CMOS 8－Bit Buffered Multiplying DACs

The MX7524 and MAX7624 are CMOS 8 －bit digital－to－ analog converters（DAC）which will interface directly with most microprocessors．On－chip input latches make the DAC interface similar to a RAM write cycle where CS and WR are the only control inputs required．	
	Linearity up to $\pm 1 / 8$ LSB is available（MX7524L／C／U grades）and power consumption is less than 10 mW ． Monotonicity is guaranteed over the full temperature range．
	For the MX7524，+5 V TTL and CMOS logic compati－ bility is guaranteed when using +5 V power．Over the supply range of +5 V to +15 V ，all logic inputs are high voltage CMOS compatible．
	The MAX7624 has +5 V TTL／CMOS compatible inputs for a +12 V to +15 V supply range．
	Applications
	$\mu \mathrm{P}$ Controlled Gain
	Function Generators
	Bus Structured Instruments
	Automatic Test Equipment
	Digital Control Systems

Typical Operating Circuit

－Microprocessor Compatible
－On－Chip Data Latches
Guaranteed Monotonic Over Temp．
Low Power Consumption
8，9，and 10－Bit Linearity
MX7524 TTL／CMOS Compatible at＋5V
MAX7624 TTL／CMOS Compatible at＋12V to＋15V
Ordering Information

PART	TEMP．RANGE	PACKAGE＊	ERROR
MX7524JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / 2$ LSB
M $\mathbf{7} 7524 \mathrm{KN}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 /$ LSB
MX7524LN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 /$ LSB
MX7524JCSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$\pm 1 / 2$ LSB
MX7524KCSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$\pm 1 / 2$ LSB
M 7 7524LCSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$\pm 1 /{ }^{\text {LSB }}$
M $\times 7524 \mathrm{~J} / \mathrm{D}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	$\pm 1 / 2$ LSB
M M 7524 AD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	$\pm 1 / 2$ LSB
M M 7524 BD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	$\pm 1 / 4$ LSB
M $\times 7524 \mathrm{CD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	$\pm 1 / 8$ LSB

－．All devices -16 lead packages
Maxim reserves the right to ship Ceramic packages in lieu of CERDIP packages
（Ordering information continued on last page）
Pin Configuration
－
On－Chip Data Latche
Guaranteed Monotonic Over Temp．
Low Pow Conlity
－MX7524 TTL／CMOS Compatible at +5 V
－MAX7624 TTL／CMOS Compatible at +12 V to $+\mathbf{1 5 V}$
Ordering Information

Top View	
OUT1 1	$16 \mathrm{R}_{\text {feedback }}$
OUT2 2	［i5 V $\mathrm{VEF}^{\text {f }}$
GND 3	${ }^{14} \mathrm{~V}_{00}$
DB7（MSB） 4	${ }^{13}$ WR
D86 5	${ }^{12}$ CS
DB5 6	11）OBO（LSB）
0847	100 081
D83 8	9 082

MAXIM

CMOS 8-Bit Buffered Multiplying DACs

ABSOLUTE MAXIMUM RATINGS- MX7524, MAX7624	
	Operating Temperature Ranges (continued)
	MX7524AD, AQ, BD, BQ, CD, CQ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Digital Input Voltage to GND -0.3V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$	MX7524SD, SQ, TD, TQ, UD, UQ
OUT1, OUT2 to GND $-0.3 \mathrm{~V}, \mathrm{~V}_{\text {DD }}$	MAX7624MJE $\ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ}$
Operating Temperature Ranges	Storage Temperature Range $\ldots \ldots \ldots \ldots . .{ }^{-65^{\circ} \mathrm{C} \text { to }+160^{\circ} \mathrm{C}}$
MX7524JN, KN, LN, JCSE, KCSE, LCSE	Power Dissipation (any Package) to $+75^{\circ} \mathrm{C} \quad \ldots . . .450 \mathrm{~m}$
MAX7624CPE, CSE $\ldots \ldots \ldots \ldots \ldots \ldots . .00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Derate Above $+75^{\circ} \mathrm{C}$ by $\ldots \ldots \ldots \ldots \ldots . .6 \mathrm{~mW}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. These are stress ratings only, and
functional operation or the device at these or any other conditions above thoso indicated in the operational sections of the specifications is not mplied
ELECTRICAL CHARACTERISTICS—MX7524, +5V Operation

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			8			Bits
Relative Accuracy	INL	J,A,S K,B,T L,C,U			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	LSB
Differential Non-Linearity	DNL	All Grades Guaranteed Monotonic Over Temp.			± 1	LSB
Gain Error (Note 1)		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 21 / 2 \\ & \pm 31 / 2 \end{aligned}$	LSB
Gain Temp. Coefficient (Note 2, 3)				± 2	± 40	ppm $/{ }^{\circ} \mathrm{C}$
Supply Rejection (Note 2)	PSR	$\begin{array}{ll} \Delta V_{D D}= \pm 10 \% & T_{A}=25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \hline \end{array}$		$\begin{gathered} 0.002 \\ 0.01 \end{gathered}$	$\begin{aligned} & \hline 0.08 \\ & 0.16 \\ & \hline \end{aligned}$	\%FSR/\%
Output Leakage Current (louti)		$V_{\text {REF }}= \pm 10 \mathrm{~V}$ $T_{A}=25^{\circ} \mathrm{C}$ DAC is 00000000 $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$			$\begin{aligned} & \pm 50 \\ & \pm 400 \end{aligned}$	nA
Output Leakage Current ($\mathrm{I}_{\mathrm{OUT},}$)		$V_{\text {PEF }}= \pm 10 \mathrm{~V}$ $T_{A}=25^{\circ} \mathrm{C}$ DAC is 11111111 $T_{A}=T_{\text {MAN }}$ to $T_{\text {MAX }}$			$\begin{gathered} \pm 50 \\ \pm 400 \end{gathered}$	nA
REFERENCE INPUT						
$\mathrm{R}_{\text {IN }}$ (pin 15 to GND)			5	10	20	k ת
DYNAMIC PERFORMANCE						
Output Current Setting-Time to $1 / 2$ LSB (Note 2)		$\begin{array}{ll} \hline D B 0-D B 7=O V \text { to } V_{D D} \text { to } O V \\ \text { WR }=\overline{C S}=0 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ O U T 1 \text { Load }=100 \Omega, & T_{A}=T_{M I N} \text { to } T_{\text {MAX }} \\ C_{\text {EXT }}=13 \mathrm{PF} ; & \end{array}$			$\begin{aligned} & 400 \\ & 500 \end{aligned}$	ns
AC Feedthrough (OUT1 or OUT2) (Note 2)		$\begin{array}{ll\|} \hline \mathrm{V}_{\text {PEF }}= \pm 10 \mathrm{~V} & \\ 100 \mathrm{kHz} \text { Sinewave } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{DBO} \mathrm{DB7}=\mathrm{WR}= & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{CS}=0 \mathrm{~V} & \\ \hline \end{array}$			$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	\%FSR
ANALOG OUTPUTS						
OUT1 Capacitance (Note 2)	$\mathrm{C}_{\text {OUT1 }}$	$\begin{aligned} & \text { DB0-DB7 }=V_{D D} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V} \\ & \mathrm{DB} 0-\mathrm{DB7}=0 \mathrm{~V} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 120 \\ & 30 \end{aligned}$	pF
OUT2 Capacitance (Note 2)	$\mathrm{C}_{\text {OUT2 }}$	$\begin{aligned} & \text { DB0-DB7 }=V_{D D} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=0 \mathrm{~V} \\ & \text { DB0-DB7 }=0 \mathrm{OV} ; \mathrm{WR}=\overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \hline 30 \\ & 120 \end{aligned}$	pF

Note 1: Gain error is measured using internal feedback resistor. Full Scale Range (FSR) $=\mathrm{V}_{\text {REF }}$
Note 2: Guaranteed, but not tested.
Note 3: Gain error measured from $25^{\circ} \mathrm{C}$ to $T_{\text {max }}$ or from $25^{\circ} \mathrm{C}$ to $T_{\text {MI }}$
Nample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.

ELECTRICAL CHARACTERISTICS—MX7524，＋5V Operation（Continued）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
DIGITAL INPUTS					
Input High Voltage	V_{IH}		2.4		V
Input Low Voltage	V_{LL}			0.8	V
Input Current	In	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{N}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$		$\begin{aligned} & \pm 1 \\ & \pm 10 \end{aligned}$	$\mu \mathrm{A}$
Input Capacitance（Note 2）	$\mathrm{C}_{\text {IN }}$	$\begin{aligned} & \mathrm{DBO}-\mathrm{DB} 7 \\ & \mathrm{WR}, \mathrm{CS} \\ & \hline \end{aligned}$		$\begin{gathered} 8 \\ 20 \end{gathered}$	pF
POWER REQUIREMENTS					
Supply Current	$I_{\text {D }}$			1 2	mA
		$\begin{array}{lll}\text { Digital inputs } 0 \mathrm{~V} \text { or } V_{D D} & T_{A}=25^{\circ} \mathrm{C} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }}\end{array}$		$\begin{aligned} & \hline 106 \\ & 500 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS（Note 4）（See Timing Diagram）					
Chip Select to Write Setup Time	$\mathrm{t}_{\text {cs }}$	$\begin{array}{ll} T_{A}=25^{\circ} C & \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & J, K, L, A, B, C \\ T_{A}=T_{M I N} \text { to } T_{\text {MAX }} & S, T U \end{array}$	$\begin{aligned} & \hline 170 \\ & 220 \\ & 240 \\ & \hline \end{aligned}$		ns
Chip Select to Write Hold Time	${ }^{\text {t }} \mathrm{CH}$		0		ns
Write Pulse Width	${ }^{\text {tw }}$	$\begin{array}{lll} T_{A}=25^{\circ} C & \\ T_{A}^{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { J,K,L,A,B,C } \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { S,T,U } \end{array}$	$\begin{aligned} & 170 \\ & 220 \\ & 240 \end{aligned}$		ns
Data Setup Time	t_{DS}	$\begin{array}{ll} T_{A}=25^{\circ} \mathrm{C} & \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {max }} & \mathrm{J}, \mathrm{~K}, \mathrm{~L}, \mathrm{~A}, \mathrm{~B}, \mathrm{C} \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \mathrm{S}, \mathrm{~T}, \mathrm{U} \end{array}$	$\begin{aligned} & 135 \\ & 170 \\ & 170 \end{aligned}$		ns
Data Hold Time	t_{DH}		10		ns

ELECTRICAL CHARACTERISTICS－MX7524，＋15V Operation

$\left(V_{D D}=+15 \mathrm{~V}: \mathrm{V}_{\text {REF }}=+10 \mathrm{~V} ; V_{\text {OUT1 }}=V_{\text {OUT2 }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=T_{\text {MIN }}\right.$ to $T_{\text {MAX }}$ unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC ACCURACY							
Resolution	＇			8			Bits
Relative Accuracy	INL	$\begin{aligned} & \mathrm{J}, \mathrm{~A}, \mathrm{~S} \\ & \mathrm{~K}, \mathrm{~B}, \mathrm{~T} \\ & \mathrm{~L}, \mathrm{C}, \mathrm{U} \end{aligned}$				$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 4 \\ & \pm 1 / 8 \end{aligned}$	LSB
Differential Non－Linearity	DNL	All Grades Guara Monotonic Over				± 1	LSB
Gain Error（Note 1）		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$				$\begin{aligned} & \pm 11 / 4 \\ & \pm 11 / 2 \end{aligned}$	LSB
Gain Temp．Coefficient （Note 2，3）					± 1	± 10	ppm／${ }^{\circ} \mathrm{C}$
Supply Rejection（Note 2）	PSR	$\Delta V_{\text {DD }}= \pm 10 \%$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$		$\begin{aligned} & 0.001 \\ & 0.005 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & \hline \end{aligned}$	\％FSR／\％
Output Leakage Current （IOUT1）		$\begin{aligned} & \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V} \\ & \text { DAC is } 00000000 \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 50 \\ & \pm 200 \end{aligned}$	nA
Output Leakage Current （lout2）		$\begin{aligned} & \mathrm{V}_{\text {PEF }}= \pm 10 \mathrm{~V} \\ & \text { DAC } \text { is } 11111111 \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 50 \\ & \pm 200 \end{aligned}$	nA

CMOS 8－Bit Buffered Multiplying DACs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE INPUT						
$\mathrm{R}_{\text {IN }}$（pin 15 to GND）			5	10	20	k Ω
DYNAMIC PERFORMANCE						
Output Current Settling－Time to $1 / 2$ LSB（Note 2）					$\begin{aligned} & 250 \\ & 350 \end{aligned}$	ns
AC Feedthrough （OUT1 or OUT2）（Note 2）		$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ 100 KZ Sinewave $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ DB0－DB7 $=\overline{\mathrm{WR}}=$ $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\mathrm{CS}=0 \mathrm{OV}$			$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	\％FSR
ANALOG OUTPUTS						
OUT1 Capacitance（Note 2）	Couti	$\begin{aligned} & \text { DB0-DB7 }=V_{\mathrm{OD}} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=\mathrm{OV} \\ & \text { DB0-DB7 }=0 \mathrm{~W} ; \overline{\mathrm{WA}}=\overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 120 \\ & 30 \end{aligned}$	pF
OUT2 Capacitance（Note 2）	$\mathrm{C}_{\text {OUT2 }}$	$\begin{aligned} & \text { DBO-DB7 }=V_{D ;} ; \overline{W R}=\overline{C S}=O V \\ & \text { DBO-DB7 }=O V ; W R=\overline{C S}=O V \end{aligned}$			$\begin{gathered} 30 \\ 120 \end{gathered}$	pF
DIGITAL INPUTS						
Input High Voltage	$\mathrm{V}_{\text {IH }}$		13.5			V
Input Low Voltage	V_{1}				1.5	V
Input Current	$\mathrm{I}_{\text {N }}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} ; V_{1 N}=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Input Capacitance（Note 2）	$\mathrm{C}_{\text {IN }}$	$\begin{aligned} & \mathrm{DB} 0-\mathrm{DB} 7 \\ & \mathrm{WR}, \mathrm{CS} \\ & \hline \end{aligned}$			$\begin{gathered} 8 \\ 20 \\ \hline \end{gathered}$	pF
POWER REQUIREMENTS						
Supply Current	Ido	Digital inputs $\mathrm{V}_{\text {IL }}$ or V_{IH}			2	mA
		Digital inputs oV or $V_{D D} \begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }}\end{aligned}$			$\begin{array}{r} 100 \\ 500 \\ \hline \end{array}$	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS（Note 4）（See Timing Diagram）						
Chip Select to Write Setup Time	${ }^{\text {t }}$ cs	$\begin{array}{ll} \hline T_{A}=25^{\circ} \mathrm{C} & \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { J,K,L,A,B,C } \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { S,T,U } \end{array}$	$\begin{aligned} & 100 \\ & 130 \\ & 150 \\ & \hline \end{aligned}$			ns
Chip Select to Write Hold Time	${ }^{\text {t }} \mathrm{CH}$		0			ns
Write Pulse Width	$t_{\text {wR }}$	$\begin{array}{ll} T_{A}=25^{\circ} \mathrm{C} & \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { J,K,L,A,B,C } \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { S,T,U } \end{array}$	$\begin{aligned} & 100 \\ & 130 \\ & 150 \end{aligned}$			ns
Data Setup Time	${ }^{\text {tos }}$	$\begin{array}{ll} T_{A}=25^{\circ} \mathrm{C} & \\ T_{A}^{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { J,K,L,A,B,C } \\ T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} & \text { S,T,U } \end{array}$	$\begin{gathered} \hline 60 \\ 80 \\ 100 \\ \hline \end{gathered}$			ns
Data Hold Time	t_{DH}		10			ns
Note 1：Gain error is measured using internal feedback resistor．Full Scale Range（FSR）$=\mathrm{V}_{\text {REF }}$ Note 2：Guaranteed，but not tested． Note 3：Gain error measured from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$ or from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ ． Note 4：Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance．						

\qquad

ELECTRICAL CHARACTERISTICS—MAX7624, +12 V to +15 V Operation

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	max	UNITS
DC ACCURACY						
Resolution			8			Bits
Relative Accuracy	INL				$\pm 1 / 2$	LSB
Differential Non-Linearity	DNL	All Grades Guaranteed Monotonic Over Temp.			± 1	LSB
Gain Error (Note 1)					± 2	LSB
Gain Temp. Coefficient (Note 2, 3)				± 1	± 10	ppm $/{ }^{\circ} \mathrm{C}$
Supply Rejection (Note 2)	PSR	$\begin{array}{ll} \hline V_{D D}=+10.8 \mathrm{~V} \text { to }+15.75 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \hline \end{array}$		$\begin{aligned} & \hline 0.001 \\ & 0.005 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & \hline \end{aligned}$	\%FSR/\%
Output Leakage Current (I ${ }_{\text {OUT1 } 1}$)		$\begin{array}{ll\|} \hline V_{\text {REF }}= \pm 10 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ \text { DAC is } 00000000 & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \hline \end{array}$			$\begin{gathered} \pm 50 \\ \pm 200 \\ \hline \end{gathered}$	nA
Output Leakage Current (I ${ }_{\text {OUT2 }}$)		$\begin{array}{ll\|} \hline V_{\text {PEF }}= \pm 10 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{DAC} \text { is } 11111111 & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \hline \end{array}$			$\begin{aligned} & \pm 50 \\ & \pm 200 \\ & \hline \end{aligned}$	nA
REFERENCE INPUT						
$\mathrm{R}_{\text {IN }}$ (pin 15 to GND)			5	10	20	k Ω
DYNAMIC PERFORMANCE						
Output Current Settling-Time to $1 / 2$ LSB (Note 2)		$\begin{array}{ll} D B 0-D B 7=0 V \text { to }+5 \mathrm{~V} \text { to } 0 \mathrm{~V} \\ \mathrm{WR}=\overline{\mathrm{CS}}=0 \mathrm{~V} & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ O U U T 1 \mathrm{Load}=100 \Omega . & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } T_{\text {MAX }} \\ C_{\text {EXT }}=13 \mathrm{PF} ; & \end{array}$			$\begin{aligned} & 250 \\ & 350 \end{aligned}$	ns
AC Feedthrough (OUT1 or OUT2) (Note 2)		$\begin{array}{ll} \hline V_{\text {PEF }}= \pm 10 \mathrm{~V} & \\ 10 \mathrm{KHz} \text { Sinewave } & T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{DBO}-\mathrm{DB7}=\overline{\mathrm{WR}}= & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ \mathrm{CS}=0 \mathrm{~V} \end{array}$			$\begin{gathered} 0.25 \\ 0.5 \end{gathered}$	\%FSR
ANALOG OUTPUTS						
OUT1 Capacitance (Note 2)	$\mathrm{C}_{\text {OUT1 }}$	$\begin{aligned} & \text { DBO-DB7 }=+5 \mathrm{~V} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=\mathrm{OV} \\ & \text { DBO-DB7 }=0 \mathrm{OV} ; \mathrm{WR}=\overline{\mathrm{CS}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 60 \\ & 25 \end{aligned}$	pF
OUT2 Capacitance (Note 2)	$\mathrm{C}_{\text {Out2 }}$	$\begin{aligned} & \text { DBO-DB7 }=+5 \mathrm{~V} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=\mathrm{OV} \\ & \text { DBO-DB7 }=\mathrm{OV} ; \overline{\mathrm{WR}}=\overline{\mathrm{CS}}=\mathrm{OV} \end{aligned}$			$\begin{aligned} & 25 \\ & 60 \end{aligned}$	pF
DIGITAL INPUTS						
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.4			V
Input Low Voltage	V_{LL}				0.8	V
Input Current	${ }_{1 \times}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} ; V_{I N}=0 \mathrm{~V} \text { or } \mathrm{V}_{D D} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 10 \end{aligned}$	$\mu \mathrm{A}$
Input Capacitance (Note 2)	$\mathrm{C}_{\text {IN }}$	DB0-DB7, $\overline{\text { WR }}$, $\overline{C S}$			8	pF
POWER REQUIREMENTS						
Supply Current	I_{DD}	Digital inputs V_{IL} or V_{IH}			2.5	mA
		Digital inputs $O V$ or $V_{D D} \begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{M I N}\end{aligned}$ to $T_{\text {MAX }}$			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$

CMOS 8-Bit Buffered Multiplying DACs

$\underset{\text { ELECTRICAL CHARACTERISTICS—MAX7624, }}{ }+12 \mathrm{~V}$ to +15 V Operation (Continued)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS (Note 4) (See Timing Diagram)							
Chip Select to Write Setup Time	t_{cs}	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\underset{M}{C, E}$	$\begin{aligned} & 160 \\ & 160 \\ & 210 \end{aligned}$			ns
Chip Select to Write Hold Time	t_{CH}			10			ns
Write Pulse Width	$\mathrm{t}_{\text {wr }}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{E} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 150 \\ & 170 \\ & 210 \end{aligned}$			ns
Data Setup Time	t_{DS}	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \mathrm{C}, \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 160 \\ & 210 \\ & \hline \end{aligned}$			ns
Data Hold Time	t_{DH}			10			ns

Detailed Description
The MX7524/MAX7624 is an 8 -bit multiplying digital-to-analog converter (DAC) that consists of a thin-film R-2R resistor array with CMOS current steering switches. In applications requiring a voltage output, needed. Figure 1 shows a simplified schematic of the DAC. The inverted R-2R ladder divides the voltage or current reference in a binary manner among the eight steering switches. The magnitude of the current appearing at either OUT terminal depends on the number of switches selected, and therefore the output is an OUT terminals must be held at the same potential so a constant current is maintained in each ladder leg. This makes the VREF input current independent of switch state and also ensures that the MX7524/ MAX7624 maintains its excellent linearity performance.

Equivalent-Circuit Analysis

The equivalent circuit for all digital inputs LOW is shown in figure 2. In this state the reference current is switched to OUT2. The current source, I leakage, is composed of small surface and junction leakages to the substrate which double every $10^{\circ} \mathrm{C}$. The R-2R ladder termination resistor generates a constant $1 / 256$ rent, $I_{\text {REF }}$. The value of output capacitance at the OUT1 and OUT2 terminals is input code dependent and lies in the range 20 pF to 30 pF .

Figure 2. MX7524/MAX7624 DAC Equivalent CircuitAll Digital Inputs LOW

The MX7524's digital inputs are TTL compatible when operated with a V_{DD} of $+5 \mathrm{~V}\left(\mathrm{~V}_{14}=2.4 \mathrm{~V}, \mathrm{~V}_{1 L}=0.8 \mathrm{~V}\right)$.
Internal level shifters convert from TTL to CMOS logic levels. When $V_{1 N}$ is in the region 1.5 to 3.5 volts, the input buffers operate in their linear region and the quiescent current increases as indicated by the graph recommended that the digital inputs be as close to the supply rails as possible ($V_{D D}$ and DGND).

Figure 1. MX7524/MAX7624 Functional Diagram

CMOS 8－Bit Buffered Multiplying DACs

The MX7524 may be operated with any supply voltage in the range $5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<15 \mathrm{~V}$ ．With $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ the input logic
and 13.5 V ．
The MAX7624＇s digital inputs are TTL／CMOS compa－ tible for a +12 V to +15 V supply range．However，when $V_{I N}$ is in the range of 1.5 V to $\mathrm{V}_{D D}-1.5 \mathrm{~V}$ the inpu buffers operate in their linear region and the quiescen current increases（see figure 3 ）

Figure 3．Typical Supply Current，$I_{D D}$ vs．Logic Input Voltage $V_{i N}$ for $V_{D D}=+5 \mathrm{~V}$ and +15 V

Interface Logic Information
Mode Selection The inputs CS and WR control the operating mode the MX7524／MAX7624．See Mode Selection Table．

$\overline{\mathbf{c s}}$	WR	MODE	DAC RESPONSE
L	L	WRITE	DAC responds to data bus （DB0－DB7）inputs
$\begin{gathered} \mathrm{H} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & X \\ & X \\ & H \end{aligned}$	$\begin{aligned} & \hline \text { HOLD } \\ & \text { HOLD } \end{aligned}$	Data bus（DB0－DB7）is locked out；DAC holds last data present when $\overline{C S}$ or WR assumed HIGH state

Write Mode
When $\overline{\mathrm{CS}}$ and $\overline{\text { WR }}$ are both LOW，the MX7524／MAX762 is in the write mode，and the MX7524／MAX7624 analog output responds to data activity at the DB0－DB7 data bus inputs．In this mode，the data latches are trans parent．

Hold Mode
The MX7524／MAX7624 retains the data that was pre sent on DB0－DB7 just prior to CS or WR assuming corresponding to the digital code locked in the data latch．

Write Cycle Timing Diagram

NOTES：
FOR THE MXX522 ALL IMPUT SIGNAL RISE AND FALL TIMES ARE
MEASURE MEASURED FROM 10\％TO 90% OF $V_{D 0} \cdot V_{D 0}=+5 V, t_{t}=4=20 \mathrm{~ns}: V_{00}=$ for the max 7624 all imput signal rise and fall times are MEASURED FROM 10% T0 90% OF $+5 V$
TIMING MEASUREMENT REFEBEHCE LEVEL IS $\boldsymbol{v}_{\mathrm{w}}+\mathrm{v}_{\mathrm{II}} \mathrm{I} / 2$

Figure 4．Bipolar（4－Quadrant）Operation

CMOS 8-Bit Buffered Multiplying DACs

PART	TEMPR RANGE	PaCKAGE*	ERROR
MX7524AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 2$ LSB
M $\times 7524 \mathrm{BC}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 4$ LSB
MX7524CQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 4$ LSB
MX7524SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	$\pm 1 / 2$ LSB
MX7524TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	$\pm 1 / 4$ LSB
MX7524UD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	土1/6LSB
MX7524SO	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 2$ LSB
M $\times 7524 \mathrm{TQ}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 4$ LSB
MX7524UQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$\pm 1 / 2$ LSB
MAX7624CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / 2$ LSB
MAX7624CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$\pm 1 / 2$ LSB
MAX7624C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	$\pm 1 / 2$ LSB
MAX7624EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\pm 1 / 2$ LSB
MAX7624MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 1 / 2$ LSB

. All devices- 16 lead packages
Maxim reserves the right to ship Ceramic packages in lieu of

Table 1. Unipolar Binary Code Table

DIGITAL INPUT MSB LSB	ANALOG OUTPUT
	$-V_{\text {feF }}\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
	$-V_{\text {gEF }}\left(\frac{127}{126}\right)$
00000001	$-\mathrm{V}_{\text {REF }}\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}\left(\frac{0}{256}\right)=0$

[^0]

Table 2. Bipolar (Offset Binary) Code Table

DIGITAL INPUT MSB LSB	ANALOG OUTPUT
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$+V_{\text {REF }}\left(\frac{127}{128}\right)$
10000001	$+V_{\text {fEF }}\left(\frac{1}{128}\right)$
10000000	0
$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 1\end{array}$	$-V_{\text {REF }}\left(\frac{1}{128}\right)$
00000001	$-V_{\text {feF }}\left(\frac{127}{128}\right)$
00000000	$-V_{\text {REF }}\left(\frac{128}{128}\right)$

Note: 1 LSB $=\left(2^{-7}\right)\left(V_{\text {REF }}\right)=\frac{1}{128}\left(V_{\text {REF }}\right)$
\qquad

[^0]: Note: 1 LSB $=\left(2^{-8}\right)\left(V_{\text {REF }}\right)=\frac{1}{256}\left(V_{\text {REF }}\right)$

