

The MAX731 and MAX752 are fixed and adjustable CMOS, step-up, DC-DC switch-mode regulators. The MAX 51 accepts a positive input voltage between +2.5 V and +5.25 V and converts it to a fixed +5 V at 200 mA cies are 82% to 87%. It requires a single inductor value of $22 \mu \mathrm{H}$ to function over the entire range so no inductorlated design is necessary The MAX752 is an adjusta related design is necessary. The MAX752 is an adjusta higher voltage up to +15 V at up to 200 mA Typical higher voltage up to +15 V , at up to 200 mA . Typical ull-load efficiencies are 85% to 95%. A single $50 \mu \mathrm{H}$ nductor is suitable for the entire range of operating The MAX731/MAX752 use current-mode pulse-width The MAX731/MAX752 use current-mode pulse-width modulation (PWM) controllers to provide precise output regulation and low subharmonic noise. Typical no-load quel quency allows easy filtering of ripple and noise, and provides for small external components.

The MAX731/MAX752 feature cycle-by-cycle current lim iting, overcurrent limiting, external shutdown, and programmable soft-start protection
For fixed +12 V and +15 V step-up regulators, refer to the MAX732/MAX733 data sheet. For lower-power step-up plications, refer to the MAX631/632/633 and MAX654 659 data sheets.

Applications
+5 V -Logic Supply in +3 V-Logic System
DC-DC Converter Module Replacemen
Portable instrument
Laptop Computers
Distributed Power Systems
Cellular Phones
Battery-Powered Equipment
Pin Configurations

MAXIM

200 mA Load Currents Guaranteed with
200mA Load Currents
No External MOSFET
Step-Up from a 2.5V Input

- 170kHz High-Frequency Current-Mode PWM
82% to 87% Typical Efficiencies at Full Load (MAX731)
-85\% to 95\% Typical Efficiencies at Full Load (MAX752)
Small Inductor - No Component Design Required
2mA Quiescent Current (MAX752)
Overcurrent and Soft-Start Protection
-8-Pin DIP, 16-Pin Wide SO Packages
- Shutdown Pin

PART	TEMP. RANGE	PIN-PACKAGE
MAX731CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX731CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX731C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX731EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX731EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX731MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

Ordering information continued on last page.
Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$ only.
Contact factory for availability and processing to MIL-STD-883

Typical Application Circuit

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

+5V/Adjustable Step-Up
 Current-Mode DC-DC Converters

Note 1: Circuit will regulate properly with input voltage as high as 5.25 V due to voltage drop across the external diode.

+5V/Adjustable Step-Up Current-Mode DC-DC Converters

ELECTRICAL CHARACTERISTICS - MAX752
(Circuit of Figure 1b, R1 and R2 configured for +12 V output operation, $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~L}$ LOAD $=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, typical values are

Current-Mode DC-DC Converters

+5V/Adjustable Step-Up Current-Mode DC-DC Converters

Table 1a. MAX731 Typical Soft-Start Times

$\mathbf{V}_{\mathbf{I N}}=\mathbf{3 V}$, Cout $=\mathbf{1 5 0} \mathbf{\mu} \mathbf{F}$	
$\mathbf{C} \mathbf{s s}(\boldsymbol{\mu} \mathbf{F})$	Delay $(\mathbf{m s})$
0.1	10
0.2	20
0.5	50
1.0	100
2.0	160
5.0	170

SOFT-START TIMES ARE $\pm 35 \%$ C1 IS THE SOFT-START
CAPACITOR: C4 IS THE OUTPUT CAPACITOR
Table 1b. MAX752 Typical Soft-Start Times

CIRCUIT CONDITIONS VOUT $=+12 \mathrm{~V}, \mathrm{C} 4=300 \mu \mathrm{~F}$		SOFT-START TIME (ms) vs. C1 ($\mu \mathrm{F}$)		
V+(V)	lout (mA)	0.14 F	$0.47 \mu \mathrm{~F}$	1.0رF
4.5	0	55	115	125
6.0	0	40	80	70
9.0	0	30	60	45
4.5	100	90	350	780
6.0	100	60	210	445
9.0	100	30	60	60
4.5	200	175	715	1690
6.0	200	85	340	760
9.0	200	30	75	125

CIRCUIT CONDITIONS VOUT $=+15 \mathrm{~V}, \mathrm{C4}=300 \mu \mathrm{~F}$		SOFT-START TIME (ms) vs. C1 ($\mu \mathrm{F}$)		
$\mathrm{V}+$ (V)	lout (mA)	0.1 $\mu \mathrm{F}$	0.47 F	1.0رF
4.5	0	90	210	250
6.0	0	65	135	150
9.0	0	35	65	50
12.0	0	30	50	35
4.5	75	155	680	1380
6.0	75	105	425	880
9.0	75	45	160	305
12.0	75	30	50	35
4.5	125	235	1125	2260
6.0	125	135	595	1255
9.0	125	55	230	475
12.0	125	30	50	40

NOTE: SOFT-START TIMES ARE $\pm 35 \%$, C1 IS THE SOFT-START CAPACITOR C4 IS THE OUTPUT CAPACITOR
6

+5V/Adjustable Step-Up Current-Mode DC-DC Converters

8-PINDIP	16-PIN SO	NAME	FUNCTION
	1,4, 10, 15	N.C.	No Connect - no internal connection
1	2	SHDN	Shutdown - active low. Ground to power-down the IC; tie to $V+$ for normal operation. Output power FET is held off when SHDN is low.
2	3	VREF	Reference Voltage Output (+1.23 V) supplies up to $100 \mu \mathrm{~A}$ for external loads.
3	5	SS	Soft-Start. Capacitor between SS and GND provides soft-start and short-circuit protection.
4	6	CC	Compensation Capacitor Input. Externally compensates the outer feedback loop.
5	7	GND	Ground
	8,9	GND (SW)	Switch Ground - ground of the output power FET. Both pins must be separately tied to ground because they are not internally connected.
6	11, 12, 13	LX	Drain of internal N -channel power MOSFET
7	14	Vout	Output-Voltage Sense input (MAX731)
7	14	N.C.	No Connect - no internal connection (MAX752)
8	16	V_{+}	Supply Voltage Input

Figure 1a. MAX731 Detailed Block Diagram with External Components, Bootstrap Mode

+5V/Adjustable Step-Up

Current-Mode DC-DC Converters

quently can furnish 200 mA from an input as low as 2.0 V (the holding voltage). The holding voltage is typically 1.4 V for 100 mA loads. This capability is very important in battery-operated equipment because it indicates the in battery-operated equipment, because it indicates the output regulation.
Input voltages as high as 16 V can be applied without damage, but regulation is lost when the input exceeds DC path through the inductor and diode produces a output voltage one diode drop ($03-0.6 \mathrm{~V}$) pess than the input voltage. (The MAX731/MAX752 sense this high output and stop switching) This path exists even with the ic removed from the circuit

+5V/Adjustable Step-Up

Current-Mode DC-DC Converters

Operating Principle The MAX731/MAX752 switch-mode regulators use a current mode pulse-width modulation (PWM) controller coupled with a simple boost regulator topography to step up an unregulated DC voltage. The MAX731 converts a voltage ranging from 1.4 V to 5.25 V to 5 V . The MAX752 has an adjustable output. The current-mode PWM architecture provides cycle-by-cycle current limititing and excellent load-transient response characteristics.
The controller consists of two feedback loops: an inner (current) loop that monitors the switch current through the current-sense resistor (RS) and amplifier, and an outer (voltage) loop that monitors the output voltage through the error amplifier (Figure 1). The inner loop performs cycle-by-cycle current limiting, truncating the power transistor on-time when the switch current reaches a threshold determined by the outer loop. For example, a sagging output voltage produces an error signal that raises the threshold, allowing the circuit to store and transfer more energy during each cycle.

Programmable Soft Start
A capacitor between $0.1 \mu \mathrm{~F}$ and $5 \mu \mathrm{~F}$ is required on the Soft-Start (SS) pin to ensure an orderly power-up. The charging capacitor's voltage slowly raises the clamp on the error-amplier output voltage, liming surge curtents at powt-limit threshold SS timing is controllab-by from the SS pin by capacitor choice A typical value is $0.1 \mu \mathrm{~F}$. Table 1 lists timing characteristics for selected capacitorvalues and circuit conditions.
The output voltage sags if more than the maximum load current is drawn. The overcurrent comparator trips if the load exceeds approximately 1.5 A . An SS cycle is actively initiated when an overcurrent fault condition triggers an

Overcurrent Limiting

When the load current exceeds approximately 1.5 A , the output stage is turned off by the inner loop cycle-by-cycle current-limiting action, and the overcurrent comparator signals the control logic to initiate an SS cycle. On each clock cycle, the output FET turns on again and attempts to deliver cycle, the output FET turns on again and attempts to deliver
current until cycle-by-cycle or overcurrent limits are excurrent until cycle-by-cycle or overcurrent limits are exfor overcurrent protection to function properly.

Shutdown
Keeping the Shutdown (SHDN) pin at ground holds the MAX731/MAX752 in shutdown mode. In shutdown mode, the output power FET is off, but there is still an external path from $V+$ to the load through the inductor and diode, and another path from $V+$ to GND through the inductor, diode, and external feedback resistors. For the MAX731, the

Figure 2a. MAX731 Standard Boost Application Circuit
feedback resistors are approximately $80 \mathrm{k} \Omega$. The interna reference turns off, which causes the SS capacitor to discharge. Typical device standby current in shutdown mode is $35 \mu \mathrm{~A}$. For normal operation, connect $\overline{\mathrm{SHDN}}$ to $\mathrm{V}+$ An SS cycle brings the MAX731 out of shutdown mode.
The +1.23 V bandgap reference supplies up to $100 \mu \mathrm{~A}$ at VREF. A bypass capacitor from VREF to GND is required $4.7 \mu \mathrm{~F}$ for the MAX731 and $0.01 \mu \mathrm{~F}$ for the MAX752.

Output Adjustment - MAX752

The output voltage for the MAX752 is set by two resistors, R1 and R2 (Figures 1b and 2b), which form a voltag divider between the output and the Compensation Ca pacitor (CC) pin. The regulator adjusts the output so the voltage at the junction of R1 and R2 is equal to the +1.23 V bandgap reference voltage. Since CC is a CMOS input its input impedance is nearly an open circuit, which will not load the voltage divider. R2 can be any value between $10 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$. R1 is given by the formula

$$
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\text {OUT }}}{1.23 \mathrm{~V}}-1\right)
$$

Capacitors C5 and C7 furnish loop compensation Smaller values are not recommended because they may produce instability

+5V/Adjustable Step-Up

 Current-Mode DC-DC Converters

Figure 2b. MAX752 Standard Boost Application Circuit

Modes

Continuous-Current Mode: The MAX731/MAX752 normally operate in continuous-current mode, which means current adjusts the switch's duty cycle an a contro cycle basis to maintain regulation without exceeding the switch current capability. This mode provides excellent load-transient response. During start up conditions and underverylight loads this method cannot adjust the duty cycle to the correct value without exceeding the switch cylrent capability, so the controller changes to discon current capability, so
Discontinuous-Current Mode: In discontinuous-cur rent mode, current through the inductor starts at zero rises to a peak value, then ramps down to zero on each cycle. Although efficiency is still excellent, the outpu plaple increases sighly and (the swind waverons This plinging (seem disconcerting at first, but it does indicate problems. indicate problems

Pulse-Skipping Mode: At load currents under a few milliamperes, even discontinuous-current mode tends to put more energy into the coil than the load requires, so the controller changes to pulse-skipping mode, in which
regulation is achieved by skipping entire cycles. Efficiency is still good, typically 70% to 80%, reduced in par because the MAX731/MAX752 quiescent supply curren becomes a significantly larger fraction of the total curren when load currents are low. Pulse-skipping switch wave forms can be irregular, and the output ripple contains a low-frequency component that may exceed 50 mV Larger, low-ESR filter capacitors can help reduce the ripple voltage in critical applications.
The MAX731/MAX752 controller normally operates in continuous-current mode and reverts to discontinuous current mode or pulse-skipping mode during extreme conditions. Continuous-current mode operation gives cleaner output than discontinuous or pulse-skipping modes, because peak-to-peak ripple amplitude is min mized and the ripple frequency is fixed at the oscillato frequency, making the output easy to filter
It is possible to design circuits around the MAX731 that use discontinuous-current mode as the primary means of regulation eliminating the compensation capacito regulation, eliminating the compensation capacito
shown in Figure 2. This is not normally recommended for shown in Figure 2. This is not normally recommended for severalreasons. First, the peakcurrents int ind switor become much higher, reducing the outpu current. Second, the coil's inductance, peak curren rating, and resistance values become critical; its physica size increases as well. Finally, the output filter require ments demand larger components.

Application Information
For fixed outputs of 12 V or 15 V , the MAX732 or MAX733 can be used. These devices are fully characterized a these voltages at output currents up to 200 mA (125 mA for MAX733), and do not require external voltage dividers They accept input voltages above 4.0 V
Figure 2a shows the standard step-up application circuit. This circuit will operate with inputs from 25 V to 525 V Th output current depends on the input voltage (see Maximum Output Current vs. Supply Voltage, Typical Operating Char acteristics)

Inductor Selection

A $22 \mu \mathrm{H}$ inductor is sufficient for most MAX731 design and a $50 \mu \mathrm{H}$ inductor is sufficient for most MAX752 de signs. The important specification is the inductor's incremental saturation current rating, which should be greater than 2.5 times the DC load current (500 mA for 12 V 200 mA loads). For lower-power applications, smalle inductor values may be used. Table 2 shows recom mended inductor types and suppliers for various appli cations. The listed surface-mount inductors' efficiencie are nearly equivalent to those of the larger-sized, through hole inductors.

+5V/Adjustable Step-Up Current-Mode DC-DC Converters

Table 2. Component Suppliers

PRODUCTION METHOD	Inductors	CAPACITORS
Surface Mount	Sumida For MAX731: CD54-220 $(22 \mu \mathrm{H})$ For MAX752: CD54-220 $(22 \mu \mathrm{H})$ CD54-470 $(47 \mu \mathrm{H})$ for discontinuous mode Coiltronics CTX 100-series	Matsuo 267-series
Miniature Through-Hole	Sumida For MAX731: RCH654-220 For MAX752: RCH654-470	Sanyo OS-CON OS-CON-series Low ESR Organic Semiconductor
Low-Cost Through-Hole	Renco For MAX731: RL 1284-22 For MAX752: RL1284-47	Maxim MAXC001 150 HF , Low ESR Electrolytic Nichicon PL-series Low ESR Electrolytics United Chemi-Con XF-series

Sumida (708) 956-0666
Renco (516) 585-5566
Sanyo OS-CON (619) 661-6835

Coiltronics (516) 241-7876
Matsuo USA (714) 969-2491

United Chemi-Con (708) 696-2000 Nichicon (708) 843-7500

Output Filter Capacitor Selection

The primary criterion for selecting the output filter capacitor is low equivalent series resistance (ESR). The product of the inductor current variation and the output capacitor's ESR determines the high-frequency amplitude seen on the output voltage. The capacitor's ESR should be less than 0.25Ω to keep the output ripple less than 50 mV p-p over the entire current range (using the recommended inductor). In addition, the output filter capacitor's ESR should be minimized to maintain AC stability. Refer to Table 2 for suggested capacitor suppliers.
In the standard application of Figure 2, the output capacitor value should be at least $300 \mu \mathrm{~F}$ in order to maintain stability at full loads. $150 \mu \mathrm{~F}$ capacitors quantitios. Two of these capacitors can be connected quancale Wo ber lop require proportionately low capacitor values.路

Other Components

Use a Schottky diode with a current rating of at least 500 mA for full-load (200mA) operation. The 1N5817 is a good choice. The two compensation capacitor values at the CC input are critical because they have been selected to provide the best transient response

Output-Ripple Filtering

An optional lowpass pi-filter (Figure 2) can be added to he output to reduce output ripple to abou 5 mv p-p. The fiter inductor is in series with the circuit output its resis tance should be minimized to avoid excessive voltag drop Note that the feedback must be taken before the filter, not after the filter

Printed Circuit Layout

Printed circuit board layout is not critical, except ensure quiet operation. Bypass capacitors should be located as close to the device as possible to preven instability and noise pickup. The Schottky diode lead hould also be kept short to prevent fast rise-tim pulses in the output. A ground plane is recommended ut not necessary

V+Bypassing

For MAX752 applications where greater than 13 V Is generated with more than 100 mA load current capacitor C2 (Fig2b) should be located less than $1 / 2$ inch from $V+$ and GND pins of the IC. This capacito snubs high voltages created by large load transients

+5V/Adjustable Step-Up Current-Mode DC-DC Converters

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1996 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.

