## MMXI/M <br> Octal, 8-Bit, Serial DACs with Output Buffer

Genera/ Description
The MAX528/MAX529 are monolithic devices combining
an octal 8-bit, digital-to-analog converter (DAC), 8 output
buffers, and serial-interface logic in a space-saving shrink
small outline package (SSOP). The MAX528 operates from
a single supply up to 15 V or from split supplies
totaling up to 20 V , including +5V/-15V, +12V/-5V, and
+15V/-5V. The MAX529 operates from a single +5 V supply
or from $\pm 5 \mathrm{~V}$ split supplies. For both parts, a shutdown pin
reduces current consumption to under $50 \mu \mathrm{~A}$, while retain-
ing all internal DAC data.
Three output modes are serially programmable for each
pair of 8 analog outputs. An unbuffered mode connects
the internal R-2R DAC network directly to the output pin,
reducing power consumption and avoiding the buffer's
DC errors. A full-buffered mode inserts a buffer between
the R-2R network and the output, providing +5mA/-2mA
output drive. Half-buffered output mode is similar, but
uses less power while still providing up to 15 mA of output
drive in a unipolar output configuration.
Serial data can be "daisy-chained" from one device to
another. On power-up, all data bits are reset to 0 , and
analog outputs enter the unbuffered mode.

- Applications
Digital Gain and Offset Adjustment
Digital Calibration
Multiple Trim Pot Replacement
Microcontrolled Analog Outputs

Features

- Now Available in Space-Saving SSOP
- Buffered Noninverting Outputs
- Buffer Disable Control
- 2 Pairs of Differential Reference Inputs

3-Wire Serial Interface

- Single +5 V or Dual $\pm 5 \mathrm{~V}$ Supply Operation (MAX529)

Low-Power Shutdown

- Stable Driving Output Capacitance Loads

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX528CPP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 20 Plastic DIP |
| MAX528CWG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 Wide SO |
| MAX528CAG | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 24 SSOP |
| MAX528C/D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice ${ }^{*}$ |
| MAX528EPP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20 Plastic DIP |
| MAX528EWG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 Wide SO |
| MAX528EAG | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 SSOP |
| MAX528MJP | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $20 \mathrm{CERDIP**}$ |

$\begin{array}{ll}\text { MAX528MJP } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \quad 20 \\ \text { Ordering Information continued on last page. }\end{array}$
Contact factory for dice soecifications.
** Contact factory for availability and processing to MIL-STD-883

Pin Configurations


MAXIM
Call toll free 1-800-998-8800 for free samples or literature.

## Octal 8－Bit Serial DACs

## with Output Buffer

## ABSOLUTE MAXIMUM RATINGS－MAX528




```
REFH1 - REFL1 REFH2 - REFL2 _....................-........ to to +12V
```



```
REFH1, REFH2 ..............................EFL_-0.3V to VDD + 0.3V
REF1, REFL2 ..............................VSS - 0.3V to REFH_+ 0.3V
```





```
DIN, CLK, CS, DOUT......................................................................... to VDD + 0.3V
operation of the device at these or any other conditions Reyond may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specilications is not implied Exposure to
ELECTRICAL CHARACTERISTICS - MAX528
Unbuffered Mode:VDD = +12V,VSS = OV; Full-Buffered Mode }\cdotV=+12V,VSS=-5V:GND=OV REFH = +5V, REFL =OV
```

| PARAMETER | SYMBOL | CONDITIONS | UNBUFFERED MODE （Note 1） |  |  | FULL－BUFFERED MODE （Note 2） |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | Max | MIN | TYP | MAX |  |
| STATIC PERFORMANCE |  |  |  |  |  |  |  |  |  |
| Resolution |  |  | 8 |  |  | 8 |  |  | Bits |
| Relative Accuracy （Note 3） | RLE |  |  | $\pm 0.3$ | $\pm 1.0$ |  | $\pm 0.3$ | $\pm 1.0$ | LSB |
| Differential <br> Nonlinearity（Note 4） | DNL | Guaranteed monotonic |  | $\pm 0.3$ | $\pm 1.0$ |  | $\pm 0.3$ | $\pm 1.0$ | LSB |
| Full－Scale Error | FSE | $\mathrm{R}_{\text {LOAD }}=0$ open |  |  | $\pm 1 / 2$ |  |  |  | LSB |
| Gain Error（Note 5） |  | $\mathrm{R}_{\text {LOAD }}=$ open |  |  |  |  | －0．2 |  | \％ |
|  |  | $\mathrm{R}_{\text {LOA }} \mathrm{L}=5 \mathrm{k} \Omega$ |  |  |  | 0.0 | －1．3 | －2．5 | \％ |
| Zero－Code Error |  |  |  |  | $\pm 5$ |  |  | $\pm 60$ | mv |
| Zero－Code Tempco |  |  |  | $\pm 5$ |  |  | $\pm 100$ |  | $\mu \mathrm{V} / \mathrm{C}$ |
| DAC Output Resistance | Rout |  | 8．5k | 13k | 20k |  | 55 | 100 | $\Omega$ |
| DAC Output Resistance Match | $\triangle$ Rout／Rout |  |  | 0.5 |  |  | 5.0 |  | \％ |
| VDD Supply Rejection <br> Ratio（Note 6） | PSRR－VDD | DAC code $=55$（hex） |  | 0.1 | 1.0 |  | 0.3 | 2.0 | mVN |
| $\vee_{\text {SS }}$ Supply Rejection Ratio（Notes 4，6） | PSRR－－VSS | DAC code $=55$（hex） |  | 0.1 | 1.0 |  | 0.8 | 50 | mVN |
| REFERENCE INPUT |  |  |  |  |  |  |  |  |  |
| Voltage Range （Note 7） | REFH | $\begin{aligned} & \text { REFH }- \text { REFL }=11 \mathrm{~V} \\ & \max \end{aligned}$ | REFL |  | Vod－3 | REFL |  | $\underline{V_{\text {DD }}-3}$ | v |
|  | REFL |  | $V_{\text {SS }}$ |  | REFH | $\mathrm{V}_{\text {SS }}+1.5$ |  | REFH |  |
| Input Resistance （Note 8） | $\begin{aligned} & \text { REFH } 1 / \text { REFL1, } \\ & \text { or } \\ & \text { REFH2/REFL2 } \end{aligned}$ | DAC code $=55$（hex） | 2.0 | 3.4 |  | 2.0 | 3.4 |  | ks2 |
| Input Capacitance | Creft | DAC loaded with Os |  | 40 |  |  | 40 |  |  |
|  |  | DAC loaded with is |  | 250 |  |  | 125 |  |  |
| AC Feedthrough |  | $\mathrm{REFH}=10 \mathrm{kHz}, 0-10 \mathrm{~V}-\mathrm{p}$ sinewave，all DACs at code 00 （hex） |  | －70 |  |  | －70 |  | dB |

## Octal 8－Bit Serial DACs with Output Buffer

ELECTRICAL CHARACTERISTICS－MAX528（continued）
（Unbuffered Mode：$V_{D D}=+12 \mathrm{~V}, V_{S S}=O V$ F Full－Buffered Mode：$V_{D D}=+12 \mathrm{~V}, \mathrm{~V} S S=-5 \mathrm{~V} ; G N D=0 \mathrm{~V}, \mathrm{REFH}=+5 \mathrm{~V}, \mathrm{REFL}=0 \mathrm{~V}$

| PARAMETER | SYMBOL | CONDITIONS | UNBUFFERED MODE （Note 1） |  |  | FULL－BUFFERED MODE （Note 2） |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
| POWER REQUIREMENTS |  |  |  |  |  |  |  |  |  |
| Positive Supply Range | $V_{D D}$ |  | 10.8 |  | 16.5 | 10.8 |  | 16.5 | v |
| Negative Supply Range | $V_{\text {SS }}$ |  | 0 |  | －5．5 | －1．5 |  | －5．5 | V |
| Positve Supply Current | IDD | $\begin{aligned} & \mathrm{DIN}=\mathrm{CLK}=0 \mathrm{~V} \\ & \mathrm{CS}=\mathrm{SHDN}=5 \mathrm{~V} \end{aligned}$ |  | 0.3 | 1.0 |  | 5.5 | 9.0 | mA |
| Negative Supply Current | Iss | $\begin{aligned} & D I N=C L K=O V, \\ & C S=S H D N=5 V \end{aligned}$ |  | 0.1 | 0.5 |  | 5.5 | 9.0 | mA |
| IDD at Shutdown | IDD | $\overline{\text { SHDN }}$＝low |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ |
| Iss at Shutdown | Iss | $\overline{\mathrm{SHDN}}=10 \mathrm{w}$ |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ |
| DYNAMIC PERFORMANCE（Note 7） |  |  |  |  |  |  |  |  |  |
| Vout Settling Time |  | To $\pm 1 / 2 L S B ;$ CLOAD $=$ ${ }^{200 \mathrm{pF}}$ ，from rising edge of CS |  | 1 | 3 |  | 0.6 | 2.0 | $\mu s$ |
| Digital Coupling |  | Serial input： 1 MHz CLK，DIN alternating 1s and $0 \mathrm{~s}(0.5 \mathrm{MHz})$ ， $C_{L}=20 \mathrm{pF}, 0 \mathrm{~V}$ to 5 V input levels at CLK，DIN |  | 20 |  |  | 20 |  | mVp－p |
| Crosstalk |  | Full－scale output transi－ tion on all 7 other channels（CS high） |  | 40 |  |  | 20 |  | nV－s |
|  |  | 1LSB output transition on all 7 other channels （CS high） |  | 2 |  |  | 10 |  |  |

## DIGITAL AND SWITCHING CHARACTERISTICS－MAX528

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIGITAL INPUTS DIN，CLK，$\overline{\mathbf{C S}}$ ，STHDN |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\text {INH }}$ | DIN，CLK，$\overline{C S}$ | 2.4 |  |  | V |
| Input Low Voltage | VINL | DIN，CLK，$\overline{C S}$ |  |  | 0.8 | V |
| Input High Voltage | VINH | SHDN | 3.0 |  |  | V |
| Input Low Voltage | VINL | SHDN |  |  | 0.5 | V |
| Input Hysteresis |  | DIN，CLK．$\overline{C S}$ |  | 0.1 |  | V |
| Input Leakage Current |  | $V_{\mathbb{N}}=0 V_{\text {or }} V_{D D}$ |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| Input Capacitance（Note 7） |  |  |  |  | 10 | pF |
| DIGITAL OUTPUT，DOUT，open drain output， $\mathbf{1 k \Omega}$ pull－up resistor to +5 V |  |  |  |  |  |  |
| Output Low Voltage | VOL | $1 \mathrm{SINK}=5 \mathrm{~mA}$ |  |  | 0.4 | V |
| Output High Leakage | LKG | $V_{\text {OUT }}=$ OV to $\mathrm{V}_{\text {DD }}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| Output High Capacitance（Note 7） | COUT |  |  |  | 15 | pF |

## Octal 8－Bit Serial DACs with Output Buffer

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCHING CHARACTERISTICS |  |  |  |  |  |  |
| CLK Pulse Width High | tch |  | 80 |  |  | ns |
| CLK Pulse Width Low | tcl |  | 80 |  |  | ns |
| DIN to CLK High Setup | tDS |  | 40 |  |  | ns |
| DIN to CLK High Hold | tDH |  | 15 |  |  | ns |
| $\overline{\text { CS }}$ Low to CLK High Setup | tcsso |  | 50 |  |  | ns |
| $\overline{\text { CS }}$ High to CLK High Setup | toss 1 |  | 50 |  |  | ns |
| Delay，CLK Low to Low $\overline{C S}$ | tesho |  | 0 |  |  | ns |
| Delay，CLK High to High $\overline{\mathrm{CS}}$ | $\mathrm{t}_{\text {CSH }}$ |  | 50 |  |  | ns |
| $\overline{\text { CS Pulse Width }}$ | tesw |  | 130 |  |  | ns |
| CLK High to DOUT Data Valid （Note 9） | too | $C_{\text {LOAD }}=20 \mathrm{pF}$, Rpullup $=1 \mathrm{k} \Omega$ to 5 V | $\begin{gathered} 15 \\ \text { (Note } 7 \text { ) } \end{gathered}$ |  | 130 | ns |
| $\overline{\text { CS }}$ Low to DOUT Enable（Note 10） | tDV | $C_{\text {LOAD }}=20 \mathrm{pF}$, Rpullup $=1 \mathrm{k} \Omega$ to 5 V |  |  | 90 | ns |
| $\overline{\mathrm{CS}}$ High to DOUT Disable | ttr | CLOAD $=20 \mathrm{pF}$ ，Rpullup $=1 \mathrm{k} \Omega$ to 5 V |  |  | 90 | ns |

Note 1：Unbuffered mode－buffers disabled．No output load
Note 2：
Full－buffered mode－buffers enabled；
bipolar output mode； $\operatorname{RLOAD}=5 k \Omega$
Note 3．Relative accuracy in unbuffered mode oranteed by relative accuracy test in fullbuffered mode．
Note 4：Specification in Unbuffered Mode column quaranteed by design only Not subject to test
Note 5：Gain error with full－buffered mode enabled＝no－load gain error－（DAC output resistance／RLOAD）．Example：－ $0.2 \%$ typ no－
Note 6：PSRR tested over supply range specified under power requirements；PSRR $=($ VOUT1 - VOUT2）$)\left(\right.$ VSUPPLY $\left.1-V_{S U P P L Y 2)}\right)$
Note 7：Guaranteed by design，not subject to test．
Note 8：Input resistance tested only under Unbuffered Mode conditions in Note 1 above
Note 9： $\mathrm{VOH}=2 . \mathrm{V}$ ， V L $=0.8 \mathrm{~V}$ ． the time required for DOUT to change 0.5 V ．

## Octal 8－Bit Serial DACs with Output Buffer

| ABSOLUTE MAXIMUN | TINGS－MAX529 |
| :---: | :---: |
| $V_{\text {do }}$ to GND | $-0.3 V$ to +7 V |
| Voo to VSS | -0.3 V to +12 V |
| VSS to GND | -7 V to +0.3 V |
| REFH1－REFL1，REFH2－REFL2 | $-0.3 V$ to $+12 V$ |
| REFH1－Vss，REFH2－Vss | ＋12V |
| REFH1，REFH2 | REFL＿－ 0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$ |
| REFL1，REFL2 | VSS－0．3V to REFH +0.3 V |
| OUT（1－8） | $V_{S S}-0.3 V$ to $V_{D D}+0.3 V$ |
| OUT（ $1-8$ ）to VSs | ．+12 V |
| OUT（1－8）Current | $\pm 20 \mathrm{~mA}$ |
| DIN，CLK，CS，DOUT | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| SHDN | $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to VDD +0.3 V |

Stresses beyond those listed under＂Absothte Maximum Ratings＂may cause permanent damage to the device These are stress ratings onty，and fumctionat
operation of the device at these or any other condtions beyond those indicated in the operational sections of the specifications is not implicd Exposurc to operation of the device at these or any other condtions beyond those indicated in the
absolute maximum rating conditions for extended periods may affect device reliabilty．
ELECTRICAL CHARACTERISTICS－MAX529
（Unbuffered Mode：$V D D=+5 \mathrm{~V}, \mathrm{~V} S S=\mathrm{GND}=0 \mathrm{~V}, \mathrm{REFH}=+2.5 \mathrm{~V}, \mathrm{REFL}=\mathrm{OV}$ ；Full－Buffered Mode： $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{VSS}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$ ，


## Octal 8－Bit Serial DACs with Output Buffer

## 6ZGXVW／8ZGXVW

ELECTRICAL CHARACTERISTICS－MAX529（continued）

（Unbuffered Mode $\mathrm{VDD}=+5 \mathrm{~V}, \mathrm{VSS}=\mathrm{GND}=\mathrm{ON}$, REFH $=+2.5 \mathrm{~V}, \mathrm{REFL}=0 \mathrm{~V}$
$\mathrm{REFH}=+2.5 \mathrm{~V}, \mathrm{REFL}=-2.5 \mathrm{~V}, \mathrm{TA}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．

| PARAMETER | SYMBOL | CONDITIONS | UNBUFFERED MODE （Note 1） |  |  | FULL－BUFFERED MODE （Note 2） |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
| AC Feedthrough |  | REFH $=10 \mathrm{KHz}, 0-2.5 \mathrm{~V}$ p－p sinewave，all DACs at code 00 （hex） |  | －70 |  |  | －70 |  | dB |
| POWER REQUIREMENTS |  |  |  |  |  |  |  |  |  |
| Positive Supply Range | $V_{D D}$ |  | 4.75 |  | 5.25 | 4.75 |  | 5.25 | v |
| Negative Supply Range | Vss |  | 0 |  | －5．5 | －4．5 |  | －5．5 | V |
| Positve Supply Current | 1 D | $\begin{aligned} & \mathrm{DIN}=\frac{C I K}{}=O V \\ & C S \\ & C H D D N \\ & =5 V \end{aligned}$ |  | 0.3 | 1.0 |  | 5.5 | 90 | mA |
| Negative Supply Current | Iss | $\begin{aligned} & \mathrm{DIN}=\mathrm{CLK}=0 \mathrm{~V} \\ & \mathrm{CS}=\mathrm{SHDN}=5 \mathrm{~V} \end{aligned}$ |  | 0.1 | 0.5 |  | 5.5 | 9.0 | mA |
| IDO at Shutdown | 1 DD | $\overline{\text { SHDN }}$＝low |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ |
| ISS at Shutdown | Iss | $\widehat{\text { SHDN }}=10 \mathrm{w}$ |  |  | 50 |  |  | 50 | $\mu \mathrm{A}$ |
| DYNAMIC PERFORMANCE（Note 7） |  |  |  |  |  |  |  |  |  |
| Vout Settling Time |  | $\begin{aligned} & \text { To } \pm 12,2 S B ; C L O A D=20 F F, \\ & \text { from rising edge of } \overline{C S} \end{aligned}$ |  | 1 | 3 |  | 0.6 | 2.0 | $\mu s$ |
| Digital Coupling |  | Serial input： 1 MHz CLK，DIN alternating is and $0 \mathrm{~s}(0.5 \mathrm{MHz})$ ． $\mathrm{Cl}=20 \mathrm{pF}, 0 \mathrm{~V}$ to 5 V input levels at CLK，DIN |  | 20 |  |  | 20 |  | mvp－p |
| Crosstalk |  | Full－scale output transi－ tion on all 7 other channels（CS high） |  | 40 |  |  | 20 |  | nv －s |
|  |  | 1LSB output transition on all 7 other channels （ $\overline{C S}$ high） |  | 2 |  |  | 10 |  |  |

DIGITAL AND SWITCHING CHARACTERISTICS－MAX529


6

## Octal 8－Bit Serial DACs with Output Buffer

DIGITAL AND SWITCHING CHARACTERISTICS－MAX529（continued）

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCHING CHARACTERISTICS |  |  |  |  |  |  |
| CLK Pulse Wiath High | tor |  | 125 |  |  | ns |
| CLK Pulse Width Low | tcl |  | 125 |  |  | ns |
| DIN to CLK High Setup | tos |  | 50 |  |  | ns |
| DIN to CLK High Hold | IDH |  | 20 |  |  | ns |
| $\overline{C S}$ Low to CLK High Setup | tcsso |  | 50 |  |  | ns |
| $\overline{\text { CS }}$ High to CLK High Setup | tcss1 |  | 50 |  |  | ns |
| Delay，CLK Low to Low $\overline{\mathrm{CS}}$ | tesho |  | 0 |  |  | ns |
| Delay，CLK High to High $\overline{\mathrm{CS}}$ | tCSH1 |  | 50 |  |  | ns |
| $\overline{\text { CS Pulse Width }}$ | tcsw |  | 300 |  |  | ns |
| CLK High to DOUT Data Valid （Note 9） | too | $C_{\text {LOAD }}=20 \mathrm{pF}$ ，Rpullup $=1 \mathrm{k} \Omega$ to 5 V | $\begin{gathered} 20 \\ \text { (Note 7) } \end{gathered}$ |  | 200 | ns |
| $\overline{\text { CS Low to DOUT Enable（Note 10）}}$ | tov | CLOAD $=20 \mathrm{pF}$, Rpullup $=1 \mathrm{k} \Omega$ to 5 V |  |  | 120 | ns |
| $\overline{\mathrm{CS}}$ High to DOUT Disable （Note 10） | tTR | CLOAD $=20 \mathrm{pF}$ ，Rpullup $=1 \mathrm{k} \Omega$ to 5 V |  |  | 120 | ns |

Note 1：Unbuffered mode－buffers disabled．No output load．
Note 2：Full－buffered mode－buffers enabled；bipolar output mode：RLOAD $=5 \mathrm{k} \Omega$
Note 3：Relative accuracy in untbuffered mode guaranteed by relative accuracy test in full－buffered mode
Note 4：Specification in Unbuffered Mode column guaranteed by design only．Not subject to test．
．5．Lad error－$(55 \Omega / 5 \mathrm{k} \Omega)=-1.3 \%$ typ error for $5 \mathrm{k} \Omega$ load gain error－（DAC output resistance／RLOAD）．Example：$-0.2 \%$ typ no－
Note 6：PSRR tested over supply range specified under power requirements；PSRR＝（VOUT1－VOUT2）（VSUPPLY1 - VSUPPLY2）．
Note 7：
Note 7：
Note 8：
Input resitestance tested only
Note 9：$V O H=2.4 \mathrm{~V}, \mathrm{VOL}=0.8 \mathrm{~V}$ ．
Note 10：tDV and TTR are defined as the time required for DOUT to change 0.5 V ．
$\qquad$
Typical Operating Characterisitics
MAX528


ハレハメール
7

## Octal 8-Bit Serial DACs

 with Output Buffer

Octal 8－Bit Serial DACs with Output Buffer

$\qquad$

Octal 8-Bit Serial DACs with Output Buffer


MAX529
UNBUFFERED OUTPUT
GLITCH FILTERING

$\qquad$

# Octal，8－Bit，Serial DACs with Output Buffer 

| PIN |  |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| SSOP | DIP | So |  |  |
| $\begin{gathered} 5,7, \\ 18,20 \end{gathered}$ | － | $\begin{aligned} & 1,12 \\ & 13,24 \end{aligned}$ | N．C． | No Connect．These pins are not internally connected． |
| 1 | 1 | 2 | REFL1 | Reference 1 Input Low．Must be more negative than REFH1 and more positive than $\mathrm{V}_{\text {SS }}$ ． |
| 2 | 2 | 3 | REFH 1 | Reference 1 Input High．Must be more positive than REFL1 and more negative than VOD． |
| 3 | 3 | 4 | OUTO | Output Voitage 0 ．The product of the digital code for channel 0 and（REFH1－REFL1）， referenced to REFL1． |
| 4 | 4 | 5 | OUT1 | Output Voltage 1．The product of the digital code for channe 1 and（REFH1－REFL1）， referenced to REFL1． |
| 6 | 5 | 6 | OUT2 | Output Voltage 2．The product of the digital code for channel 2 and（REFH1－REFL1）， referenced to REFL1． |
| 8 | 6 | 7 | OUT3 | Output Voltage 3．The product of the digital code for channel 3 and（REFH1－REFL 1 ）， referenced to REFL1． |
| 9 | 7 | 8 | $V_{D D}$ | Positive Analog and Digital Supply． |
| 10 | 8 | 9 | DIN | Digital Input．CMOS and TTL compatible serial programming input． |
| 11 | 9 | 10 | CLK | Clock Input．CMOS and TTL compatible clock input． |
| 12 | 10 | 11 | DOUT | Digital Output．Open－drain，N－channel，FET output，requires external pull－up resistor：serial data output，shifted 16 bits from DIN． |
| 13 | 11 | 14 | GND | Digital Ground．Connect to OV．（Analog signals are reterenced to their respective REFL voltage，not GiND）． |
| 14 | 12 | 15 | $\overline{\mathrm{CS}}$ | $\overline{\text { CHIP SELECT．Connect to logic low to program serially．Connect to logic high to latch data }}$ and turn off internal shift register．Rising edge of $\overline{\mathrm{CS}}$ transfers new data into data registers and changes DAC output． |
| 15 | 13 | 16 | $\overline{\text { SHDN }}$ | SHUTDOWN．Connect to logic high for normal operation，to GND for shutdown mode． |
| 16 | 14 | 17 | $\mathrm{v}_{\text {Ss }}$ | Negative Analog Supply．Connect to GND for single－supply operation．Connect to negative supply for bipolar DAC outputs． |
| 17 | 15 | 18 | OUT4 | Output Voltage 4．The product of the digital code for channei 4 and（REFH2－REFL2）， referenced to REFL2． |
| 19 | 16 | 19 | OUT5 | Output Voltage 5．The product of the digital code for channel 5 and（REFH2－REFL2）， referenced to REFLL2． |
| 21 | 17 | 20 | OUT6 | Output Voltage 6．The product of the digital code for channel 6 and（REFH2－REFL2）， referenced to REFL2． |
| 22 | 18 | 21 | OUT7 | Output Voltage 7．The product of the digital code for channel 7 and（REFH2－REFL2）， referenced to REFL2． |
| 23 | 19 | 22 | REFH2 | Reference 2 Input High．Must be more positive than REFL2 and more negative than $\mathrm{V}_{\mathrm{DD}}$ ． |
| 24 | 20 | 23 | REFL2 | Reference 2 Input Low．Must be more negative than REFH2 and more positive than $\mathrm{V}_{\text {SS }}$ ． |

## Octal 8－Bit Serial DACs with Output Buffer



Figure 1．R－2R Inverted Ladder DAC Structure
12

## Octal 8－Bit Serial DACs with Output Buffer

Unbuffered mode also operates effectively with lower resistance loads，but output loading may generate gain （full－scale）error．This will not affect linearity because DAC output resistance（between $8.5 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$ ）does not change with code．The magnitude of the expected gain err is the re DAC output inpedance （typically $13 \mathrm{k} \Omega$ ）to the DC load resistance at the output

Another advantage of unbuffered operation is that output filtering uses small capacitors and no resistors．The Un－ buffered Output Glitch Fitering photos in the Typical Op－ erating Characteristics show the feedthrough effect of changing all channels but one from full－scale to zero．On the rising edge of CS（top trace），energy is coupled into the unchanged channel（2nd trace，unfiltered），producing a 70 mV ， $1 \mu \mathrm{~s}$ pulse for the MAX528，and a 40 mV ， $5 \mu \mathrm{~s}$ pulse for the MAX529．The third and fourth traces of the MAX528 photo show how this pulse is suppressed using 200 pF and 1000 F load capaciors win he MAX528．The hir trace H00pF or with the MAX529

Full－Buffered Mode
Full－buffered mode（Figure 2）activates both sections of the buffer amplifer lowering the output impedance to typically $55 \Omega$ and allowing $+5 \mathrm{~mA} /-2 \mathrm{~mA}$ output currents to be supplied．The buffer amplifier output swing is from VSS＋1．5V to $V D D-3 V(V S S=+1.5 V$ to $V D D-2.25 V$ for MAX529）．The key advantage of this mode is that changes in load current cause minimal output change．

Half－Buffered Mode
Half－buffered mode（Figure 3）act vates only the top half of the output stage，and therefore sources current only． Its advantage is that it maintains output swing to VSS while


Figure 2．Simplifed Full－Buffered Output Circuit
providing a buffered output．Output swing is from Vss to $V_{D D}-3 V\left(V S S=+1.5 \mathrm{~V}\right.$ to $V_{D D}-2.25 \mathrm{~V}$ for MAX529） Current consumption is reduced to typically 1.7 mA （compared to 5.5 mA for full－buffered）if all buffers use half－buffered mode
Using an AC Reference with the MAX528 In applications where the reference has AC signal com－ ponents，the MAX528 has multiplying capability with in the REFH and REFL specifications．Figure 4 shows a tech－ nique for attenuating an $A C$ signal by superimposing it changes，the AC output changes，as does the DC level The output $D C$ level is removed by capacitively coupling to the next stage．Note that the peak negative voltage at REFH must not swing below REFL．

## Digital Interface

## Serial Interface

Serial data at DIN is clocked in on the rising edge of CLK while $\overline{\mathrm{CS}}$ is low and $\overline{\mathrm{SHDN}}$ is high（Figure 5）．Data can be loaded at clock rates up to $6.25 \mathrm{MHz}(4 \mathrm{MHz}$ for MAX529） Logic inputs are CMOS and TML compatible．The serial output DOUT is an open－drain N－channel FET that sinks up to 5 mA and requires an external pull－up resistor（typi－ cally $4.7 \mathrm{~K} \Omega$ ）to VDD ．Output data changes on the rising edge of CLK．
Any number of MAX528s or MAX529s can be daisy chained by connecting the DOUT pin of one device（with pullup resistor）to the DIN pin of the following device in the chain．CLK and $\overline{C S}$ are bussed together．Clock period and tCSSO（CS low to CLK high）must be increased to account for data delays between devices

Figure 3．Simplifed Halt－Buffered Outout Crrcuit


## Octal 8－Bit Serial DACs

 with Output Buffer

Figure 4．Using an AC Reference with the MAX528
If capacitive loading at the DOUT－to－DIN junction be－ tween two devices is 50 pF or less，then the required csso becomes the sum of tDV（enable）and tDS（setup imes），which is 130 ns （ $90 \mathrm{~ns}+40 \mathrm{~ns}$ ）for MAX528 and tCSSO 170 ns （ $120 \mathrm{~ns}+50 \mathrm{~ns}$ ）for the MAX529．
Maximum clock rate is influenced by pullup resistor size as well as capacitive loading：fCLKMax $=1 /(\mathrm{tDO}+$ tDS + 0.65 tRC ），where $\mathrm{tDO}=130 \mathrm{~ns}, \mathrm{tDS}=40 \mathrm{~ns}$ ，and IRC is the pullup resistor and capactive load product．So for 1 kS oulup and SOp load，he MAX528 fcLkmax is $4 . \mathrm{MHz}^{\prime}$ 2.8 MHz ．A similar calculation can be made for the MAX529，using tDO $=200 \mathrm{~ns}$ ，and tDS $=50 \mathrm{~ns}$

DAC Programming
The MAX528／MAX529 are programmed by 16 data bits in two 8 －bit bytes，the address pointer bits（A7－AO）fol－ in two 8－bit bytes，the address pointer bits（A7－A0）fol－ lowed by the data byte（D7－D0）．These bits enter a shift data exits DOUT 16 clock cycles later in the same order． Data at DIN is shifted into the first register（while all 16 egister bits shift forward one stage）on a rising CLK eccur 16 times to 10 d 1 dat into the shift registers On the rising edge of $\overline{C S}$ ，data in the 16 shitt registers is transferred as addressed and CLK is disabled．

There are three types of instructions：NOP，SET DAC， and set buffer modes．

## No Operation

No Operation（NOP）is implemented when all 8 address pointer bits（A7－A0）and data bit D7 are logic 0 Data in D6－D0 is ignored．When this instruction is clocked in，no registers are updated and the outputs remain un－ changed．NOP is a place－saver when multiple MAX528／MAX529s are daisy－chained．

## SET DAC

SET DAC is implemented when at least one of the 8 address pointer bits（A7－AO）is logic 1．SET DAC updates the digital code of any or all DAC registers （and their corresponding DAC outputs）to a single new value．The new value is contained in the data byte （D7－D0）．Each address pointer bit（A7－A0）selects a DAC output．Any combination of outputs can be up member that address 0000000 is reserved for NOP for NOF and set buffer modes
SET DAC does not change the buffer modes．

## Set Buffer Modes

Set buffer modes is implemented when all 8 address pointer bits（A7－AO）are logic 0 and data bit D7 is 1. （see Table 1）．Data in D6 is ignored．When this instruction is issued，data bits D5－D0 are transferred to the mode registers only；the DAC registers are unchanged

Enabling and disabling the 8 buffers is done in four pairs by data bits D1，D2，D4，and D5．D1 controls buffers 6 and 7，D2 controls buffers 4 and 5，D4 controls buffers 2 and 3， and D5 controls buffers 0 and 1．A logic 1 enables a buffer pair（full－buffered or half－buffered mode）；a logic 0 disables a buffer pair（unbuffered mode）
Full－buffered and half－buffered modes are set by two data bits，D0 and D3．D0 controls OUT4 through OUT7． D3 controls OUTO through OUT3．A logic 1 enables full－buffered mode；a logic 0 enables half－buffered mode． These data bits apply only when buffer output pairs are enabled by a 1 in D1，D2，D4，or D5
The set buffer modes instruction does not update the DAC registers．


Table 4. Programming Set Buffer Modes

| Function | Address Pointer Bits |  |  |  |  |  |  |  | Data Byte |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A7 | A6 | A5 | A4 | A3 | A2 | A1 | AO | 07 | D6 | D5 | D4 | D3 | D2 | D1 | DO |
| Set Buffer Modes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X | 0\&1 | 283 | 0/3 | 485 | 687 | 4/7 | Set Bunfer Modes

081 (D5) = buffer enable for OUT0 and OUT1. Logic $1=$ buffers enabled, $0=$ buffers disabled (unbuffered mode). Similar remark apply to 283 (D4), 485 (D2), and 687 (D1) , full-buffered mode, $0=$ halt-buffered mode. D3 has no meaning when D4 and D5 are 4/7 (DO) = buffer modes for OUT4-7. Logic $1=$ full-buffered mode $0=$ half-buffered mode. D0 has no meaning when D1 and D2 are

Example 1: Set OUTO, OUT2, OUT7 to binary value 01001110 (4E hex). Leave OUT1, OUT3, OUT4, OUT5, and OUT6 unchanged, and leave buffer states unchanged

| Da |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | D7 | D6 | D5 | -4 | D3 | D2 | D1 | D0 |
|  | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |

Example 2: Set all DACs except OUT6 to binary value 00000000 ( 00 hex). Leave OUT6 unchanged, and leave buffer states unchanged.

Example 3: Disable all buffers (unbuffered mode). Leave DAC data unchanged.

|  | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Example 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X | 0 | 0 | $\times$ | 0 | 0 | X |

Example 4: (1) Enable OUTO and OUT1 buffers in full-buffered mode; put OUT2 and OUT3 in unbuffered mode.
(2) Enable OUT6 and OUT7 buffers in half-buffered mode; put OUT4 and OUT5 in unbuffered mode. Leave DAC data unchanged.

|  | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Example 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X | 1 | 0 | 1 | 0 | 1 | 0 |

## Octal 8-Bit Serial DACs with Output Buffer


_Ordering Information (continued)


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied
implied. Maxim reserves the right to change the circuitry and specitications without notice at any time.
16 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) $737 \mathbf{7 6 0 0}$
(©) 1994 Maxim Integrated Products

