## Inverting，Current－Mode PWM Regulators

## scription

The MAX735 and MAX755 are CMOS，inverting switch mode regulators with internal power MOSFETs．The MAX755 operates from a +2.7 V to +9 V input and generate an adjustabie negative output； 1 W output power is guaran eed when powered from a +4.5 V input．The MAX735 operates from a +4.0 V to +6.2 V output； 200 mA outpu current is guaranteed for inputs greater than +4.5 V ．Qui scent supply current for the MAX735 is typically 1.6 mA and a shutdown mode reduces this to $10 \mu \mathrm{~A}$ ．These power conserving features，along with high efficiency and appl cations circuits that lend themselves to miniaturization make the MAX735／MAX755 excel in a broad range of on－card and portable－equipment applications．
The MAX735／MAX755 employ a high－performance current－ mode pulse－width modulation（PWM）control scheme to provide tight output－votage regulation and low subhar monic noise．The fixed－frequency oscillator is factory trimmed to 160 kHz ，allowing for easy noise filtering．The egulators are production tested in actual application cir cuits，and output accuracy is guaranteed to within $\pm 5 \%$ over all specified conditions of line，load，and temperature The input－to－output differential of the MAX755 is limited O VIN＋IVOUTI $\leq 11.7 \mathrm{~V}$
For an adjustable－output device with a wider input voltage range，refer to the MAX759 data sheet．For a fixed－5V par with a wider input voltage range，refer to the MAX739 dat heo For fixed 12 V and 15 V versions see the MAX736 and MAX737 da 12 and Cor ， efer to the MAX635／636／637 data sheet

Applications
Board－Level OC－DC Conversion
Battery－Powered Equipment
Computer Peripherals
Typical Operating Circuit

Converts＋2．7V to＋9V Input to Adjustable
Negative Output（MAX755）
Converts＋4．0V to＋6．2V Input to－5V Output（MAX
1W Guaranteed Output Power（Vin $\geq 4.5 \mathrm{~V}$ ）
78\％Typical Efficiency
1．6mA Quiescent Current（MAX735）
10 10 A Shutdown Mode
160kHz Fixed－Frequency Oscillator
－Current－Mode PWM－Low Noise and Jitter
－Soft－Start
Simple Application Circuit

## Ordering Information

| PART | TEMP．RANGE | PIN－PACKAGE |
| :---: | :---: | :---: |
| MAX735CPA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX735CSA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 SO |
| MAX735C／D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice＊ |
| MAX735EPA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX735ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |
| MAX735MJA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 CERDIP＊＊ |
| MAX755CPA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX755CSA | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 8 SO |
| MAX755C／D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice＊ |
| MAX755EPA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 Plastic DIP |
| MAX755ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO |
| MAX755MJA | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8 CERD |

－Contact factory for dice specifications．
＊Contact factory for availability and processing to MIL－STD－883
Pin Configuration


## －5V／Adjustable，Negative－Output， Inverting，Current－Mode PWM Regulators

| Operating Temperature Ranges： $\mathrm{MAX}_{5} \mathrm{O}^{\circ} \mathrm{C}$ to |  |
| :---: | :---: |
|  |  |
| MAXT＿5MJA $\ldots \ldots . . . . . . . . . . . . . . . . . ~-~-55^{\circ} \mathrm{C}$ to |  |
|  |  |
| Junction Temmeratures： |  |
| MAX7 $50 / \mathrm{Cl}$－ | $+150$ |
| MAX7－5MJA | ＋175 |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to +16 |
| d |  |

CERDIP（derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）$\quad . \quad . \quad 1 \mathrm{~mW}$
Stresses beyond those listed under＂Absolute Maximum Ratings＇may cause permanent damage to the device．These are stress ratings only，and funcitiona absolute maximum rating conditions for extended periods may affect device reliability．
ELECTRICAL CHARACTERISTICS
（Circuit of Figure 2， $\mathrm{V}_{+}=5 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{VOUT}^{\leq} \leq-4.75 \mathrm{~V}, ~ I L O A D=0 \mathrm{~mA}, \mathrm{~T}_{A}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{TMAX}^{\prime}$ ，typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ ，unless

| PARAMETER |  | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | MAX735 |  | 40 |  | 6.2 | V |
|  | MAX755（Note 1） |  | 2.7 |  | 9.0 |  |
| Output Voltage | $\mathrm{V}+=4.5 \mathrm{~V}$ to 6.2 V |  | －5．25 | －5．0 | －4．75 | V |
|  |  | $\begin{aligned} & 0 \mathrm{~mA}<1 \mathrm{LOAD}<175 \mathrm{~mA} \\ & \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{MAX} 735) \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\text { MAX } 755) \end{aligned}$ | －5．25 | －5．0 | －4．75 |  |
| Output Current | $\mathrm{V}+=4.5 \mathrm{~V}$ to 6.2 V | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (MAX735) } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { (MAX755) } \end{aligned}$ | 200 | 275 |  | mA |
|  |  | $\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { t }+125^{\circ} \mathrm{C}(\mathrm{MAX735)} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\text { MAX755 }) \end{aligned}$ | 175 |  |  |  |
|  | $\mathrm{V}+=4.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-5 \mathrm{~V}$ |  |  | 175 |  |  |
|  | $\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}$ OUT $=-5 \mathrm{~V}, \mathrm{MAX} 755$ only |  |  | 125 |  |  |
| Line Regulation | $\mathrm{V}+=4.0 \mathrm{~V}$ to 6.2 V |  |  | 0.1 |  | \％N |
| Load Regulation | LLOAD $=0 \mathrm{MA}$ to 200 mA |  |  | 0.001 |  | \％／mA |
| Efficiency |  |  |  | 78 |  | \％ |
| Supply Current | includes switch current | MAX735 |  | 1.6 | 3.0 | mA |
|  |  | MAX755 |  | 1.8 | 3.5 |  |
| Standby Current | $V \overline{\text { SHDN }}=0 \mathrm{~V}$ |  |  | 10 | 100 | $\mu \mathrm{A}$ |
| Short－Circuit Current |  |  |  | 1.5 |  | A |
| Undervoltage Lock－Out | MAX735 only |  |  | 3.7 | 4.0 | v |
| LX On Resistance |  |  |  | 0.5 |  | $\Omega$ |
| LX Leakage Current | $V_{D S}=10 \mathrm{~V}$ |  |  | 1 |  | $\mu \mathrm{A}$ |
| Reference Voltage | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$（Note 3） |  | 1.15 | 1.23 | 1.30 | $\checkmark$ |
| Reference Drift | $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ |  |  | 50 |  | ppm／$/{ }^{\circ} \mathrm{C}$ |
| Oscillator Frequency |  |  |  | 160 |  | kHz |
| Compensation Pin Impedance |  |  |  | 7500 |  | $\Omega$ |
| $\overline{\text { SHDN }}$ Input Current |  |  |  |  | 1 | $\mu \mathrm{A}$ |
| $\overline{S H D N}$ Logic High |  |  | 2.0 |  |  | V |
| SHDN Logic Low |  |  |  |  | 0.25 | V |
| Note 1：Additionaly，VIN is limited to：VIN $\leq 11.7 \mathrm{~V}$－IVouTl <br> Note 2：MAX755 external feedback resister tolerance is $0.1 \%$ ． <br> Note 3：Tested at IVREF $=0 \mu \mathrm{~A}$ for the MAX735，IVREF $=125 \mu \mathrm{~A}$ for the MAX755． 2 ．－ |  |  |  |  |  |  |
|  |  |  |  |  | い」」 | く1／V1 |

## －5V／Adjustable，Negative－Output， Inverting，Current－Mode PWM Regulators



## -5V/Adjustable, Negative-Output, Inverting, Current-Mode PWM Regulators


－5V／Adjustable，Negative－Output，
Inverting，Current－Mode PWM Regulators


Figure 1．Application Circuit Using Surface－Mount Component
Figure 2．Application Circuit Using Through－Hole Components （Commercial Temperature Range）

$\qquad$ Operating Principle
The MAX735／MAX755 are monolithic CMOS ICs contain ing a current－mode PWM controller and a 2A P－channe power MOSFET．Current－mode control provides exce ent line－transient response，inherent overcurrent protec tion，and excellent AC stability．The switch transistor is a current－sensing MOSFET that splits off a fraction of the total source current for current－limit detection

## Basic Application Circuits

The three basic application circuits shown are simple designs using standard，off－the－shelf components．Fig－ ure 1 ＇s circuit uses tantalum surface－mount capacitors and a surface－mount inductor，minimizing board space and allowing for wide－temperature operation．The low equivalent series resistance（ESR）of the tantalum $55^{\circ} \mathrm{C}$ ）make for a quiet output（ se S witching Wave forms in the Typical Operating Characteristics）．

Fioure 3．Application Circuit Using Through－Hole Components All Temperature Ranges）

## －5V／Adjustable，Negative－Output， Inverting，Current－Mode PWM Regulators



Figure 2＇s circuit provides a through－hole solution for Figure 2 ＇s circuit provides a through－hole solution for radial－lead aluminum electrolytics with an ESR of approx－ radial－lead aluminum electrolytics with an ESR of approx－ imately $100 \mathrm{~m} \Omega$ at $+25^{\circ} \mathrm{C}$ ．These and other standard aluminum electrolytic capacitors have an ESR 100 times greater at $-55^{\circ} \mathrm{C}$ than at $+25^{\circ} \mathrm{C}$ ，so they are not recom－ mended for operation below $0^{\circ} \mathrm{C}$ ．Since output voltage ritor，the ripple with standard aluminum electrolytic capac－ itors is 1.4 times that associated with tantalum capacitors．
Refer to Figure 3 for a wide－temperature，through－hole solution The capacitors are－terature，through－hole olution．Ne capactors are organic senibit low ESP over a wide temperature range（typically $30 \mathrm{~m} \Omega$ at $+25^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ ）．

Table 1 lists component suppliers for the circuits dis cussed above
If the load current is limited to $100 \mathrm{~mA}, \mathrm{R} 1, \mathrm{R} 2$ and C 3 （Figures $1-3$ ）may be $m i t t$ to $\mathrm{The}^{1} \mathbf{0 \mu F} \mathrm{~V}_{+}$，bypas capacitor must be placed as close as possible to pins 6 and 8.

## Output－Ripple Filtering

An optional lowpass pi－filter（Figures 1－3）can be added to the output to reduce output ripple to about 5 mVp p． The cutoff frequency of the filter shown is 21 kHz ．Since the filter inductor is in series with the circuit output，it resistance should be minimized to avoid excessive volt age drop．Note that the feedback must be taken before the filter，not after the filter．

6 $\qquad$

## －5V／Adjustable，Negative－Output， Inverting，Current－Mode PWM Regulators

## Soft－Start Buffer

The voltage applied to the Soft－Start（SS）input de termines the peak switch－current limit（see Soft－Star Delay Time graph in Typical Operating Characteris tics）．A capacitor attached to SS ensures an orderly power－up sequence by gradually increasing the cur－ ent limit．SS is pulled up to VREF internally through a $1.2 \mathrm{M} \Omega$ resistor．The maximum current limit can be fixed externally at a lower than normal value by clamping the SS voltage to a voltage less than VREF An SS cycle is initiated whenever either an undervolt age lockout（MAX735 only）or overcurrent fault con SS rapgers an internal transistor to discharge the Should be at least 10 nF for the overcurrent limit to unction properly． unction properly．

## Undervoltage Lockout

The MAX735 operates for supply voltages greater than 3 V typ（ 4 V guaranteed），with 0.25 V of hysteresis．Inter nal control logic holds the output power MOSFET off unti he supply rises above the undervoltage threshold，a which time a soft－start cycle begins
The MAX755 operates with supply voltages greate Than +2.7 V It does not have the undervoltage lockout feature of the MAX735．The output is limited to IVOUT $\leq 11.7 \mathrm{~V}-\mathrm{V} \operatorname{IN}$ ．

## Inductor Selection

The MAX735 and MAX755 operate with a standard 10uH inductor for the entire range of supply voltages and load currents．The inductor must have a saturation（incremen－ al）current rating greater than the peak switch curren btained from the Peak Inductor Current vs．Load Curren graph under Typical Operating Characteristics．

Output Adjustment－MAX755
The output voitage for the MAX755 is set by two resistors R3 and R4，which form a voltage divider between the output，CC pin，and VREF pin．The regulator adjusts the output voltage so the voltage at CC is GND．R3 can be any value from $10 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ ．R4 is given by the following formula

$$
\mathrm{R}_{4}=\frac{\mathrm{IVOUTI}}{1.23 \mathrm{~V}} \mathrm{R} 3
$$

The output is limited to IVOUTI $\leq 11.7 \mathrm{~V}-\mathrm{V}$ IN

| $\begin{aligned} & \text { PRODUCTION } \\ & \text { METHOD } \end{aligned}$ | INDUCTORS | CAPACITORS |
| :---: | :---: | :---: |
| Surface Mount | $\begin{aligned} & \text { Sumida } \\ & \text { CD54-100 }(10 \mu \mathrm{H}) \end{aligned}$ | Matsuo <br> 267 series |
| Miniature Through Hole | Sumida <br> RCH855－100M（10 $\mu \mathrm{H})$ | Sanyo Os－Con series low－ESR organic semiconductor |
| Low－Cost Through Hole | Renco <br> RL $1284(10 \mu \mathrm{H})$ | Nichicon <br> PL series low－ESR electrolytics <br> United Chemicon LXF series |

## Matsuo USA（714） 969 －2491 Matsuo Japan（06） $332-0871$



Sumida USA（708）956－06
United Chemi－Con（708）696－2000 FAX（708）640－631

## Printed Circuit Layout and Grounding

Good layout and grounding practices will ensure noise，jitter－free operation．Minimize wire lengths in the noise，jitter－free operation．Minimize wire lengths in the
high－current paths，especially the distance between the high－current paths，especialy the distance between the capacitors（ C 1 and C 2 ）．These high－current ground connections should be brought to a single common poin （a＂star＂ground）．Place a low－ESR bypass capacito directly at $\mathrm{V}+$ and GND．The use of sockets or wire－wrap boards is not recommended．


