Very Low Supply Current 3-Pin Microprocessor Reset Monitors

The MAX809 and MAX810 are cost–effective system supervisor circuits designed to monitor $V_{\rm CC}$ in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 10 µsec of $V_{\rm CC}$ falling through the reset voltage threshold. Reset is maintained active for a minimum of 140 msec after $V_{\rm CC}$ rises above the reset threshold. The MAX810 has an active-high RESET output while the MAX809 has an active-low RESET output. The output of the MAX809 is guaranteed valid down to $V_{\rm CC}$ = 1.0 V. Both devices are available in a SOT-23 package.

The MAX809/810 are optimized to reject fast transient glitches on the $V_{\rm CC}$ line. Low supply current of 1.0 μ A ($V_{\rm CC}$ = 3.2 V) makes these devices suitable for battery powered applications.

Features

- Precision V_{CC} Monitor for 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies
- Precision Monitoring Voltages from 1.6 V to 4.9 V Available in 100 mV Steps
- 140 msec Guaranteed Minimum RESET Output Duration
- **RESET** Output Guaranteed to $V_{CC} = 1.0 \text{ V}$
- Low Supply Current
- V_{CC} Transient Immunity
- Small SOT-23 Package
- No External Components
- Wide Operating Temperature: -40°C to 105°C

Typical Applications

- Computers
- Embedded Systems
- Battery Powered Equipment
- Critical µP Power Supply Monitoring

Figure 1. Typical Application Diagram

ON Semiconductor™

http://onsemi.com

xx, xxx = Specific Device Code

- m = Date Code
- y = Year
- w = Work Week

NOTE: *SOT-23 is equivalent to JEDEC (TO-236) ** RESET is for MAX809 *** RESET is for MAX810

ORDERING INFORMATION

Device	Package	Shipping	
MAX809xTR	SOT-23	3000 Tape/Reel	
MAX809SNxxxT1	SOT-23	3000 Tape/Reel	
MAX810xTR	SOT-23	3000 Tape/Reel	

NOTE: The "x" and "xxx" denotes a suffix for V_{cc} voltage threshold options – see page 2785 for more details.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2785 of this data sheet.

PIN DESCRIPTION

Pin No.	Symbol	Description
1	GND	Ground
2	RESET (MAX809)	RESET output remains low while V_{CC} is below the reset voltage threshold, and for 240 msec (typ.) after V_{CC} rises above reset threshold
2	RESET (MAX810)	RESET output remains high while V_{CC} is below the reset voltage threshold, and for 240 msec (typ.) after V_{CC} rises above reset threshold
3	V _{CC}	Supply Voltage (typ.)

ABSOLUTE MAXIMUM RATINGS* (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to GND)	V _{CC}	6.0	V
RESET		–0.3 to (V _{CC} + 0.3)	V
Input Current, V _{CC}		20	mA
Output Current, RESET		20	mA
dV/dt (V _{CC})		100	V/µsec
Thermal Resistance, Junction to Air	R _{θJA}	491	°C/W
Operating Temperature Range (Data given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V)	T _A	–40 to +105	°C
Operating Temperature Range (Data given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V)	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{sol}	+260	°C
Latch–up performance: Positive Negative	I _{Latch–up}	200 200	mA

*Maximum Ratings are those values beyond which damage to the device may occur.

This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 350 V.
The maximum and the series of the series o

2. The maximum package power dissipation limit must not be exceeded.

 $P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta}JA}$

$$\frac{1}{\Delta}$$
 with $T_{J(max)} = 150^{\circ}C$

ELECTRICAL CHARACTERISTICS $T_A = -40^{\circ}C$ to +105°C unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3) The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.

Characteristic	Symbol	Min	Тур	Мах	Unit
V_{CC} Range $T_A = 0^{\circ}C$ to +70°C $T_A = -40^{\circ}C$ to +105°C		1.0 1.2		5.5 5.5	V
Supply Current $V_{CC} = 3.3 V$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } +105^{\circ}C$ $V_{CC} = 5.5 V$	Icc		0.5 -	1.2 2.0	μΑ
T _A = -40°C to +85°C T _A = 85°C to +105°C		_	0.8	1.8 2.5	

3. Production testing done at T_A = 25°C, over temperature limits guaranteed by design.

Characteristic	Symbol	Min	Тур	Max	Unit
Reset Threshold (Note 5)	V _{TH}				V
MAX809SN490 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85^{\circ}C $T_A = +85^{\circ}C$ to +105^{\circ}C		4.83 4.78 4.66	4.9 _ _	4.97 5.02 5.14	
MAX809LTR $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		4.56 4.50 4.40	4.63 _ _	4.70 4.75 4.86	
MAX809STR $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		2.89 2.85 2.78	2.93 _ _	2.96 3.00 3.08	
MAX809SN232 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		2.28 2.25 2.21	2.32 _ _	2.35 2.38 2.45	
MAX809SN160 $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C $T_A = +85^{\circ}C$ to +105°C		1.58 1.56 1.52	1.6 _ _	1.62 1.64 1.68	
Reset Temperature Coefficient			30	-	ppm/°C
V_{CC} to Reset Delay V_{CC} = V_{TH} to (V_{TH} – 100 mV)		-	10	-	μsec
Reset Active Timeout Period		140	240	460	msec
$\label{eq:RESET} \begin{array}{l} \hline RESET \mbox{ Output Voltage Low} \\ V_{CC} = V_{TH} - 0.2 \ V \\ 1.6 \ V \le V_{TH} \le 2.0 \ V, \ I_{SINK} = 0.5 \ mA \\ 2.1 \ V \le V_{TH} \le 4.0 \ V, \ I_{SINK} = 1.2 \ mA \\ 4.1 \ V \le V_{TH} \le 4.9 \ V, \ I_{SINK} = 3.2 \ mA \end{array}$	V _{OL}	_	_	0.3	V
$\label{eq:RESET} \begin{array}{l} \hline \textbf{RESET} \ \textbf{Output} \ \textbf{Voltage} \ \textbf{High} \\ \textbf{V}_{CC} = \textbf{V}_{TH} + \textbf{0.2 V} \\ \hline \textbf{1.6 V} \leq \textbf{V}_{TH} \leq 2.4 \ \textbf{V}, \ \textbf{I}_{SOURCE} = 200 \ \mu \textbf{A} \\ \hline \textbf{2.5 V} \leq \textbf{V}_{TH} \leq 4.9 \ \textbf{V}, \ \textbf{I}_{SOURCE} = 500 \ \mu \textbf{A} \end{array}$	V _{OH}	0.8 V _{CC}	_	-	V

ELECTRICAL CHARACTERISTICS (continued) $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 4) The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.

Production testing done at T_A = 25°C, over temperature limits guaranteed by design.
Contact your ON Semiconductor sales representative for other threshold voltage options.

ELECTRICAL CHARACTERISTICS (V_{CC} = Full Range, T_A = -40°C to +85°C unless otherwise noted. Typical values are at
$T_A = +25^{\circ}C$, $V_{CC} = 5.0$ V for L/M/J, 3.3 V for T/S, 3.0 V for R) (Note 6) The following data is given for MAX809 threshold levels:
2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.

Characteristic	Symbol	Min	Тур	Max	Unit
V_{CC} Range $T_A = 0^{\circ}C$ to +70°C $T_A = -40^{\circ}C$ to +85°C		1.0 1.2	-	5.5 5.5	V
Supply Current MAX8xxM/MAX809J/MAX810L: V _{CC} < 5.5 V MAX8xxR/T/MAX810S: V _{CC} < 3.6 V	lcc		24 17	60 50	μΑ
Reset Threshold (Note 6) MAX810L: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX8xxM: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX809J: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX8xxT: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX810S: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX8xxR: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C MAX8xxR: $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to +85°C	V _{TH}	4.56 4.50 4.31 4.25 3.93 3.89 3.04 3.00 2.89 2.85 2.59 2.55	4.63 - 4.38 - 3.08 - 2.93 - 2.63 -	4.70 4.75 4.45 4.50 4.06 4.10 3.11 3.15 2.96 3.00 2.66 2.70	V
Reset Threshold Temperature Coefficient		-	30	-	ppm/°C
V_{CC} to Reset Delay V_{CC} = V_{TH} to $(V_{TH}$ – 100 mV)		—	20	-	μsec
Reset Active Timeout Period		140	240	560	msec
$\begin{array}{l} \hline \textbf{RESET} \mbox{ Output Voltage Low (MAX809)} \\ \hline \textbf{MAX809R/T: } V_{CC} = V_{TH} \mbox{ min, } I_{SINK} = 1.2 \mbox{ mA} \\ \hline \textbf{MAX809M/J: } V_{CC} = V_{TH} \mbox{ min, } I_{SINK} = 3.2 \mbox{ mA} \\ \hline \textbf{V}_{CC} > 1.0 \mbox{ V, } I_{SINK} = 50 \mu \mbox{ A} \end{array}$	V _{OL}	1 1 1		0.3 0.4 0.3	V
RESET Output Voltage High (MAX809) MAX809R/T: V _{CC} > V _{TH} max, I _{SOURCE} = 500 μA MAX809M/J: V _{CC} > V _{TH} max, I _{SOURCE} = 800 μA	V _{OH}	0.8 V _{CC} V _{CC} – 1.5			V
RESET Output Voltage Low (MAX810) MAX810R/S/T: V _{CC} = V _{TH} max, I _{SINK} = 1.2 mA MAX810L/M: V _{CC} = V _{TH} max, I _{SINK} = 3.2 mA	V _{OL}			0.3 0.4	V
RESET Output Voltage High (MAX810) 1.8 < V_{CC} < V_{TH} min, I_{SOURCE} = 150 μ A	V _{OH}	0.8 V _{CC}	-	_	V

6. Production testing done at $T_A = 25^{\circ}C$, over temperature limits guaranteed by design.

APPLICATIONS INFORMATION

V_{CC} Transient Rejection

The MAX809 provides accurate V_{CC} monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches) on the power supply line. Figure 2 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies **under** the curve will **not** generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5 μ s or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the MAX809.

Figure 2. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C

RESET Signal Integrity During Power–Down

The MAX809 RESET output is valid to $V_{CC} = 1.0$ V. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the μ P will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where RESET must be maintained valid to $V_{CC} = 0$ V, a pull-down resistor must be connected from $\overline{\text{RESET}}$ to ground to discharge stray capacitances and hold the output low (Figure 3). This resistor value, though not critical, should be chosen such that it does not appreciably load $\overline{\text{RESET}}$ under normal operation (100 k Ω will be suitable for most applications).

Figure 3. Ensuring RESET Valid to V_{CC} = 0 V

Processors With Bidirectional I/O Pins

Some μ P's (such as Motorola 68HC11) have bi-directional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k Ω resistor in series with the output of the MAX809 (Figure 4). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the μ P, the buffer should be connected as shown with the solid line.

Figure 4. Interfacing to Bidirectional Reset I/O

TYPICAL CHARACTERISTICS

The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.

Figure 6. Supply Current vs. Supply Voltage

Figure 7. Normalized Power–Up Reset vs. Temperature

Figure 8. Normalized Reset Threshold Voltage vs. Temperature

TYPICAL CHARACTERISTICS

The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.

Figure 10. Supply Current vs. Temperature (No Load, MAX8xxM/MAX809J, MAX810L)

Figure 12. Power–Down Reset Delay vs. Temperature and Overdrive (MAX8xxM/MAX809J, MAX810L)

TAPING FORM

Component Taping Orientation for 3L SOT-23 (JEDEC-236) Devices

Tape & Reel Specifications Table

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
SOT-23	8 mm	4 mm	3000	7 inches

MARKING AND THRESHOLD INFORMATION

ON Semiconductor Part #	V _{TH} *	Description	Marking
MAX809SN160T1	1.60		SAAm
MAX809SN232T1	2.32		SQPm
MAX809STR	2.93		SPTm
MAX809LTR	4.63		SPWm
MAX809SN490T1	4.90	Push–Pull RESET	SBHm
MAX809MTR	4.38		J2yw
MAX809TTR	3.08		ЈЗуw
MAX809RTR	2.63		J5yw
MAX809JTR	4.00		J6yw
MAX810MTR	4.38		K2yw
MAX810TTR	3.08		КЗуw
MAX810RTR	2.63	Push–Pull RESET	K5yw
MAX810LTR	4.63]	K1yw
MAX810STR	2.93		K4yw

*Contact your ON Semiconductor sales representative for other threshold voltage options.

m = Date Code

y = Year

w = Work Week