference voltage dependent upon the voltage at MON. The voltage at REF is $V_{REF} = 2.65 - 2.25(V_{CC} - V_{MON})$. A resistor connected at REF determines the laser power when APC is used with common-cathode lasers. See the *Design Procedure* section for information about setting the laser power.

Modulation Circuitry

The modulator circuitry consists of an input buffer, current generator, and high-speed current switch (Figure 4). The modulator drives up to 30mA of modulation current into a 25Ω load.

Many of the modulator performance specifications depend on the total modulator current (IOUT) (Figure 1a). To ensure good driver performance, the voltage at OUT+ and OUT- must not be less than V_{CC} - 1V.

The amplitude of the modulation current is set with resistors at the MODSET and temperature coefficient (TC) pins. The resistor at MODSET (R_{MOD}) programs the temperature-stable portion of modulation current, while the resistor at TC (R_{TC}) programs the temperature-increasing portion of the modulation current. Figure 5 shows modulation current as a function of temperature for two extremes: R_{TC} is open (the modulation current has zero temperature coefficient) and R_{MOD} is open (the modulation temperature coefficient is 4000ppm). Intermediate tempco values of modulation current can be obtained as described in the *Design Procedure* section. Table 3 is the RTC and RMOD selection table.

Safety Circuitry

The laser driver can be used with two popular safety systems. APC maintains laser safety using local feedback. Safety features monitor laser driver operation and

TEMPOO	I _{MOD} = 30mA		MOD = 30mA IMOD = 15mA		I _{MOD} = 5mA		
TEMPCO (ppm/°C)	R _{MOD} (kΩ)	Rтс (kΩ)	R _{MOD} (kΩ)	Rтс (kΩ)	R _{MOD} (kΩ)	R _{TC} (kΩ)	
3500	26.7	1.69	53.6	3.65	162	11.5	
3000	9.53	2.0	18.7	4.32	57.6	13.3	
2500	5.76	2.49	11.3	5.23	34.8	16.2	
2000	4.12	3.16	8.06	6.49	24.9	20.0	
1500	3.24	4.32	6.19	8.87	19.1	26.7	
1000	2.67	6.49	5.11	13.3	15.8	40.2	
500	2.26	13.3	4.22	26.7	13.3	80.6	

Table 3. RTC and RMOD Selection Table

Figure 3. Bias Generator Circuitry

Figure 4. Laser Modulator Circuitry

MAX3286-MAX3289/MAX3296-MAX3299

M/IXI/M

force a shutdown if a fault is detected. The shutdown condition is latched until reset by a toggle of EN, $\overline{\text{EN}},$ or power.

Another safety system, open fiber control (OFC), uses safety interlocks to prevent eye hazards. To accommodate the OFC standard, the MAX3286/MAX3296 series provide dual enable inputs and dual fault outputs.

The safety circuitry contains fault detection, dual enable inputs, latched fault outputs, and a pulse generator (Figure 6).

Safety circuitry monitors the APC circuit to detect unsafe levels of laser emission during single-point failures. A single-point failure can be a short to V_{CC} or GND or a short between any two IC pins.

Pulse Generator

During startup, the laser does not emit light and the APC loop is not closed, triggering a fault signal. To allow startup, an internal fault-delay pulse disables the safety system for a programmable period of time, allowing the driver to begin operation. The length of the pulse is determined by the capacitor connected at FLTDLY and should be set 5 to 10 times longer than the APC time constant. The internal safety features can be disabled by connecting FLTDLY to GND. Note that EN must be high, EN must be low, and V_{CC} must be in the operational range for laser operation.

Fault Detection

The MAX3286/MAX3296 series has extensive and comprehensive fault-detection features. All critical nodes are monitored for safety faults, and any node voltage that differs significantly from its expected value results in a fault (Table 1). When a fault condition is detected, the laser is shut down. See the *Applications Information* section for more information on laser safety.

Shutdown

The laser drivers offer dual redundant bias shutdown mechanisms. The SHDNDRV output drives an optional external MOSFET semiconductor. The bias and modulation drivers have separate internal disable signals.

Latched Fault Output

Two complementary FAULT outputs are provided with the MAX3286/MAX3296 series. In the event of a fault, these outputs latch until one of three events occurs:

1) The power is switched off, then on.

Figure 6. Simplified Safety Circuit Schematic

Figure 7. Power-On Reset Circuit

2) EN is switched low, then high.

3) EN is switched to high, then low.

Power-On Reset (POR)

Figure 7 shows the POR circuit for the MAX3286/ MAX3296 series devices. A POR signal asserts low when V_{CC} is in the operating range. The voltage operating range is determined by the LV pin, as shown in Table 2. POR contains an internal delay to reject noise on V_{CC} during power-on or hot-plugging. The delay can be extended by adding capacitance to the PORDLY pin. The POR comparator includes hysteresis to improve noise rejection. The laser driver is shut down while V_{CC} is out of the operating range.

Design Procedure

Select Laser

Select a communications-grade laser with a rise time of 260ps or better for 1.25Gbps, or 130ps or better for 2.5Gbps applications. To obtain the MAX3286/MAX3296's AC specifications, the instantaneous output voltage at OUT+ must remain above V_{CC} - 1V at all times. Select a high-efficiency laser that requires low modulation current and generates low-voltage swing at OUT+. Laser package inductance can be reduced by trimming the leads. Typical package leads have inductance of 25nH/in (1nH/mm); this inductance causes a larger voltage swing across the laser. A compensation filter network also can be used to reduce ringing, edge speed, and voltage swing.

Programming the Modulation Current

Resistors at the MODSET and TC pins set the amplitude of the modulation current. The resistor R_{MOD} sets the temperature-stable portion of the modulation cur-

rent, while the resistor R_{TC} sets the temperatureincreasing portion of the modulation current.

To determine the appropriate temperature coefficient from the slope efficiency (α) of the laser, use the following equation:

Laser tempco =
$$\frac{\alpha_{70} - \alpha_{25}}{\alpha_{25}(70^{\circ}\text{C} - 25^{\circ}\text{C})} \times 10^{6} \text{ [ppm/°C]}$$

where $\boldsymbol{\alpha}$ is the slope of the laser output power to the laser current.

For example, suppose a laser has a slope efficiency α_{25} of 0.021mW/mA at +25°C, which reduces to 0.018mW/mA at +70°C. Using the above equation produces a laser tempco of -3175ppm/°C.

To obtain the desired modulation current and tempco for the device, the following two equations can be used to determine the required values of R_{MOD} and R_{TC}:

$$R_{TC} = \frac{0.21}{\text{tempco}(I_{MOD})} - 250\Omega$$

$$R_{MOD} = \frac{(R_{TC} + 250\Omega)52 \times \text{tempco}}{(0.19 - 48 \times \text{tempco})} - 250\Omega$$

where tempco = -laser tempco.

Figure 8a shows a family of curves derived from these equations. The straight diagonal lines depict constant tempcos. The curved lines represent constant modulation currents. If no temperature compensation is desired, Figure 8b displays a series of curves that show laser modulation current with respect to R_{MOD} for different loads.

The following useful equations were used to derive Figure 8a and the equations at the beginning of this section. The first assumes $R_L = 25\Omega$.

$$I_{MOD} = 51 \times \begin{bmatrix} \frac{1.15}{R_{MOD} + 250\Omega} + \frac{1.06}{R_{TC} + 250\Omega} \times \\ (1 + 4.0 \times 10^{-3} (T - 25^{\circ}C)) \end{bmatrix} [A]$$

$$I_{MOD(70^{\circ}C)} = I_{MOD(25^{\circ}C)} + I_{MOD(25^{\circ}C)}$$

(tempco)(70^{\circ}C - 25^{\circ}C)[A]

Programming the Bias Current/APC

Three application circuits are described below: common-cathode laser with photodiode, common-cathode laser without photodiode, and common-anode laser

Figure 8a. RTC vs. RMOD for Various Conditions

Figure 8b. Laser-Modulation Current vs. RMOD

with photodiode. The POL and POL inputs determine the laser pinning (common cathode, common anode) and affect the smooth-start circuits (Table 4).

Common Cathode with Photodiode (Optical Feedback)

In the common cathode with photodiode configuration, a servo control loop is formed by external PNP Q1, the laser diode, the monitor diode, R_{SET}, and the power-control amplifier (Figure 9). The voltage at MD is stabilized to 1.7V. The monitor photodiode current (I_D) is set by (VREF - VMD) / R_{SET} = 0.95 / R_{SET}. Determine the desired monitor current (I_D), then select R_{SET} = 0.95 / I_D.

The APC loop is compensated by C_{BIASDRV}. A capacitor must be placed from BIASDRV to V_{CC} to ensure lownoise operation and to reject power-supply noise. The time constant governs how quickly the laser bias current reacts to a change in the average total laser current (I_{BIASDRV} + I_{MOD}). A capacitance of 0.1µF is sufficient to obtain a loop time constant in excess of 1µs, provided that R_{DEG} is chosen appropriately. Resistor R_{DEG} might be necessary to ensure the APC loop's stability when low bias currents are desired.

The voltage across RDEG should not be larger than 250mV at maximum bias current.

The discrete components used with the common cathode with photodiode configuration are:

RSET = 0.95 / ID

 $CBIASDRV = 0.1\mu F (typ)$

RDEG = 0.25 / IBIAS(MAX)

Table 4. POL Pin Setup for Each Laser Configuration Type

DEVICE	POL	POL	DESCRIPTION	LASER PINNING
MAX3286/MAX3296	VCC	GND		**
MAX3287/MAX3297	_		Common cathode with photodiode	
MAX3286/MAX3296	VCC	GND		<u> </u>
MAX3288/MAX3298	_		Common cathode without photodiode	
MAX3286/MAX3296	GND	VCC		Vcc
MAX3289/MAX3299	_		Common anode with photodiode	
MAX3286/MAX3296	VCC	VCC	Not allowed; fault occurs	_
MAX3286/MAX3296	GND	GND	Not allowed; fault occurs	—

Q1 = general-purpose PNP, β >100, ft > 5MHz

B1 = ferrite bead (see *Bias Filter* section)

M1 = general-purpose PMOS device (optional)

Common Cathode with Current Feedback In the common-cathode configuration with current feedback, a servo control loop is formed by an external PNP transistor (Q1), R_{MON}, the controlled-reference voltage block, R_{SET}, R_{MD}, and the power-control amplifier (Figure 10). The voltage at MD is stabilized to 1.7V. The voltage at MON is set by the resistors R_{SET} and R_{MD}. As in the short-wavelength configuration, a 0.1µF CBIASDRV connected between BIASDRV and V_{CC} is sufficient to obtain an approximate 1 μs APC loop time constant. This improves power-supply noise rejection.

To select the external components:

1) Determine the required laser bias current

 $I_{BIAS} = I_{TH} + I_{MOD} / 2$

2) Select RMD and RSET.

Maxim recommends RsET = 1kΩ, RMD = 5kΩ, which results in VCC - VMON \approx 250mV.

3) Select R_{MON} where R_{MON} = 250mV / I_{BIAS}, assuming R_{SET} = 1k Ω and R_{MD} = 5k Ω .

Figure 9. Common-Cathode Laser with Photodiode

Figure 10. Common Cathode with Current Feedback (PNP Configuration)

The relationship between laser bias current and RMON is shown in Figure 11. The remaining discrete components used with the common cathode without photodiode configuration are as follows:

Q1 = general-purpose PNP, β >100, ft > 5MHz

B1 = ferrite bead (see the *Bias Filter* section)

M1 = general-purpose PMOS device (optional)

 $CBIASDRV = 0.1 \mu F (typ)$

Common Anode with Photodiode

In the common-anode configuration with photodiode, a servo control loop is formed by an external NPN transistor (Q1), the laser diode, the monitor diode, R_{SET}, and the power-control amplifier. The voltage at MD is stabilized to 1.7V. The monitor photodiode current is set by I_D = V_{MD} / R_{SET} (Figure 12). Determine the desired monitor current (I_D), then select R_{SET} = 1.7V / I_D.

Figure 11. Common Cathode without Photodiode Laser

CBIASDRV and a degeneration resistor (RDEG) must be connected to the bias transistor (in this case NPN) to obtain the desired APC loop time constant. This improves power-supply (and ground) noise rejection. A capacitance of 0.1μ F is sufficient to obtain time constants of up to 5µs in most cases. The voltage across RDEG should not be larger than 250mV at maximum bias current.

The discrete components used with the common anode with photodiode configuration are summarized as follows:

$$R_{SET} = 1.7 / I_D$$

 $C_{BIASDRV} = 0.1 \mu F (typ)$

 $R_{DEG} = 0.25 / I_{BIAS(MAX)}$

Q1 = general-purpose NPN, β > 100, ft > 5MHz

B1 = ferrite bead (see the *Bias Filter* section)

M1 = general-purpose PMOS (optional)

Programming POR Delay

A capacitor can be added to PORDLY to increase the delay for which POR is asserted low (meaning that V_{CC} is within the operational range) when powering up the part.

The delay is approximately:

$$t = \frac{C_{PORDLY}}{(1.4)10^{-6}} [s]$$

See the Typical Operating Characteristics.

Figure 12. Common Anode with Photodiode

Designing the Bias Filter and Output Pullup Beads

To reduce deterministic jitter, add a ferrite-bead inductor between the collector of the biasing transistor and either the anode or the cathode of the laser, depending on type (see the *Typical Operating Characteristics*). Use a ferrite-bead inductor with an impedance >100 Ω between f = 10MHz and f = 2GHz, and a DC resistance < 3Ω . Maxim recommends the Murata BLM11HA102SG. These inductors are also desirable for tying the OUT+ and OUT- pins to V_{CC}.

Designing the Laser-Compensation Filter Network

Laser package inductance causes the laser impedance to increase at high frequencies, leading to ringing, overshoot, and degradation of the output eye pattern. A lasercompensation filter network can be used to reduce the output load seen by the laser driver at high frequencies, thereby reducing output ringing and overshoot.

The compensation components (R_{COMP} and C_{COMP}) are most easily determined by experimentation. Begin with R_{COMP} = 25Ω and C_{COMP} = 2pF. Increase C_{COMP} until the desired transmitter eye is obtained (Figure 13).

Quick Shutdown

To reduce laser shutdown time, a FET device can be attached to SHDNDRV as shown in Figure 10. This provides a typical laser power shutdown time of less than $10\mu s$.

Applications Information

Laser Safety and IEC 825

The International Electrotechnical Commission (IEC) determines standards for hazardous light emissions from fiber optic transmitters. IEC 825 defines the maximum light output for various hazard levels. The MAX3286/MAX3296 series provides features that facilitate compliance with IEC 825.

A common safety requirement is single-point fault tolerance, whereby one unplanned short, open, or resistive connection does not cause excess light output. When these laser drivers are used, as shown in the *Typical Application Circuits*, the circuits respond to faults as listed in Table 5.

Using these laser drivers alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Customers must determine the level of fault tolerance required by their applications, recognizing that Maxim products are not designed or authorized for use as components in systems intended for surgical implant

Figure 13. Laser Compensation

into the body, for applications intended to support or sustain life, or for any other application where the failure of a Maxim product could create a situation where personal injury or death may occur.

Layout Considerations

The MAX3286/MAX3296 series comprises high-frequency products. Their performance depends largely upon the circuit board layout.

Use a multilayer circuit board with a dedicated ground plane. Use short laser package leads placed close to the modulator outputs. Power supplies must be capacitively bypassed to the ground plane with surface-mount capacitors placed near the power-supply pins.

The dominant pole of the APC circuit is normally located at BIASDRV. To prevent a second pole in the APC (which can lead to oscillations), ensure that parasitic capacitance at MD is minimized.

Common Questions

Laser output is ringing or contains overshoot. This often is caused by inductive laser packaging. Try reducing the length of the laser leads. Modify the compensation components to reduce the driver's output edge speed (see *Design Procedure*). Extreme ringing can be caused by low voltage at the OUT± pins. This might indicate that pullup beads or a lower modulation current are needed.

Low-frequency oscillation on the laser output. This is more prevalent at low temperatures. The APC might be oscillating. Try increasing the value of CBIASDRV or increasing the value of RDEG. Ensure that the parasitic capacitance at the MD node is kept very small (<10pF).

The APC is not needed. Connect FLTDLY to ground to disable fault detection. Connect MD to REF and MON to V_CC. BIASDRV and SHDNDRV can be left open.

Table 5. Circuit Response to Various Single-Point Faults

PIN NAME	CIRCUIT RESPONSE TO OVERVOLTAGE OR SHORT TO V_{CC}	CIRCUIT RESPONSE TO UNDERVOLTAGE OR SHORT TO GROUND					
FAULT	Does not affect laser power	Does not affect laser power					
FAULT	Does not affect laser power	Does not affect laser power					
POR	Does not affect laser power	Does not affect laser power					
PORDLY	Does not affect laser power	Fault state* occurs					
EN	Normal condition for circuit operation	Fault state* occurs					
ĒN	Fault state* occurs	Normal condition for circuit operation					
LV	Does not affect laser power	Fault state* occurs if V _{CC} is less than +4.5V					
POL	If POL is a TTL HIGH, a fault state* occurs; other- wise, the circuit is in normal operation	If POL is a TTL LOW, a fault state* occurs; other- wise, the circuit is in normal operation					
POL	If POL is a TTL HIGH, a fault state* occurs; other- wise, the circuit is in normal operation	If POL is a TTL LOW, a fault state* occurs; other- wise, the circuit is in normal operation					
MON (also MAX3288/ MAX3298)	In common cathode without photodiode configura- tion, a fault state* occurs; otherwise, does not affect laser power	Fault state* occurs					
SHDNDRV (also MAX3287/ MAX3297/MAX3289/ MAX3299	Does not affect laser power. If optional FET is used, the laser output is shut off.	Does not affect laser power					
FLTDLY	Any fault that occurs cannot be reset. Does not affect laser power.	Does not affect laser power					
IN+, IN-	Does not affect laser power	Does not affect laser power					
REF	Fault state* occurs	In common-cathode configurations, a fault state* occurs; otherwise, does not affect laser power					
MD	Fault state* occurs	Fault state* occurs					
BIASDRV	In common-cathode configurations, the laser bias current is shut off. In common anode, high laser power triggers a fault state.* Shutdown occurs if a shutdown FET (M1) is used. If shutdown FET is not used, other means must be used to prevent high laser power.	In common-anode configurations, the laser bias current is shut off. In common cathode, high laser power triggers a fault state.* Shutdown occurs if a shutdown FET (M1) is used (Figures 9, 10).					
OUT+, OUT-	Does not affect laser power	Does not affect laser power					
MODSET	Does not affect laser power	Fault state* occurs					
TC	Does not affect laser power	Fault state* occurs					

*A fault state asserts the FAULT pins, disables the modulator outputs, disables the bias output, and asserts the SHDNDRV pin.

The modulator is not needed. Leave TC and MODSET open. Connect IN+ to VCC, IN- to REF, and leave OUT+ and OUT– open.

Wirebonding Die

The MAX3286/MAX3296 series uses bondpads with gold metalization. Make connections to the die with gold wire only, using ball-bonding techniques. Wedge bonding is not recommended. Bondpad size is 4 mil square. Die thickness is typically 15 mils (0.38mm).

Interface Models Figures 14–18 show typical input/output models for the MAX3286/MAX3296 series of laser drivers. If dice are used, replace the package parasitic elements with bondwire parasitic elements.

Figure 16. Modulator Outputs

3.0V to 5.5V, 1.25Gbps/2.5Gbps LAN Laser Drivers

Figure 17. Data Inputs

Figure 18. BIASDRV Output

Selector Guide

DATA RAT	TE/DEVICE	LA			
1.25Gbps	2.5Gbps	COMMON ANODE WITH PHOTODIODE	COMMON CATHODE WITH PHOTODIODE	COMMON CATHODE WITH PHOTODIODE	PACKAGE
		Longwave	Shortwave or VCSEL	VCSEL	
MAX3286	MAX3296	1	1	1	32 TQFP/28 QFN/Dice
MAX3287	MAX3297		1		16 TSSOP-EP
MAX3288	MAX3298			1	16 TSSOP-EP
MAX3289	MAX3299	1			16 TSSOP-EP

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX3287CUE	0°C to +70°C	16 TSSOP-EP**
MAX3288CUE	0°C to +70°C	16 TSSOP-EP**
MAX3289CUE	0°C to +70°C	16 TSSOP-EP**
MAX3296CGI	0°C to +70°C	28 QFN (5mm x 5mm)**
MAX3296CHJ	0°C to +70°C	32 TQFP (5mm x 5mm)
MAX3296C/D	0°C to +70°C	Dice*
MAX3297CUE	0°C to +70°C	16 TSSOP-EP**
MAX3298CUE	0°C to +70°C	16 TSSOP-EP**
MAX3299CUE	0°C to +70°C	16 TSSOP-EP**

*Dice are designed to operate from $T_J = 0^{\circ}C$ to +110°C but are tested and guaranteed only at $T_A = +25^{\circ}C$. **Exposed pad.

Typical Application Circuits

21

MAX3286-MAX3289/MAX3296-MAX3299

MAX3286-MAX3289/MAX3296-MAX3299

Typical Application Circuits (continued)

MAX3286-MAX3289/MAX3296-MAX3299

MAX3286-MAX3289/MAX3296-MAX3299

TRANSISTOR COUNT: 1154 SUBSTRATE CONNECTED TO GND

TRANSISTOR COUNT: 1154 SUBSTRATE CONNECTED TO GND

MAX3296

Chip Topographies

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

DIVO					COMM	UN DIME	NSIONS												
PKG		16L 5x5			20L 5x5			28L 5x5			32L 5x5								
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.							
A	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00							
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05							
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00							
A3		0.20 REF			0.20 REF		(0.20 REF			0.20 REF								
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30	EX	POSED	PAD	VA	RIATI		
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	DVC		DS			E5	
D1		4.75 BSC	C		4.75 BSC	;		4.75 BSC	;		4.75 BS0	2	PKG. CODES	MIN	NDM.	MAX.	MIN.	NDM.	MAX
£	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	G1655-		3.10	3.25	2.95	3.10	3.25
E1		4.75 BSC	0		4.75 BSC	;		4.75 BS0	;		4.75 BS0	2	G2055-	-	2.70		2.55	2.70	2.85
e		0.80 BS	c		0.65 BSC	:		0.50 BS	0		0.50 BS	>	G2055-		3.10	3.25	2.95	3.10	3.25
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	G2855-	_	2.70		2.55	2.70	2,85
L	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.50	G3255-	- 100	3.10	3.25	2.95	3.10 3.10	3.25
N		16			20			28			32		03233	1 2.95	3.10	3.20	2.95	3.10	3.23
ND		4			5			7			8								
NE		4			5			7			8								
P	0.00	0.42						0.42											
	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60							
θ	0.00	0.42	0.60 12*	0.00 0*	0.42	0.60 12*	0.00	0.42	0.60 12*	0.00	0.42	0.60 12*							
θ TES: 1. D 2. D 3. N N 4. D 5. T	0" Imensio Is th Is th Imensio He pin	KNESS A DNING & E NUMBI HE NUMI DN 6 AP	12* ALLOWA TOLER ER OF BER OF PLIES	O* BLE IS ANCES TERMINA TERMIN TO PLAT MUST	0.305mr CONFORM LS. WALS IN I ED TERW	12* n MAXIM I TO ASI X-DIREC' IINAL AN IED ON 1	0" IUM (.0 ME Y14 TION & D IS M THE TO	12 INCH 1.5M. – Ne IS IEASUREI P SURFA	12* ES MA3 1994. THE NU D BETW	0* (IMUM) IMBER C	OF TERMI	12* NALS IN 0.25mm	Y-DIRECTI FROM TER INDENTAT	MINAL TI		INK/L	ASER	MARKE	D.
θ TES: 1. D 2. D 3. N 4. D 6. T 6. E 7. A	O" INE THIC IMENSIO IS TH d IS TH IMENSIO HE PIN XACT S LL DIM	KNESS / DNING & E NUMBI HE NUMI DN 6 AP #1 IDE #1 IDE ENSIONS	12* ALLOWA TOLER ER OF BER OF PLIES T NTIFIER ND SIZI	O" BLE IS ANCES TERMINA TERMIN TO PLAT MUST I E OF TH N MILLIN	0.305mr CONFORM LLS. ALS IN ED TERM BE EXIST IIS FEATU IETERS.	12* n MAXIM I TO ASI X-DIREC' IINAL AN IED ON 1	0" IUM (.0 ME Y14 TION & D IS M THE TO	12 INCH 1.5M. – Ne IS IEASUREI P SURFA	12* ES MA3 1994. THE NU D BETW	0* (IMUM) IMBER C	OF TERMI	12* NALS IN 0.25mm	FROM TER	MINAL TI ION MAR	KOR				
θ TES: 1. D 2. D 3. N N 4. D 5. T 6. E 7. A 8. P 9. A	O"	KNESS A DNING & E NUMBI HE NUMBI HE NUMBI HAPE AI ENSIONS E WARPA FOR EX	12* ALLOWA TOLER ER OF PELIES NTIFIER ND SIZI ARE II GE MA3 (POSED	O" BLE IS ANCES TERMINA TERMINA TO PLAT MUST I E OF TH N MILLIN X 0.05rr PAD AN	0.305mr CONFORM LLS. ALS IN ED TERM BE EXIST IIS FEATU IETERS.	12" n MAXIM I TO ASI X-DIREC" IINAL AN IINAL AN IIRE IS C INALS.	0" IUM (.0 ME Y14 TION & D IS M THE TO OPTIONA	12 INCH .5M. – Ne IS IEASUREI P SURFA	12" IS MAJ 1994. THE NU D BETW	0* (IMUM) IMBER C	OF TERMI	12* NALS IN 0.25mm		MINAL TI	KOR				
θ TES: D 2. D 3. N 4. D 5. T 6. E 7. A 8. A 9. A 8. A	O"	KNESS A DNING & E NUMBI HE NUMBI HE NUMBI HAPE AI ENSIONS E WARPA FOR EX	12* ALLOWA TOLER ER OF PLIES ' PLIES ' NTIFIER ND SIZI ARE II GE MA2 POSED DED PA	O" BLE IS ANCES TERMINA TERMINA TO PLAT MUST I E OF TH N MILLIN X 0.05rr PAD AN	0.305mr CONFORM LS. ALS IN : ED TERM BE EXIST IIS FEATI IETERS. IID TERMI	12" n MAXIM I TO ASI X-DIREC" IINAL AN IINAL AN IIRE IS C INALS.	0" IUM (.0 ME Y14 TION & D IS M THE TO OPTIONA	12 INCH .5M. – Ne IS IEASUREI P SURFA	12" IS MAJ 1994. THE NU D BETW	0* (IMUM) IMBER C	OF TERMI	12* NALS IN 0.25mm		MINAL TI	K OR	X		//	
θ TES: D 2. D 3. N 4. D 5. T 6. A 8. A 8. A 8. A 8. A 10. M	O"	KNESS A DNING & E NUMBI HE NUMI DN 6 AP #1 IDE HAPE AI ENSIONS E WARPA FOR EX E EMBED EDEC M	12* ALLOWA TOLER ER OF PLIES NTIFIER ND SIZI ARE II GE MA3 (POSED DED PA 0220.	O" BLE IS ANCES TERMINA TERMIN TO PLAT MUST I E OF TH N MILLIN C 0.05m PAD AN RT OF	0.305mr CONFORM LS. ALS IN : ED TERM BE EXIST IIS FEATI IETERS. IID TERMI	12" n MAXIM I TO ASI X-DIREC" IINAL AN ED ON 1 JRE IS C NALS. PAD FR	O"	12 INCH I.5M. – No IS IEASUREI P SURFA	12" ES MA 1994. THE NU D BETW ICE OF	O" (IMUM) IMBER C EEN 0.2 THE PA	OF TERMI	12* NALS IN 0.25mm			K OR	28,321	QFN,	//	.90 M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

MAX3286-MAX3289/MAX3296-MAX3299

Maxim makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Maxim assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. Maxim products are not designed, intended or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Maxim product could create a situation where personal injury or death may occur.

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

27

Printed USA

is a registered trademark of Maxim Integrated Products.