16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90495G Series

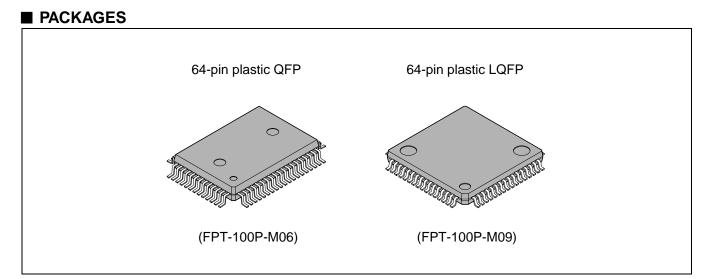
MB90497G/F497G/V495G

DESCRIPTION

The MB90495G Series is a general-purpose, high-performance 16-bit microcontroller. It was designed for devices like consumer electronics, which require high-speed, real-time process control. This series features an on-chip full-CAN interface.

In addition to being backwards compatible with the F²MC* family architecture, the instruction set has been expanded to add support for high-level language instructions, expanded addressing mode, and enhanced multiply/ divide and bit processing instructions. A 32-bit accumulator is also provided, making it possible to process long word (32-bit) data.

The MB90495G Series peripheral resources include on chip 8/10-bit A/D converter, UART (SCI) 0/1, 8/16-bit PPG timer, 16-bit I/O timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.


* : F²MC is abbreviation for Fujitsu Flexible Microcontroller. F²MC is a registered trademark of Fujitsu Limited.

■ FEATURES

Clock

•Built-in PLL clock multiplier circuit

•Choose 1/2 oscillation clock or ×1 to ×4 multiplied oscillation clock (for a 4-MHz oscillation clock, 4 to 16 MHz) machine (PLL) clock

(Continued)

•Select subclock behavior (8.192 kHz)

•Minimum instruction execution time : 62.5 ns (operating with 4-MHz oscillation clock and × 4 PLL clock

16-MByte CPU memory space
•24-bit internal addressing
•External access possible through selection of 8/16-bit bus width (external bus mode)

Optimum instruction set for controller applications

- •Wealth of data types (Bit, Byte, Word, Long Word)
- •Wealth of addressing modes (23 different modes)
- •Enhanced signed multiply-divide instructions and RETI instruction functions
- •Enhanced high-precision arithmetic employing 32-bit accumulator
- Instruction set supports high-level programming language (C) and multitasking
 Employs system stack pointer
 Enhanced indirect instructions with all pointer types
 - •Barrel shift instructions
- Improved execution speed
 4-byte instruction queue
- Powerful interrupt feature •Powerful 8-level, 34-condition interrupt feature
- CPU-independent automated data forwarding
 Extended intelligent I/O service feature (EI²OS) : maximum 16 channels

• Low-power consumption (Standby) Mode

- •Sleep mode (CPU operation clock stopped)
- •Timebase timer mode (oscillation clock and subclock, timebase timer and clock timer only operational)
- •Clock mode (subclock and clock timer only operational)
- •Stop mode (oscillation clock and subclock stopped)
- •CPU intermittent operation mode
- Process

•CMOS technology

- I/O Ports
 - •Generic I/O ports (CMOS output) : 49
- Timer
 - •Timebase timer, clock timer, watchdog timer : 1 channel
 - •8/16-bit PPG timer : four 8-bit channels, or two 16-bit channels
 - •16-bit reload timer : 2 channels
 - •16-bit I/O timer
 - •16-bit free-run timer : 1 channel
 - •16-bit input capture (ICU) : 4 channels Generates interrupt requests by latching onto the count value of the 16-bit free-run timer with pin input edge detection

(Continued)

- CAN Controller : 1 channel
 - •CAN specifications conform to versions 2.0A and 2.0B
 - •8 on-chip message buffers
 - •Forwarding rate 10 Kbps to 1 Mbps (with 16-MHz machine clock)

• UART0 (SCI) /UART1 (SCI) : 2 channels

- •All with full duplex double buffer
- •Use clock-asynchronous or clock-synchronous serial forwarding

• DTP/external interrupt : 8 channels

•A module for launching extended intelligent I/O service (EI²OS) and generating external interrupts through external output

• Delayed interrupt generation module •Generates interrupt requests for switching tasks

• 8/10-bit A/D converter : 8 channels

- •Switch between 8-bit and 10-bit resolution
- •Launch through external trigger input
- •Conversion time : 6.13 μ s (with 16-MHz machine clock, including sampling time)
- Program batch function •2-address pointer ROM correction
- Clock output function

■ PRODUCT LINEUP

Part Number Paarmeter		MB90F497G	MB90497G	MB90V495G			
Feature Class	ification	FLASH ROM	Mask ROM	Product Evaluated			
ROM Size		64 K					
RAM Size		2 Kt	oytes	6 Kbytes			
Process			CMOS				
Package		LQFP64 (width 0.65 mm)) , QFP64 (width 1.0 mm)	PGA256			
Operating Pov	ver		4.5 V to 5.5 V				
Emulator powe	er supply*	_	_	None			
CPU Function	s		Instruction bit length: 8-bit, 16-bitInstruction length: 1 to 7 bytes				
			minimum 1.5 μs (with 16-N				
Low-power co (Standby) Mo		Sleep mode/clock mode/timebase timer mode/stop mode / CPU intermittent mode					
I/O Ports		General-purpose I/O ports (CMOS output) : 49					
Timebase time	er	18-bit free-run counter Interrupt interval : 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with 4-MHz oscillation clock)					
Watchdog time	er	Reset generation intervals : 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with 4-MHz oscillation clock)					
16-bit	16-bit free-run timer	Number of channels : 1 Interrupts from overflow generation					
I/O Timer	Input capture	Number of channels : 4 Maintenance of free-run timer value through pin input (rising, falling or both edg- es)					
16-bit reload timer		Number of channels : 2 16-bit reload timer operation Count clock interval : 0.25 μs, 0.5 μs, 2.0 μs (with 16-MHz machine clock) External event count enabled					
Clock timer		15-bit free-run counter Interrupt intervals : 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192-kHz subclock)					
8/16-bit PPG t	imer	Number of channels : 2 (two 8-bit channels can be used) Two 8-bit or one 16-bit channel PPG operation possible Free interval, free duty pulse output possible Count clock : 62.5 ns to 1 μ s (with 16-MHz machine clock)					

*: The S2 dipswitch setting when using the MB2145-507 emulation baud. For details, see the MB2145-507 hardware manual (2.7 Emulator Power Pin).

(Continued)

Part Number Parameter	MB90F497G	MB90497G	MB90V495G
Delayed interrupt generation module	Module for delayed interru Used in real-time OS	pt generation switching tas	ks
DTP/external interrupt circuit		ing edge, "H" level input, or gent I/O service (El²OS) ca	
8/10-bit A/D converter	Number of channels : 8Resolution : set 10-bit or 8-bitConversion time : 6.13 μs (with 16-MHz machine clock, including sampling time)Continuous conversion of multiple linked channels possible(up to 8 channels can be set)One-shot conversion mode : converts selected channel only onceContinuous conversion mode : converts selected channel continuouslyStop conversion mode : converts selected channel and suspends operation repeatedly		
UART (SCI)	Clock-asynchronous forwa	ding : 62.6 Kbps to 1 Mbps arding : 1.202 bps to 9.615 ormed by two-way serial tra	bps
CAN	Send/receive message bu	fication versions 2.0A and 2 ffers : 8 ops to 1 Mbps (with 16-MHz	

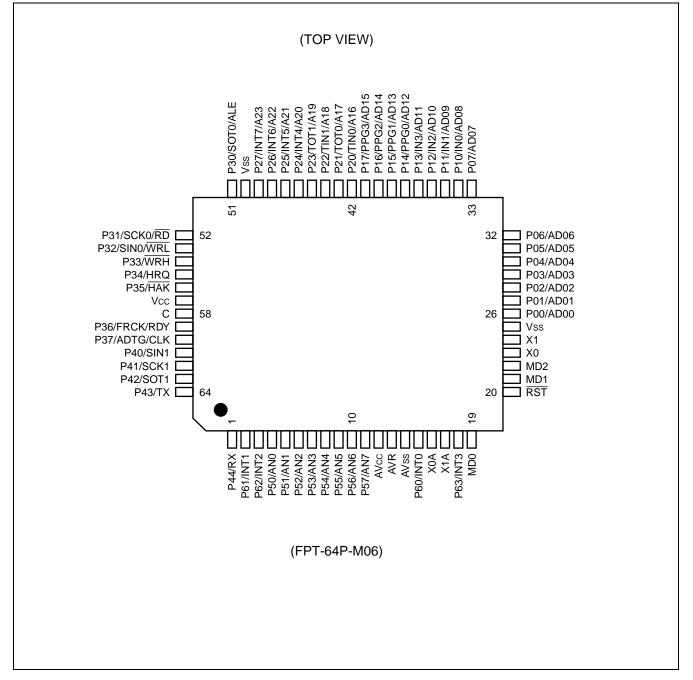
PACKAGES AND CORRESPONDING PRODUCTS

Package	MB90F497G	MB90497G
FPT-64P-M06	0	0
FPT-64P-M09	0	0

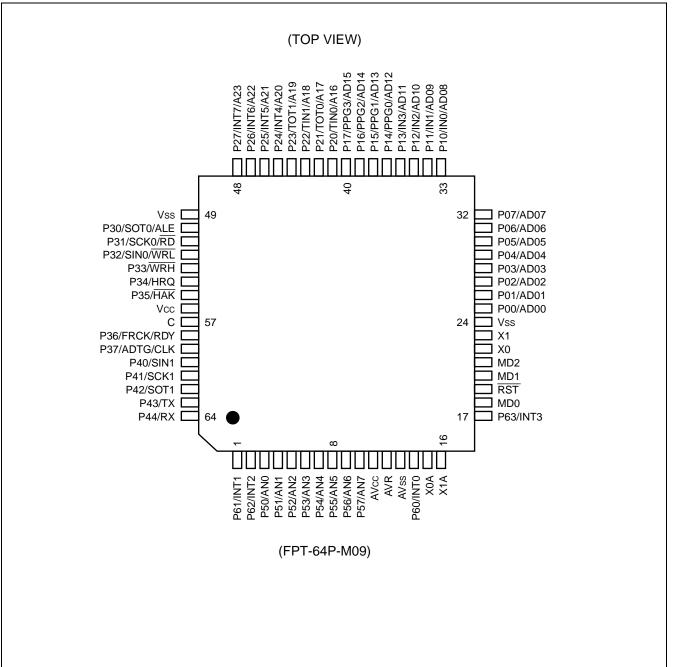
 \bigcirc : available $\,\times\,$: not available

Note : See "Package Dimensions" for details.

PRODUCT COMPARISON


Memory Size

When evaluating with evaluation chips and other means, take careful note of the different between the evaluation chip and the chip actually used. Take particular note of the following.


- While the MB90V495G does not feature an on-chip ROM, the dedicated development tool can be used to achieve operation equivalent to a product with built-in ROM. Therefore, the ROM size is configured by the development tool.
- On the MB90V495G, the FF4000H to FFFFFH image is only visible in the 00 bank, and the FE0000H to FF3FFFH is only visible in the FE and FF banks (configurable on development tool) .
- On the MB90F497G/497G, the FF4000H to FFFFFH image is visible in the 00 bank, and the FF0000H to FF3FFFH is visible only in the FF bank.

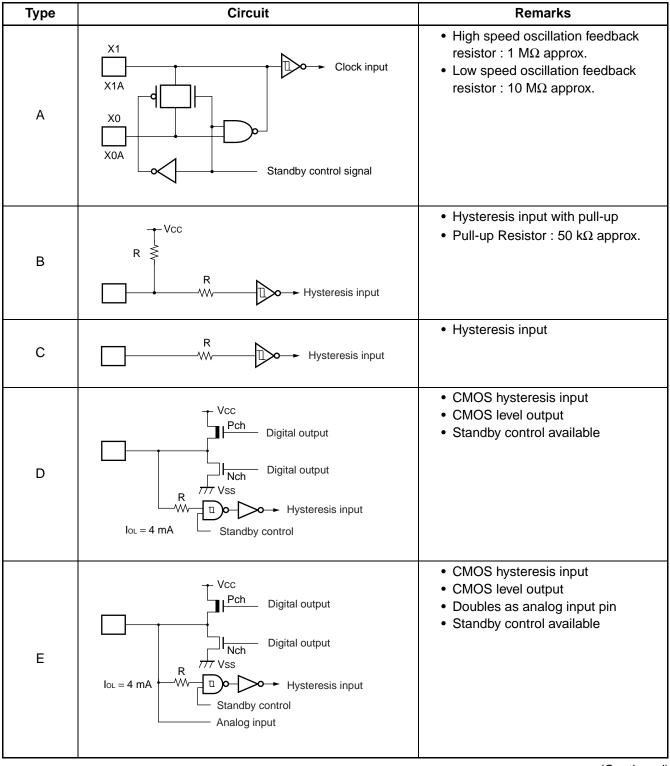
■ PIN ASSIGNMENTS

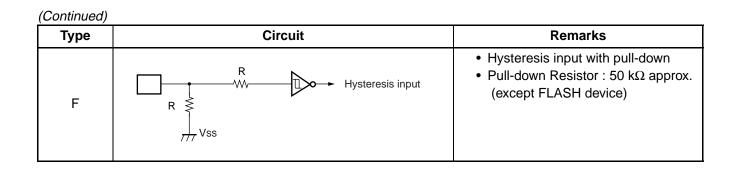
• FPT-64P-M06

• FPT-64P-M09

■ PIN DESCRIPTION

Pin	No.	D's Norse	Circuit	Description	
M06	M09	Pin Name	Туре	Description	
	4	P61	6	General-purpose I/O port	
2	1	INT1	D	Functions as external interrupt input pin. Set this to input port.	
3	2	P62	D	General-purpose I/O port	
3	2	INT2	D	Functions as external interrupt input pin. Set this to input port.	
		P50 to P57		General-purpose I/O port	
4 to 11	3 to 10	AN0 to AN7	E	Functions as analog input port of A/D converter. This is enabled if analog input configuration is permitted.	
12	11	AVcc		Vcc power input pin of A/D converter.	
13	12	AVR		Reference voltage (+) input pin for the A/D converter. This voltage must not exceed Vcc and AVcc. Reference voltage (-) is fixed to AVss.	
14	13	AVss		Vss power input pin of A/D converter.	
15	14	P60	D	General-purpose I/O port	
15	14	INT0	D	Functions as external interrupt input pin. Set this to input port.	
16	15	X0A	A	Low-speed oscillation pin. Perform pull-down processing if not connected to an oscillator.	
17	16	X1A	А	Low-speed oscillation pin. Set to open if not connected to an oscillator.	
10	47	P63	L L	General-purpose I/O port	
18	17	INT3	D	Functions as external interrupt input pin. Set this to input port.	
19	18	MD0	С	Input pin for specifying operation mode.	
20	19	RST	В	External reset input pin.	
21	20	MD1	С	Input pin for specifying operation mode.	
22	21	MD2	F	Input pin for specifying operation mode.	
23	22	X0	А	High-speed oscillation pin.	
24	23	X1	А	High-speed oscillation pin.	
25	24	Vss	_	Power supply (0 V) input pin.	
26 to	25 to	P00 to P07	D	General-purpose I/O port Only enabled in single-chip mode.	
33	32 AD00 to AD07		U	I/O pin for the lower 8-bit of the external address data bus. Only enabled during external bus mode.	
		P10 to P13		General-purpose I/O port. Only enabled in single-chip mode.	
34 to 37	33 to 36	IN0 to IN3	D	Functions as trigger input pin for input capture channels 0 to 3. Set this to input port.	
01	7 36 AD08 to AD11			I/O pin for upper 4-bit of external address data bus. Only enabled during external bus mode.	


(Continued)

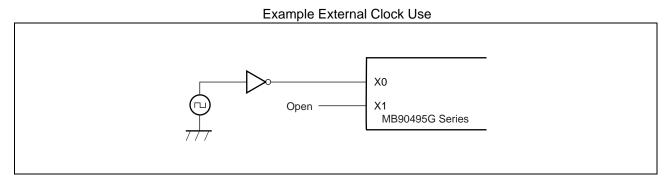

Pin	No.	Pin Name	Circuit	Description	
M06	M09	Pin Name	Туре	Description	
		P14 to P17		General-purpose I/O port. Only enabled in single-chip mode.	
38 to 41	37 to 40	PPG0 to PPG3	D	Functions as output pin of PPG timer 01, 23. Only valid if output configuration is enabled.	
		AD12 to AD15		I/O pin for upper 4-bit of external address data bus. Only enabled during external bus mode.	
		P20		General-purpose I/O port.	
42	41	TIN0	D	Functions as event input pin of TIN0 reload timer 0. Set this to input port.	
		A16	U	Output pin of external address bus (A16) . Only valid when high address control register (HACR) is set to address output, in external bus mode.	
		P21		General-purpose I/O port.	
43	42	ΤΟΤ0	D	Functions as event output pin of TOT0 reload timer 0. Only valid if output configuration enabled.	
10	A17			Output pin of external address bus (A17) . Only valid when high address control register (HACR) is set to address output, in external bus mode.	
		P22	22	General-purpose I/O port.	
44	43	TIN1		D	Functions as event input pin of TIN1 reload timer 1. Set this to input port.
	43 A18			Output pin of external address bus (A18) . Only valid when high address control register (HACR) is set to address output, in external bus mode.	
		P23		General-purpose I/O port.	
45	44	TOT1	D	Functions as event output pin for TOT1 reload timer 1. Only valid if output configuration enabled.	
	A19		D	Output pin for external address bus (A19) . Only valid when high address control register (HACR) is set to address output, in external bus mode.	
		P24 to P27		General-purpose I/O port.	
46 to	45 to	INT4 to INT7	-	Functions as external interrupt input pin. Set this to input port.	
49	46 to 45 to		D	Output pin for external address bus (A20 to A23) . Only valid when high address control register (HACR) is set to address output, in external bus mode.	
50	49	Vss		Power supply (0 V) input pin.	

Pin No.		Din Nama	Circuit	Description		
M06	M09	Pin Name	Туре	Description		
		P30		General-purpose I/O port. Only enabled in single-chip mode.		
51	50	SOT0	SOT0	D	UART0 serial data output pin. Only valid if UART0 serial data output configuration is enabled.	
		ALE		Address latch authorization output pin. Only enabled during external bus mode.		
		P31		General-purpose I/O port. Only enabled in single-chip mode.		
52	51	SCK0	D	UART0 serial clock I/O pin. Only valid if UART0 serial clock I/O configuration is enabled.		
		RD		Lead strobe output pin. Only enabled during external bus mode.		
		P32		General-purpose I/O port.		
53	52 SIN0		52	SIN0	D	UART0 serial data input pin. Set this to input port.
		WRL		Write strobe output pin for lower 8-bit of data bus. Only valid if WRL pin output is enabled, in external bus mode.		
		P33		General-purpose I/O port.		
54	53	WRH	D	Write strobe output pin for upper 8-bit of data bus. Only valid if external bus mode/16-bit bus mode/WRH pin output enabled		
		P34		General-purpose I/O port.		
55	54	HRQ	D	Hold request input pin. Only valid if hold input is enabled, in external bus mode.		
		P35		General-purpose I/O port.		
56	55	HAK	D	Hold addressing output pin. Only valid if hold input is enabled, in external bus mode.		
57	56	Vcc		Power supply (5 V) input pin.		
58	57	С		Capacity pin for power stabilization. Please connect to an approximately 0.1 μ F ceramic capacitor.		
		P36		General-purpose I/O port.		
59	58	FRCK	D	Functions as an external clock input pin for a FRCK 16-bit free-run timer. Set this to input port.		
		RDY		External ready input pin. Only valid if external ready input is enabled, in external bus mode.		
		P37		General-purpose I/O port.		
60	59	ADTG	D	Functions as A/D converter external trigger input pin. Set this to input port		
		CLK		External clock output pin. Only valid if external clock output is enabled, in external bus mode. (Continued)		

Pin	Pin No.		Circuit	Description
M06	M09	Pin Name	Туре	Description
		P40		General-purpose I/O port.
61	60	SIN1	D	UART1 serial data input pin. Set this to input port.
		P41		General-purpose I/O port.
62	61	SCK1	D	UART1 serial clock I/O pin. Only valid if UART1 clock I/O configuration is enabled.
		P42 SOT1 D		General-purpose I/O port.
63	62			UART1 serial data output pin. Only valid if UART1 serial data output configuration is enabled.
		P43		General-purpose I/O port.
64	64 63 TX C		D	CAN transmission output pin. Only valid if output configuration enabled.
		P44		General-purpose I/O port.
1	64 RX [D	CAN reception input pin. Set this to input port.

■ I/O CIRCUIT TYPE

HANDLING DEVICES


- Make sure you do not exceed the maximum rated values (in order to prevent latch-up) .
 - CMOS IC chips may suffer latch-up if a voltage higher than Vcc or lower than Vss is applied to an input or output pin with other than mid or high current resistance; or voltage exceeding the rating is applied across Vcc and Vss.
 - Latch-ups can dramatically increase the power supply current, causing thermal breakdown of the device. Make sure that you do not exceed the maximum rated value of your device, in order to prevent a latch-up.
 - •When turning the analog power supply on or off, make sure that the analog power voltage (AVcc, AVR) and analog input voltages do not exceed the digital voltage (Vcc).

• Handling Unused Pins

Leaving unused input pins open may cause malfunctions and latch-ups, permanently damaging the device. Prevent this by connecting it to a pull-up or pull-down resistor of no less than 2 k Ω . Leave unused output pins open in output mode, or if in input mode, handle them in the same as input pins.

Notes on Using External Clock

When using the external clock, drive pin X0 only, and leave pin X1 unconnected. See below for an example of external clock use.

Notes on Not Using Subclock

If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin, and leave the X1A pin open.

• Power Supply Pins

- If your product has multiple V_{cc} or V_{ss} pins, pins of the same potential are internally connected in the device in order to avoid abnormal operation, including latch-up. However, you should make sure to connect the pins' external power and ground lines, in order to lower unneeded emissions, prevent abnormal operation of strobe signals due to a rise in ground levels, and maintain total output current within rated levels.
- •Take care to connect the Vcc and Vss pins of MB90495G Series devices to power lines via the lowest possible impedance.
- -It is recommended that you connect a bypass capacitor of approximately 0.1 μF between Vcc and Vss near MB90495G Series device pins.

Crystal Oscillator Circuit

•Noise in the vicinity of X0 and X1 pins could cause abnormal operations in MB90495G Series devices. Make sure to provide bypass capacitors via the shortest possible distance from X0 and X1 pins, crystal oscillators (or ceramic resonators), and ground lines. In addition, design your printed circuit boards so as to keep X0 and X1 wiring from crossing other wiring, if at all possible.

• It is strongly recommended that you provide printed circuit board artwork surrounding X0 and X1 pins within a grand area, as this should stabilize operation.

• A/D Converter Power-up and Analog Input Initiation Sequence

•Make sure to power up the A/D converter and analog input (pins AN0 to AN7) after turning on digital power (V_{cc}).

•Turn off digital power after turning off the A/D converter power supply and analog inputs. In this case, make sure that the voltage of AVR does not exceed AVcc (it is permissible to turn off analog and digital power simultaneously).

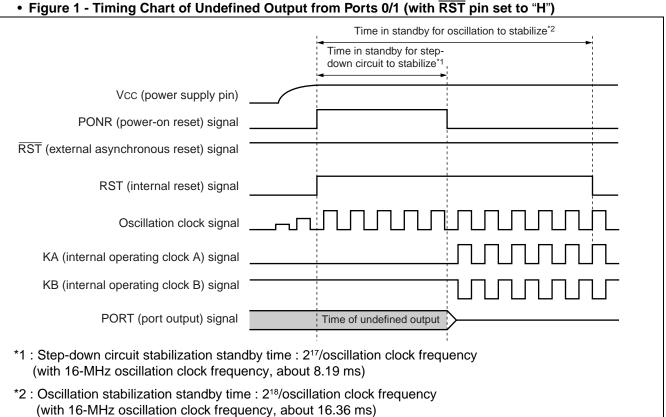
• Connecting Unused A/D Converter Pins

If you are not using the A/D converter, set unused pins to AVcc = AVR = Vcc, AVss = Vss.

• Notes for Powering Up

Ensure that the voltage step-up time (between 0.2 V and 2.7 V) at power-up is no less than 50 μ s, in order to prevent malfunction in the built-in step-down circuit.

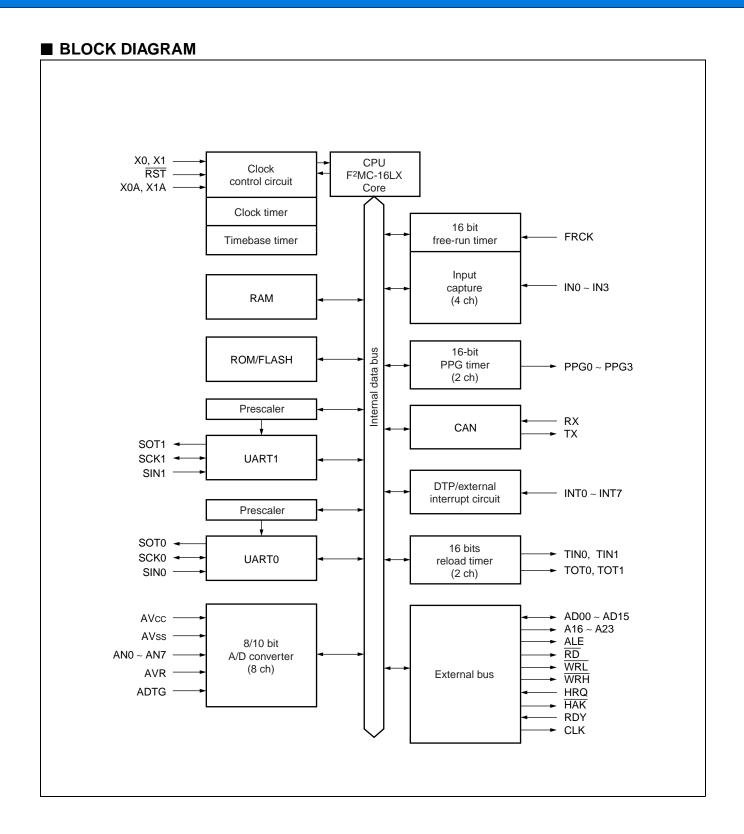
Initialization


The device contains built-in registers which are only initialized by a power-on reset. Cycle the power supply to initialize these registers.

• Stabilizing the Power Supply

Make sure that the V_{cc} power supply voltage is stable. Even at the rated operating V_{cc} power supply voltage, large, sudden changes in the voltage could cause malfunctions. As a standard for stable power supply, keep V_{cc} ripples (peak-to-peak value) at commercial power frequencies (50 Hz to 60 Hz) to no more than 10% of the power supply voltage, and momentary surges caused by switching the power supply and other events to more than 0.1 V/ms.

• If Output from Ports 0/1 Becomes Undefined


After power is turned on, if the \overline{RST} pin is set to "H" during step-down circuit stabilization standby (during poweron reset), ports 0 and 1 output will be undefined. If the \overline{RST} pin is set to "L", ports 0 and 1 will go into a high impedance state. Take careful note of the timing of events outlined in figures 1 and 2.

• Figure 2 - Timing Chart of High Impedance State for Ports 0/1 (when RST pin is "L")

	Time in standby for oscillation to stabilize*2
	Step-down circuit stabilization standby time ^{*1} .
Vcc (power supply pin)	
PONR (power-on reset) signal	
RST (external asynchronous reset) signal	
RST (internal reset) signal	
Oscillation clock signal	
KA (internal operation clock A) signal	
KB (internal operating clock B) signal	
PORT (port output) signal	High impedance
*1 : Step-down circuit stabilization standby tim (with 16-MHz oscillation clock frequency,	ne : 2 ¹⁷ /oscillation clock frequency
*2 : Oscillation stabilization standby time : 2 ¹⁸ / (with 16-MHz oscillation clock frequency,	

• Figure 1 - Timing Chart of Undefined Output from Ports 0/1 (with RST pin set to "H")

MEMORY MAP

The memory access modes of the MB90495G Series can be set to single chip mode, internal ROM - external bus mode, and external ROM - external bus mode.

1. Memory Allocation of the MB90495G

The MB90495G Series has 24-bit internal address bus and 24-bit external address bus output, enabling it to access up to 16 Mbytes of external access memory. The enable/disable time of the ROM mirror function is shown graphically in the memory map.

2. Memory Map

000000н 0000С0н	Periphery	Periphery		Periphery
0000С0н				
	RAM space	RAM space		AM space
Address #1 001100H *2	Register	Register		Register
002000н 003800н				<u> </u>
Address #2	External IO space	External IO space	e Exte	rnal IO space
	ROM space (image of bank FF)	ROM space (image of bank FF)		
010000н				
FE0000н				/
Address #3				\searrow
FFFFFH	ROM space	ROM space		$\langle \ \setminus$
External	access memory access memory prohibited			
Product	Address #1 *1	Address #2 *1	Address #3 *1	
MB90V498	5G 001900⊦	004000н	(FC0000н)	
MB90F497	7G 000900H	004000н	FF0000H	
MB90497	G 000900H	004000н	FF0000H	

Note : When the internal ROM is operational, the ROM data in the upper address of bank 00 of the F²MC-16LX is visible in an image. This is called the mirror ROM function, and takes advantage of the small C compiler model. With the F²MC-16LX, the lower 16-bit address of bank FF and the lower 16-bit address of bank 00 are set identical to one another. This allows the ROM-internal table to be referenced without specifying a far pointer. For example, say the address "00C000H" is accessed. In actuality, the "FFC000H" address inside ROM will be accessed. However, as the ROM space in bank FF exceeds 48 Kbytes, the entire space cannot be viewed on bank 00's image. And so, since "FF4000H" to "FFFFFH" ROM data will be visible on the "004000H" to "00FFFFH" image, save the ROM data table in the "FF4000H" to "FFFFFFH" space.

■ I/O MAP

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
00000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
00002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
00005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
00006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXB
000007н to 00000Fн		(system-rese	rved area) *		
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000B
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000B
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000B
000014н	DDR4	Port 4 direction register	R/W	Port 4	XXX 0 0 0 0 0 _B
000015н	DDR5	Port 5 direction register	R/W	Port 5	00000000B
000016н	DDR6	Port 6 direction register	R/W	Port 6	XXXX 0 0 0 0B
000017н to 00001Ан		(system-rese	rved area)*		
00001Вн	ADER	Analog input enable register	R/W	8/10-bit A/D converter	11111111
00001Cн to 00001Fн		(system-rese	rved area) *		
000020н	SMR0	Serial mode register 0	R/W		00000000
000021н	SCR0	Serial control register 0	R/W		00000100в
000022н	SIDR0/ SODR0	Serial input data register 0/ Serial output data register 0	R/W	UART0	XXXXXXXX
000023н	SSR0	Serial status register 0	R/W	UARTU	00001Х00в
000024н	CDCR0	Communication prescaler control register 0	R/W		0 XXX 1 1 1 1в
000025н	SES0	Serial edge selection register 0	R/W		XXXXXXX 0B
000026н	SMR1	Serial mode register 1	R/W		00000000
000027н	SCR1	Serial control register 1	R/W	UART1	00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R/W		XXXXXXXX

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
000029н	SSR1	Serial status register 1	R/W	UART1	00001000
00002Ан		(system-reserve	ed area) *		
00002 В н	CDCR1	Communication prescaler control register 1	R/W	UART1	0 XXX 0 0 0 0
00002Cн to 00002Fн		(system-reserve	ed area) *		
000030н	ENIR	DTP/external interrupt enable register	R/W		00000000
000031н	EIRR	DTP/external interrupt condition register	R/W	DTP/external	XXXXXXXX
000032н			R/W	interrupt	00000000
000033н	ELVR	Detection level configuration register	R/W		00000000
000034н	4000		R/W		00000000
000035н	ADCS	A/D control status register	R/W	8/10-bit	00000000
000036н			R	A/D converter	XXXXXXXXB
000037н	ADCR	A/D data register	R/W		0 0 1 0 1 XXX
000038н to 00003Fн		(system-reserve			I
000040н	PPGC0	PPG0 operation mode control register	R/W	8/16-bit	0 X 0 0 0 XX 1
000041н	PPGC1	PPG1 operation mode control register	R/W	PPG timer 0/1	0 X 0 0 0 0 1
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XX
000043н		(system-reserve			
000044н	PPGC2	PPG2 operation mode control register	R/W		-
				8/16-hit	0 X 0 0 0 XX 1
	PPGC3	PPG3 operation mode control register	R/W	8/16-bit PPG timer 2/3	0 X 0 0 0 0 1
000045н 000046н	PPGC3 PPG23				0 X 0 0 0 XX 1 0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX
		PPG3 operation mode control register	R/W R/W		0 X 0 0 0 0 0 1
000046н 000047н to	PPG23	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve	R/W R/W ed area) ⁻		0 X 0 0 0 0 0 1
000046н 000047н to 00004Fн 000050н		PPG3 operation mode control register PPG2/3 count clock selection register	R/W R/W		0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX
000046н 000047н to 00004Fн 000050н 000051н	PPG23 IPCP0	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve Input capture data register 0	R/W R/W ed area) [*] R		0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX
000046н 000047н to 00004Fн 000050н 000051н 000052н	PPG23	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve	R/W R/W ed area) ⁻	PPG timer 2/3	0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX XXXXXXXB XXXXXXXB XXXXXXXB
000046н 000047н to 00004Fн 000050н 000051н 000052н 000053н	PPG23 IPCP0	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve Input capture data register 0 Input capture data register 1	R/W R/W ed area) ⁻ R R		0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX XXXXXXXB XXXXXXXB XXXXXXXB XXXXXXXB
000046н 000047н to 00004Fн 000050н 000052н 000052н 000053н	PPG23 IPCP0 IPCP1	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve Input capture data register 0	R/W R/W ed area) [*] R	PPG timer 2/3	0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXX
000046н 000047н to 00004Fн	PPG23 IPCP0 IPCP1 ICS01	PPG3 operation mode control register PPG2/3 count clock selection register (system-reserve Input capture data register 0 Input capture data register 1	R/W R/W ed area) ⁻ R R	PPG timer 2/3	0 X 0 0 0 0 0 1 0 0 0 0 0 0 0 XX XXXXXXXXB XXXXXXXXB

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
000058н	TCCS				000000000
000059н	1005	Timer counter control status register	R/W		0 XXXXXXXB
00005Ан	IPCP2	Input conturo data registar 2	Р	16-bit I/O timer	XXXXXXXXB
00005Вн	IPCPZ	Input capture data register 2	R		XXXXXXXXB
00005Сн		Input conturo data registar 2	Р		XXXXXXXXB
00005Dн	IPCP3	Input capture data register 3	R		XXXXXXXXB
00005Eн to 000065н		(system-reserv	ed area) *		
000066н	TMCSR0		R/W	16-bit reload timer 0	000000000
000067н	TNCSRU	Timer control status register	R/W		ХХХХО О О Ов
000068н	TMCSR1		R/W	16-bit reload timer 1	00000000
000069н	TWOONT		R/W		ХХХХО О О Ов
00006Ан to 00006Ен		(system-reserv	ed area) *		
00006Fн	ROMM	ROM mirror function selection register	W	ROM mirror function selection module	XXXXXXX 1 _B
000070н to 00007Fн		(system-reserv	ed area) *		
000080н	BVALR	Message buffer valid register	R/W	CAN controller	00000000
000081н		(system-reserv	ed area) *		I
000082н	TREQR	Send request register	R/W	CAN controller	00000000
000083н		(system-reserv	ed area) *		I
000084н	TCANR	Send cancel register	W	CAN controller	00000000
000085н		(system-reserv	ed area) *		
000086н	TCR	Send complete register	R/W	CAN controller	00000000
000087н		(system-reserv	ed area) *		
000088н	RCR	Reception complete register	R/W	CAN controller	00000000
000089н		(system-reserv	ed area) *	1	
00008Ан	RRTRR	Reception RTR register	R/W	CAN controller	00000000
00008Bн		(system-reserv	ed area) *	1	1
00008Сн	ROVRR	Reception overrun register	R/W	CAN controller	0 0 0 0 0 0 0 0 B
00008Dн		(system-reserv	ed area) *	1	I
00008Eн	RIER	Reception complete interrupt enable register	R/W	CAN controller	000000000
			1		(Continue

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
000090н to 00009Dн		(system-reserv	ed area) *		
00009Ен	PACSR	Address detection control register	R/W	ROM correction function	0 0 0 0 0 0 0 0 0 _B
00009 F н	DIRR	Delayed interrupt request generate/ cancel register	R/W	Delayed interrupt generation module	XXXXXXX OB
0000А0н	LPMCR	Low power consumption mode control register	R/W	Low-power consumption modes	00011000
0000А1н	CKSCR	Clock selection register	R/W	Clock	11111100 _B
0000А2н to 0000А4н					
0000А5н	ARSR	Auto ready function selection register	W		0 0 1 1 XX 0 0 _B
0000А6н	HACR	High address control register	W		00000000
0000A7н	ECSR	Bus control signal selection register	W	External access	000000XB or
0000A8н	WDTC	Watchdog timer control register	R/W	Watchdog timer	0000100Xв XXXXX 111в
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1 XX 0 0 1 0 0 _B
0000ААн	WTC	Clock timer control register	R/W	Clock timer	10001000B
0000ABн to 0000ADн		(system-reserv	ed area) *		<u> </u>
0000ADн 0000AEн	FMCS	Flash memory control status register	R/W	512-Kbit flash memory	0 0 0 X 0 0 0 0B
0000AFн		(system-reserv	ed area) *		
0000В0н	ICR00	Interrupt control register 00	R/W		00000111 _B
0000B1н	ICR01	Interrupt control register 01	R/W		00000111 _B
0000B2H	ICR02	Interrupt control register 02	R/W		00000111 _B
0000ВЗн	ICR03	Interrupt control register 03	R/W		00000111в
0000B4н	ICR04	Interrupt control register 04	R/W		00000111 _B
0000В5н	ICR05	Interrupt control register 05	R/W	Interrupt controller	00000111
0000В6н	ICR06	Interrupt control register 06	R/W		00000111
0000 В7 н	ICR07	Interrupt control register 07	R/W		00000111
0000B8H	ICR08	Interrupt control register 08	R/W		00000111
0000В9н	ICR09	Interrupt control register 09	R/W		00000111
0000ВАн	ICR10	Interrupt control register 10	R/W		00000111

<i>Continuea</i>				ſ	1
Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
0000BBн	ICR11	Interrupt control register 11	R/W		00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W		00000111в
0000BDн	ICR13	Interrupt control register 13	R/W	Interrupt controller	00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W		00000111в
0000BFн	ICR15	Interrupt control register 15	R/W		00000111в
0000C0н to 0000FFн		(system-rese	erved area)		
001FF0н		Detection address configuration register 0 (lower)	R/W		XXXXXXXX
001FF1н	PADR0	Detection address configuration register 0 (mid)	R/W		XXXXXXXX
001FF2⊦		Detection address configuration register 0 (upper)	R/W	ROM correction	XXXXXXXX
001FF3⊦		Detection address configuration register 1 (lower)	R/W	function	XXXXXXXX
001FF4⊦	PADR1	Detection address configuration register 1 (mid)	R/W		XXXXXXXXAB
001FF5н		Detection address configuration register 1 (upper)	R/W		XXXXXXXX
003900н	TMR0/	16-bit timer register 0/	R/W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	16-bit reload register 0	1.7.4.4		XXXXXXXXAB
003902н	TMR1/	16-bit timer register 1/	R/W	16-bit reload timer 1	XXXXXXXXAB
003903н	TMRLR1	16-bit reload register 1			XXXXXXXXB
003904н to 00390Fн		(system-rese	erved area)*		
003910н	PRLL0	PPG0 reload register L	R/W		XXXXXXXXB
003911н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W		XXXXXXXXB
003913н	PRLH1	PPG1 reload register H	R/W	8/16-bit PPG timer	XXXXXXXXB
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB
003915н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB
003916н	PRLL3	PPG3 reload register L	R/W		XXXXXXXXB
003917н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н to 003C0Fн		(system-rese	erved area)	•	(Continueo

(Continued)

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
003C10н to 003C13н	IDR0	ID register 0	R/W		XXXXXXXXB to XXXXXXXXB
003C14н to 003C17н	IDR1	ID register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C18н to 003C1Bн	IDR2	ID register 2	R/W		XXXXXXXXB to XXXXXXXXB
003C1Cн to 003C1Fн	IDR3	ID register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C20н to 003C23н	IDR4	ID register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C24н to 003C27н	IDR5	ID register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C28н to 003C2Bн	IDR6	ID register 6	R/W		XXXXXXXXB to XXXXXXXB
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W	CAN controller	XXXXXXXXB to XXXXXXXB
003C30н 003C31н	DLCR0	DLC register 0	R/W		XXXXXXXXAB XXXXXXXXAB
003С32н 003С33н	DLCR1	DLC register 1	R/W		XXXXXXXXAB XXXXXXXXAB
003C34н 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXAB XXXXXXXXB
003C36н 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXAB XXXXXXXXB
003С38н 003С39н	DLCR4	DLC register 4	R/W		XXXXXXXXAB XXXXXXXXAB
003С3Ан 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXXXXB XXXXXXXXB
003С3Сн 003С3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB XXXXXXXXB
003C3Eн 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB XXXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W		XXXXXXXXXB to XXXXXXXXB (Continued)

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXAB to XXXXXXXXB
003С50н to 003С57н	DTR2	Data register 2	R/W		XXXXXXXXAB to XXXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4			XXXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXAB to XXXXXXXAB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W	XXXXXXXXXB to XXXXXXXXB	
003C80н to 003CFFн		(system-reser	ved area)*		
003D00н 003D01н	CSR	Control status register	R/W	CAN controller	0 XXXX 0 0 1в 0 0 XXX 0 0 0в
003D02н	LEIR	Display last event register	R/W		0 0 0 XX 0 0 0B
003D03н		(system-reser	ved area) *		·
003D04н 003D05н	RTEC	Receive/transmit error counter	R		000000000 000000000
003D06н 003D07н	BTR	Bit timing register	R/W	CAN controller	11111111 X1111111 B
003D08н 003D09н	IDER	IDE register	R/W		XXXXXXXX
003D0Ан	TRTRR	Transmit RTR register	R/W		00000000B
003D0Bн		(system-reser	ved area) *		·
003D0Cн	RFWTR	Remote frame reception standby register	R/W	CAN controller	XXXXXXXXB
003D0Dн		(system-reser	ved area) *		1
003D0Eн	TIER	Transmit complete interrupt enable register	R/W	CAN controller	00000000

(Continued)

Address	Register Abbreviation	Register Name	Access	Resource Name	Initial Value
003D0FH		(system-reserv	/ed area) *		
003D10н 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB XXXXXXXXB
003D12н 003D13н		(system-reserv	/ed area) *		·
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W		XXXXXXXXAB to XXXXXXXXAB
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W	CAN controller	XXXXXXXXB to XXXXXXXAB
003D1Cн to 003FFFн		(system-reserv	/ed area) *		

Explanation of reset values

0 : The reset value of this bit is 0.

1 : The reset value of this bit is 1.

X : The reset value of this bit is undefined.

*: System-reserved area contains system-internal addresses, and cannot be used.

■ INTERRUPT CONDITIONS AND INTERRUPT VECTOR/REGISTER

Interrupt Condition	El ² OS	Int	terrupt	Vector	Interru	pt Register	Priority
Interrupt Condition	Compatible	Nun	nber	Address	ICR	Address	*3
Reset	×	#08	08н	FFFFDCH		—	Highest
INT 9 instruction	×	#09	09н	FFFFD8H		—	↑
Exception processing	×	#10	0Ан	FFFFD4 _H			
Can controller reception complete (RX)	Δ	#11	0Вн	FFFFD0H			
Can controller reception complete (TX) /Node status transition (NS)	Δ	#12	0Сн	FFFFCCH	ICR00	0000B0H ^(*1)	
Reserved	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Reserved	×	#14	0Ен	FFFFC4H	ICRUI	UUUUDIH	
External interrupt (INT0/INT1)	Δ	#15	0Fн	FFFFC0H	ICR02	0000B2н ^(*1)	
Timebase timer	×	#16	10н	FFFFBC H	ICRUZ	UUUUDZH ()	
16-bit reload timer 0	Δ	#17	11н	FFFFB8H	ICR03	0000B3H ^(*1)	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4H	ICRUS	UUUUDSH · · ·	
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0H	ICR04	0000B4H ^(*1)	
External interrupt (INT2/INT3)	Δ	#20	14 н	FFFFACH	10/10/4	0000 D4 H ()	
Reserved	×	#21	15 н	FFFFA8H	ICR05	0000В5н (*2)	
PPG timer ch0, ch1 underflow	0	#22	16 н	FFFFA4H			
Input capture 0 load	Δ	#23	17 н	FFFFA0H	ICR06	0000В6н (*1)	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9CH	ICRUO	UUUUDOH	
Input capture 1 load	Δ	#25	19 н	FFFF98н	ICR07	0000B7н ^(*1)	-
PPG timer ch2, ch3 underflow	Δ	#26	1Ан	FFFF94H		UUUUD7H V	
External interrupt (INT6/INT7)	Δ	#27	1Вн	FFFF90н	ICR08	0000B8H ^(*1)	
Clock timer	Δ	#28	1Сн	FFFF8CH	ICRUO	UUUUDOH	
Reserved	×	#29	1Dн	FFFF88 _H			
Input capture 2 load Input capture 3 load	0	#30	1Ен	FFFF84 _H	ICR09	0000B9H ^(*1)	
Reserved	×	#31	1Fн	FFFF80 _H		0000BAн ^(*1)	
Reserved	×	#32	20н	FFFF7CH	ICR10	UUUUDAH	
Reserved	×	#33	21н	FFFF78⊦			
Reserved	×	#34	22н	FFFF74 _H	ICR11	0000BBH ^(*1)	
Reserved	×	#35	23н	FFFF70 _H	10040		1
16-bit reload timer 1	0	#36	24н	FFFF6CH	ICR12	0000BCH ^(*1)	
UART1 reception complete	Ø	#37	25н	FFFF68 _H			1
UART1 transmission complete	Δ	#38	26н	FFFF64H	ICR13	0000BDH ^(*1)	

(Continued)

Interrupt Condition	El ² OS	Interrupt Vector			Interru	Priority	
	Compatible	Number		Address	ICR	Address	*3
UART0 reception complete	Ø	#39	27 н	FFFF60H	ICR14	0000BEн ^(*1)	
UART0 transmission complete	Δ	#40	28 н	FFFF5CH	101/14	UUUUDEH	
Flash memory	×	#41	29н	FFFF58H	ICR15	0000BFн ^(*1)	\downarrow
Delayed interrupt generation module	×	#42	2Ан	FFFF54H	101/15	UUUUBFH · · ·	Lowest

 \bigcirc : Available

 \times : Not available

© : Available, El²OS halt function supplied

 \bigtriangleup : Available for interrupt conditions not shared by ICR

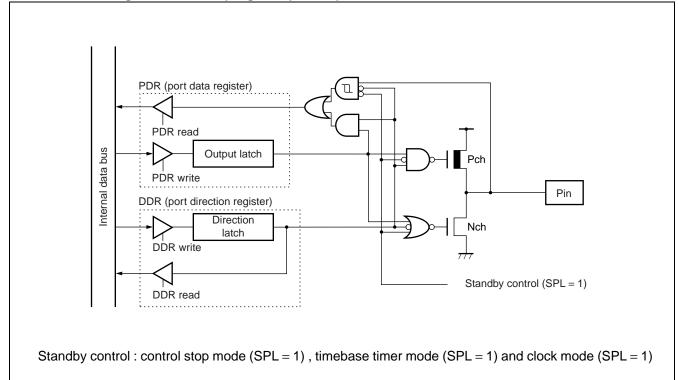
- *1 : The interrupt level is the same for peripheral devices sharing the ICR register.
 - Peripheral devices that share the ICR register and use the extended intelligent I/O service only utilize one set.
 - If one side of a peripheral device sharing the ICR register is set to extended intelligent I/O service, the other side cannot use interrupts.
- *2 : Only the 16-bit reload timer is compatible with El²OS. Since PPG does not support El²OS, if you use El²OS with the 16-bit reload timer, prohibit interrupts by PPG.
- *3 : Priority if two or more interrupts with the same level are generated simultaneously.

PERIPHERAL RESOURCES

1. I/O Port

(1) Overview

General-purpose (parallel) I/O ports can be used as the I/O ports. The MB90495G Series has 7 ports (49) .

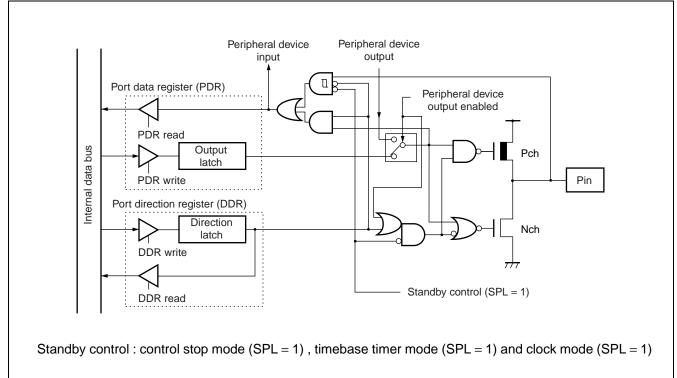

Each port doubles as a peripheral device I/O pin.

• I/O Port Features

I/O ports output data to I/O pins and load signals input to them, by means of the port data register (PDR). Additionally, the port direction register (DDR) sets the I/O direction of the I/O pins at the bit level. Below is a description of each pin's function, and the peripheral device that shares it.

- Port 0 : general-purpose I/O port/doubles as external address data bus pin
- Port 1 : general-purpose I/O port/doubles as PPG timer output, input capture input, and external address data bus pin
- Port 2 : general-purpose I/O port/doubles as reload timer I/O, external interrupt input pin, and external address
 bus pin
- Port 3 : general-purpose I/O port/doubles as UART0 I/O, free-run timer, and A/D converter startup trigger pin
- Port 4 : general-purpose I/O port/doubles as UART1 I/O, and CAN controller transmit/receive pin
- Port 5 : general-purpose I/O port/doubles as analog input pin
- Port 6 : general-purpose I/O port/doubles as external interrupt input pin

• Pin Block Diagram for Port 0 (single chip mode)


• Port 0 register (single chip mode)

•The port 0 register contains the port 0 data register (PDR0) and the port 0 direction register (DDR0) .

•The bits making up the register are in a one-to-one relation to the port 0 pin.

compatibility b	circen port e registe											
Port Name		Related register bit and corresponding pin										
Port 0	PDR0, DDR0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
FOILO	Corresponding pin	P07	P06	P05	P04	P03	P02	P01	P00			

Compatibility between port 0 register and pin

• Block Diagram for Pins of Ports 1, 2, 3 and 4 (single-chip mode)

- Port 1 register (single-chip mode)
- The port1 register contains the port 1 data register (PDR1) and the port 1 direction register (DDR1).
- The bits making up the register are in a one-to-one relationship with the port 1 pins.

Port Name		Related register bit and corresponding pin										
Port 1	PDR1, DDR1	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
FOILT	Corresponding pin	P17	P16	P15	P14	P13	P12	P11	P10			

Port 1 Register and Corresponding Pins

• Port 2 register

- The port2 register contains the port 2 data register (PDR2), the port 2 direction register (DDR2) and the high address control register (HACR).
- The high address control register (HACR) enables or disables the output of external addresses (A₁₆ to A₂₃). When the register enables the output of the external addresses, the port can not be used as a peripheral device and a general-purpose I/O port.
- The bits making up the register are in a one-to-one relationship with the port 2 pins.

Port 2 Register and Corresponding Pins

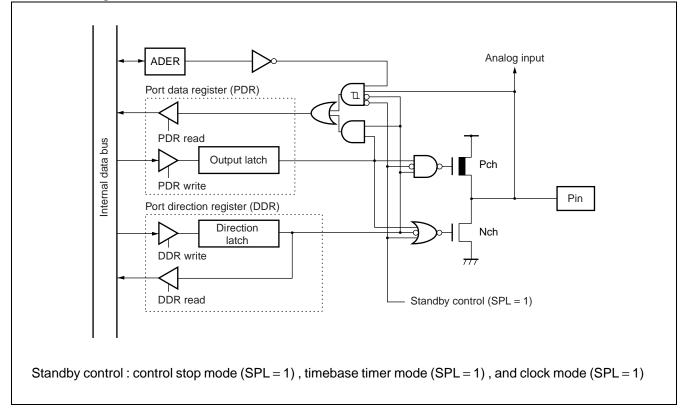
Port Name	Related register bit and corresponding pin									
Port 2	PDR2, DDR2, HACR	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	Corresponding pin	P27	P26	P25	P24	P23	P22	P21	P20	

• Port 3 register

- The port3 register contains the port 3 data register (PDR3) and the port 3 direction register (DDR3) .
- The bus control signal selection register (ECSR) enables or disables the input and output of external bus control signals (WRL / WRH, HRQ / HAK, RDY, CLK). When the register enables the input and output of the external bus control signals, the port can not be used as a peripheral device and a general-purpose I/O port.
- The bits making up the register are in a one-to-one relationship with the port 3 pins.

Port 3 Register and Corresponding Pins

Port Name	Related register bit and corresponding pin									
	PDR3, DDR3	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
Port 3	ECSR	CKE	RYE	H	DE	W	RE	-	_	
	Corresponding pin	P37	P36	P35	P34	P33	P32	P31	P30	

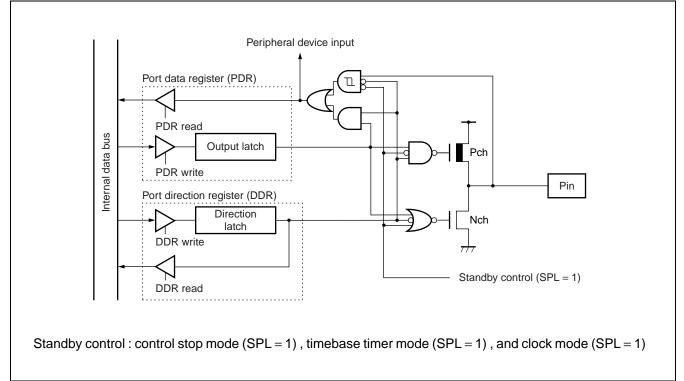

• Port 4 register

- The port4 register contains the port 4 data register (PDR4) and the port 4 direction register (DDR4).
- The bits making up the register are in a one-to-one relationship with the port 4 pins.

Port 4 Register and Corresponding Pins

Port Name		Related register bit and corresponding pin										
Port 4	PDR4, DDR4				bit4	bit3	bit2	bit1	bit0			
FOR 4	Corresponding pin	_	_	_	P44	P43	P42	P41	P40			

• Block Diagram of Port 5 Pins



- Port 5 register
- The port 5 register contains the port 5 data register (PDR5), the port 5 direction register (DDR5) and the analog input enable register (ADER).
- The analog data enable register (ADER) enables or disables the input of analog signals by the analog input pin.
- The bits making up the register are in a one-to-one correspondence with the pins of port 5.

Port Name	Related register bit and corresponding pin								
	PDR5, DDR5	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
Port 5	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
	Corresponding pin	P57	P56	P55	P54	P53	P52	P51	P50

Port 5 Register and Corresponding Pins

• Block Diagram of Port 6 Pins

- Port 6 register
- The port 6 register contains the port 6 data register (PDR6) and the port 6 direction register (DDR6).
- The bits making up the register are in a one-to-one relationship with the port 6 pins.

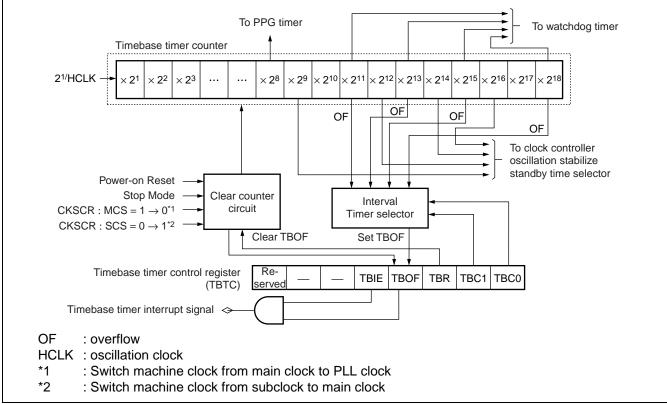
Port 6 Register and Corresponding Pins

Port Name	Related register bit and corresponding pin								
Port 6	PDR6, DDR6	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Corresponding pin					P63	P62	P61	P60

2. Timebase Timer

The timebase timer is an 18-bit free-run counter (timebase counter) for counting up in synchronization with the main clock (1/2 main oscillation clock).

- Four interval times are available, and interrupt requests can be generated for each interval time.
- The timebase timer also has a function for supplying timers for oscillation stabilize standby time and operating clocks for peripheral devices.
- Interval timer feature
- When the timebase timer counter reaches the interval set by the interval time selection bits (TBTC : TBC1, TBC0), it generates an overflow (TBTC : TBOF = 1) and interrupt request.
- If the interrupts due to overflow generation are enabled (TBTC : TBIE = 1), when an overflow is generated (TBTC : TBOF = 1), an interrupt is generated.
- · Select from the following 4 timebase timer intervals :


Timebase timer interval times

Count Clock	Interval Time					
	2 ¹² /HCLK (approx. 1.0 ms)					
	2 ¹⁴ /HCLK (approx. 4.1 ms)					
2/HCLK (0.5 μs)	2 ¹⁶ /HCLK (approx. 16.4 ms)					
	2 ¹⁹ /HCLK (approx. 131.1 ms)					

HCLK : oscillation clock

The number in parentheses () for 4-MHz oscillation clock operation

• Block Diagram

See below for the actual interrupt request number of the timebase timer : Interrupt request number : #16 (10H)

3. Watchdog Timer

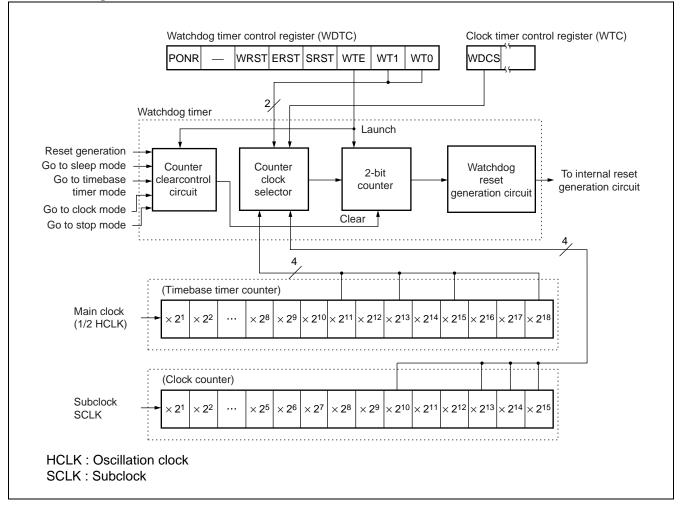
The watchdog timer is a 2-bit timer used as a count clock for the timer-based or clock timer.

If the counter is not cleared within the interval time, it resets the CPU.

• Watchdog Timer Function

- The watchdog timer is a timer counter used to deal with runaway programs. Once the watchdog timer is launched, it is necessary to keep clearing its counter within the specified interval. If the specified interval passes without the watchdog timer counter being cleared, the CPU will be reset. This feature is called the watchdog timer.
- The watchdog timer interval traces back to the clock interval input as the count clock. A watchdog reset is generated for the smallest to largest times.
- The clock source output destination is set by the watchdog clock selection bit of the clock timer control register (WTC : WDCS).
- The watchdog timer interval is set timebase timer output selection bit/clock timer output selection bit of the watchdog timer control register (WDTC : WT1, WT0).

Minimum	Minimum Maximum		Minimum	Maximum	Clock Interval	
Approx. 3.58 ms	Approx. 4.61 ms	2 ¹⁴ ± 2 ¹¹ /HCLK	Approx. 0.457 s	Approx. 0.576 s	2 ¹² ± 2 ⁹ /SCLK	
Approx. 14.33 ms	Approx. 18.3 ms	2 ¹⁶ ± 2 ¹³ /HCLK	Approx. 3.584 s	Approx. 4.608 s	2 ¹⁵ ± 2 ¹² /SCLK	
Approx. 57.23 ms	Approx. 73.73 ms	2 ¹⁸ ± 2 ¹⁵ /HCLK	Approx. 7.168 s	Approx. 9.216 s	2 ¹⁶ ± 2 ¹³ /SCLK	
Approx. 458.75 ms	Approx. 589.82 ms	2 ²¹ ± 2 ¹⁸ /HCLK	Approx. 14.336 s	Approx. 18.432 s	2 ¹⁷ ± 2 ¹⁴ /SCLK	


Watchdog Timer Intervals

HCLK : oscillation clock (4 MHz) ; SCLK : Subclock (8.192 kHz)

Notes: • If the count clock of the watchdog timer is set to timebase timer output (overflow signal), then clearing the timebase timer could make it take longer to reset the watchdog.

• If you are using a subclock as the machine clock, make sure to select clock timer output by setting the watchdog timer clock source selection bit (WDCS) of the clock timer control register (WTC) to 0.

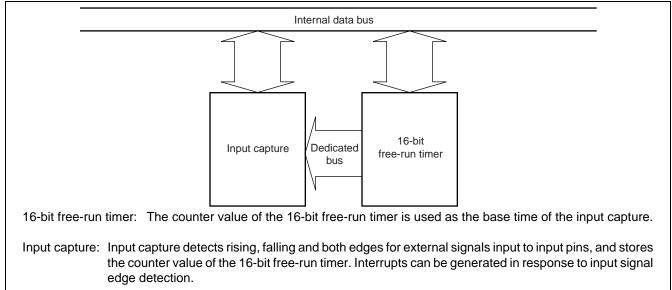
• Block Diagram

4. 16-bit I/O Timer

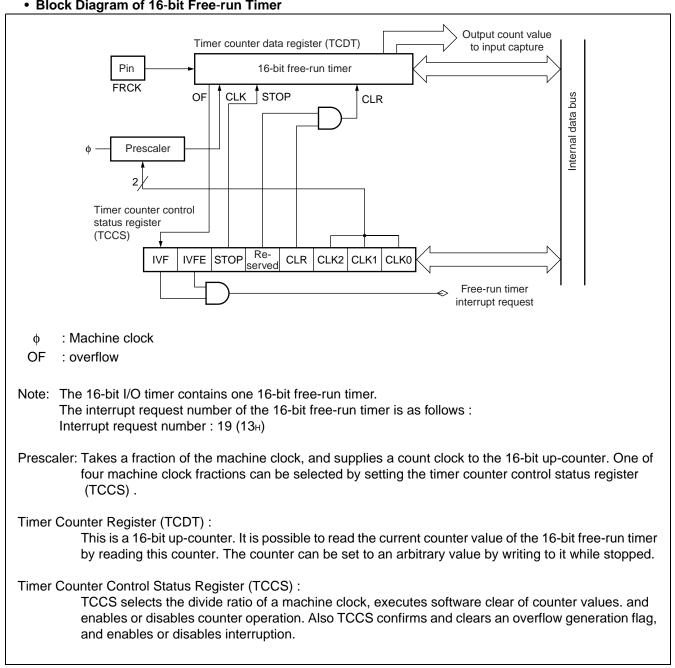
The 16-bit I/O timer is a complex module comprising one 16-bit free-run timer, and two input capture units (4 input pins). Clock interval input signals and pulse widths can be measured based on the 16-bit free-run timer.

- 16-bit I/O Timer Configuration
 - The 16-bit I/O timer is made up of the following modules :
 - One 16-bit free-run timer
 - Two input capture units (each unit having 2 input pins)
- 16-bit I/O Timer Function

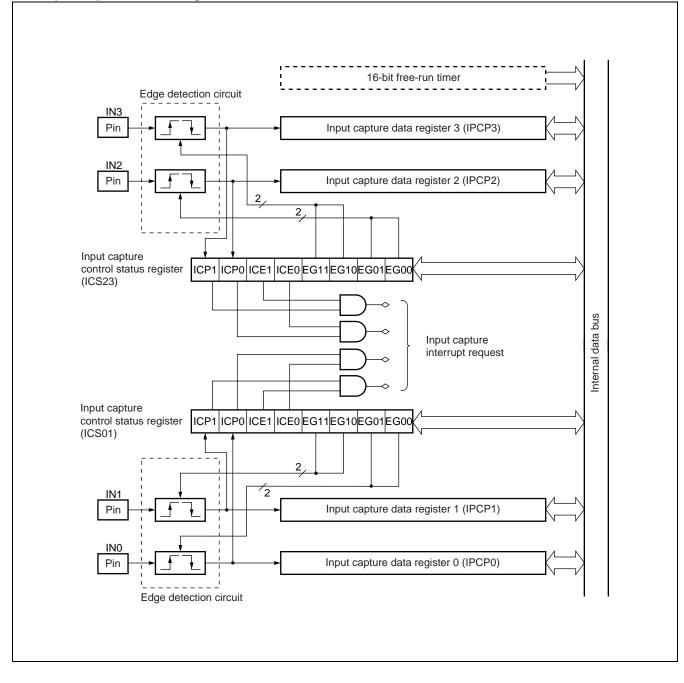
(1) 16-bit free-run timer function


The 16-bit free-run timer consists of a 16-bit up counter, a time counter control status register, and prescaler. The 16-bit up counter counts up in synchronization with a fraction of the machine clock.

- The count clock can be set to one of four fractions of the machine clock. The external clock signals input to the 16-bit free-run timer clock input pin (FRCK) can be used as the count clock.
- Interrupts can be generated in response to counter value overflows.
- Interrupts launch the extended intelligent I/O service (EI2OS) .
- The count value of the 16-bit free-run timer can be cleared to "0000+" by either a reset, or software clear via the timer count clear bit (TCCS : CLR).
- The count value of the 16-bit free-run timer is output to the input capture, and used as the base time for capture operation.


(2) Input Capture Function

When the input capture detects that an external signal edge has been input to an input pin, it stores the count value of the 16-bit free-run timer in the input capture data register, for the point at which the edge was detected. The input capture consists of an input capture register corresponding to four I/O pins, an input capture control status register, and an edge detection circuit.


- When an edge is detected, either rising, falling, or both can be selected.
- An interrupt request can be generated to the CPU when an input signal edge is detected.
- Interrupts launch the extended intelligent I/O service (EI²OS) .
- Since the input capture has four pairs of input pins and input capture data registers, it can measure up to 4 phenomena.

• Block Diagram of 16-bit I/O Timer

• Input Capture Block Diagram

5. 16-bit Reload Timer

The functions of the 16-bit reload timer are as follows :

- Choose one of three internal clocks or an external event clock as the count clock.
- Choose a software or external launch trigger.
- An interrupt can be sent to the CPU in response to an underflow generated by the 16-bit timer register. Interrupts can be used to utilize the timer as an interval timer.
- When an underflow is generated by the 16-bit timer register (TMR), select one-shot mode, where TMR counter operation is halted, or reload mode, where the 16-bit reload register value is reloaded, and TMR count operation continues.
- Supports extended intelligent I/O service (EI2OS) .
- The MB90495G Series features two on-chip 16-bit reload timer channels.

Count Clock	Launch Trigger	Operation in Case of Underflow		
Internal clock mode	Software trigger External trigger	One-shot mode Reload mode		
Event count mode	Software trigger	One-shot mode Reload mode		

• 16-bit Reload Timer Operation Mode

• Internal Clock Mode

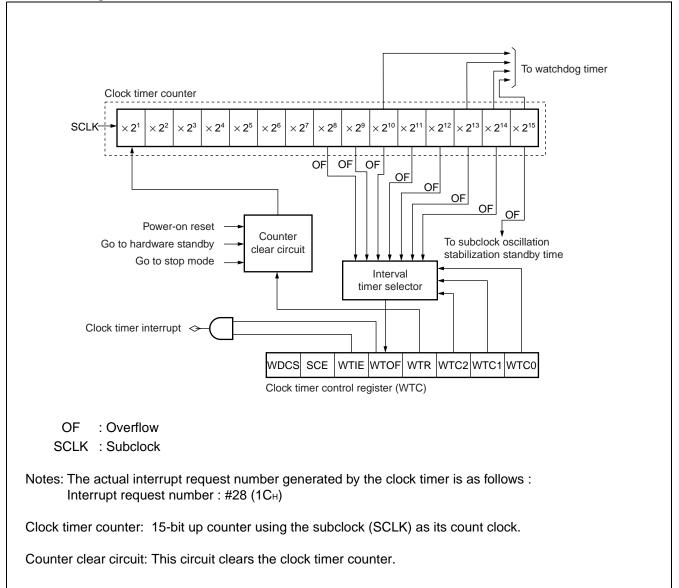
- Set the count clock selection bits of the timer control status register (TMCSR : CSL1, CSL0) to " 00_B ", " 01_B " or " 10_B " to set the 16-bit reload timer to internal clock mode.
- In internal clock mode, the timer counts down in synchronization with the internal clock.
- Set the count clock selection bits of the timer control status register (TMCSR : CSL1, CSL0) to select one of three count clock intervals.
- Select software-triggered or externally triggered (edge detection) launch.

• Block Diagram

6. Clock Timer

The clock timer is a 15-bit free-run counter that counts up in synchronization with the subclock.

- Seven different intervals can be selected, and interrupt requests generated for each interval time.
- Supplies a timer for subclock oscillation stabilization standby, and an operational clock for the watchdog timer.
- The subclock is always the count clock, regardless of the clock selection register (CKSCR) setting.
- Interval timer feature
- When the interval time set by the interval time selection bits (WTC : WTC2 to WTC0) is reached, the clock timer generates an overflow in the bits corresponding to the interval time of the clock timer counter, and sets the overflow flag bit (WTC : WTOF = 1).
- Interrupts arising from overflows are enabled (WTC : WTIE = 1), an interrupt request is generated when the overflow flag bit is set (WTC : WTOF = 1).
- Select from one of the following 7 clock timer intervals :


Clock Timer Interval Times

Subclock Frequency	Interval Time
	28/SCLK (31.25 ms)
	2º/SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
SCLK (122 μs)	2 ¹¹ /SCLK (250 ms)
	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)

SCLK : Subclock frequency

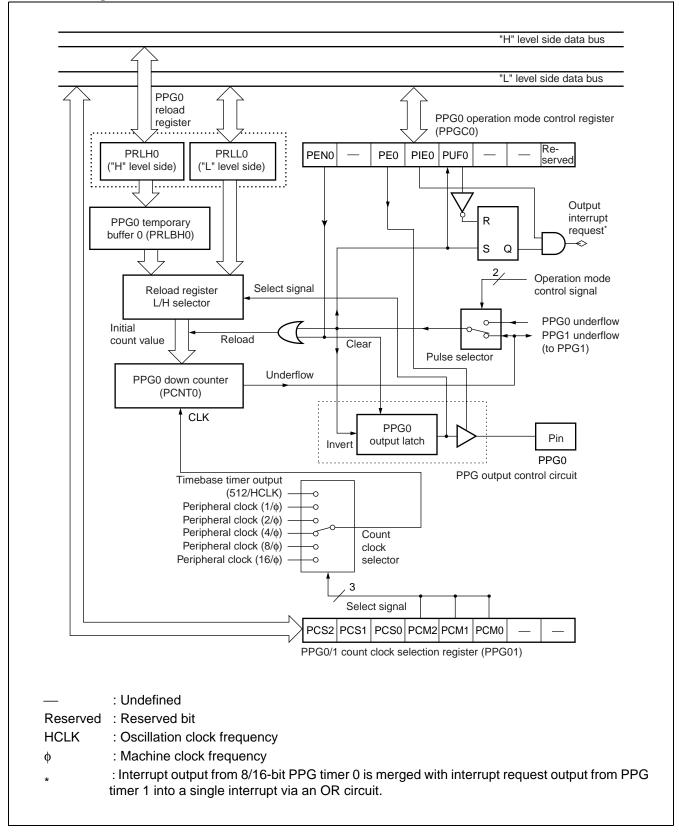
Figures in parentheses () are a sample calculation with the subclock running at 8.192 kHz.

• Block Diagram

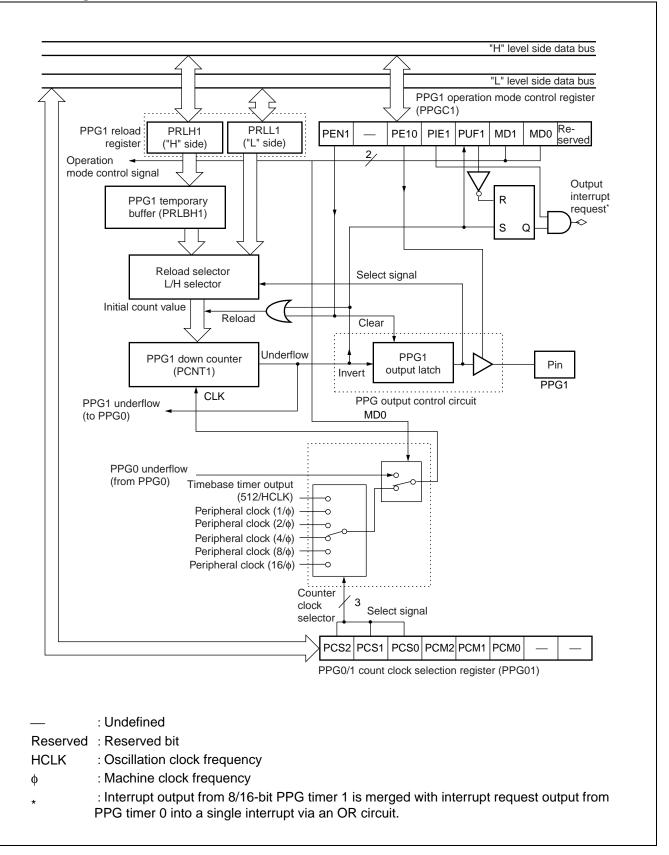
7. 8/16-Bit PPG

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0, PPG1) capable of arbitrary synchronization and pulse output of duty ratio. Combining the 2 channel module can yield the following behavior :

- •8-bit PPG output, 2-channel independent operation mode
- •16-bit PPG output operation mode
- •8 + 8-bit PPG output operation mode


The MB90495G Series features two on-chip, 8/16-bit PPG timers. This section describes the functions of PPG0/ 1. PPG2/3 has the same functions as PPG0/1.

• 8/16-bit PPG Timer Functions


The 8/16-bit PPG timer is made up of four 8-bit reload registers (PRLH0/PRLL0, PRLH1/PRLL1), and two PPG down counters (PNT0, PCNT1).

- Since you can set each output pulse to "H" or "L" width independently, the interval and duty ratio of each pulse can be set to an arbitrary value.
- •Select one of 6 internal clocks as the count clock.
- •Interrupt requests can be generated for each interval time, allowing the timer to be used as an interval timer.
- •The use of an external circuit allows the timer to be used as a D/A converter.

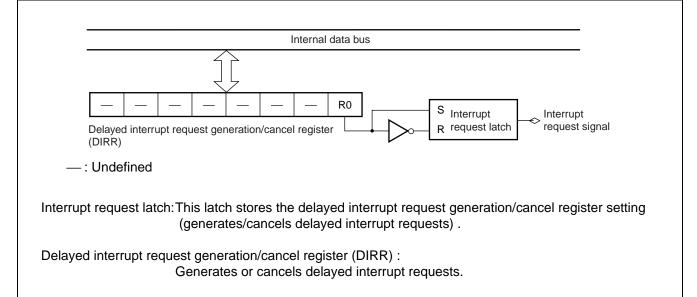
• Block Diagram of 8/16-Bit PPG Timer 0

• Block Diagram of 8/16-Bit PPG Timer1

8. Delayed Interrupt Generation Module

The delayed interrupt generation module generates interrupts for switching tasks.

This module can be used to generate hardware interrupts from the software.


• Overview of the Delayed Interrupt Generation Module

Use the delayed interrupt generation module to generate or cancel hardware interrupts from the software.

Overview of the Delayed Interrupt Generation Module

	Functions and Control
Interrupt Condition	When the R0 bit of the delayed interrupt request generation/cancel register is set to 1 (DIRR : $R0 = 1$) : Generate interrupt request When the R0 bit of the delayed interrupt request generation/cancel register is set to 0 (DIRR : $R0 = 0$) : Cancel interrupt request
Interrupt number	#42 (2Ан)
Interrupt control	There is no enable setting from the register
Interrupt flag	Stored in bit DIRR : R0
EI ² OS	Does not support extended intelligent I/O service

• Block Diagram

• Interrupt number

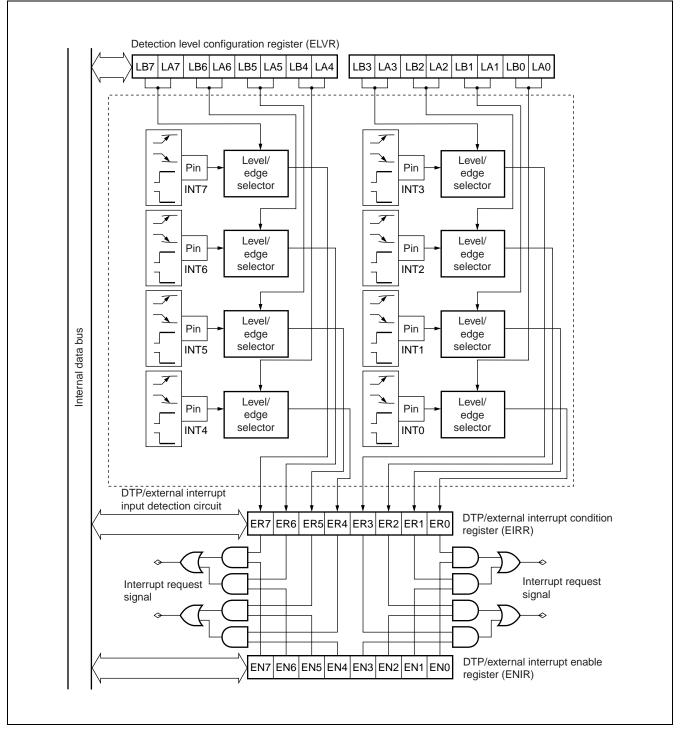
Below is the interrupt number used by the delayed interrupt generation module. Interrupt number : #42 ($2A_H$)

9. DTP/External Interrupts

The DTP/external interrupt transmits interrupt requests or data transfer requests generated by peripheral devices to the CPU, generates external interrupt request, and starts the extended intelligent I/O service (EI²OS).

• DTP/External Interrupt Functions

Outputs interrupt requests from external peripheral devices to the CPU using the same procedure as for peripheral functions, and generates external interrupts, or starts the extended intelligent I/O service (EI²OS).


If the interrupt control register is configured to prohibit the extended intelligent I/O service (EI^2OS) (ICR : ISE = 0), then the external interrupt feature becomes valid, and the process branches into interrupt processing.

If the El²OS is enabled (ICR : ISE = 1), then the DTP function becomes valid, and the El²OS automatically transmits data, and after transmitting data a specified number of times, branches into interrupt processing.

Overview of DTP/External Interrupts

	External interrupt	DTP functions					
Input pins	8 (INT0 to INT7)						
Interrupt condition	Each pin sets individually in the detection le	evel configuration register (ELVR)					
Interrupt condition	"H" / "L" level/rising edge/falling edge input	"H" / "L" level/rising edge/falling edge input "H" / "L" level input					
Interrupt numbers	#15 (0Fн) , #20 (14н) , #24 (18н) , #27 (1Вн	4)					
Interrupt control	The DTP/external interrupt enable register (ENIR) enables or prohibits interrupt request output						
Interrupt flag	Interrupt conditions stored by DTP/externa	I interrupt condition register (EIRR)					
Process selection	Set EI^2OS to prohibited (ICR : ISE = 0) Set EI^2OS to enabled (ICR : ISE = 1)						
Processing	Branch to external interrupt process	After the EI ² OS conducts automated data forwarding the specified number of times, branches to interrupt processing.					

• Block Diagram

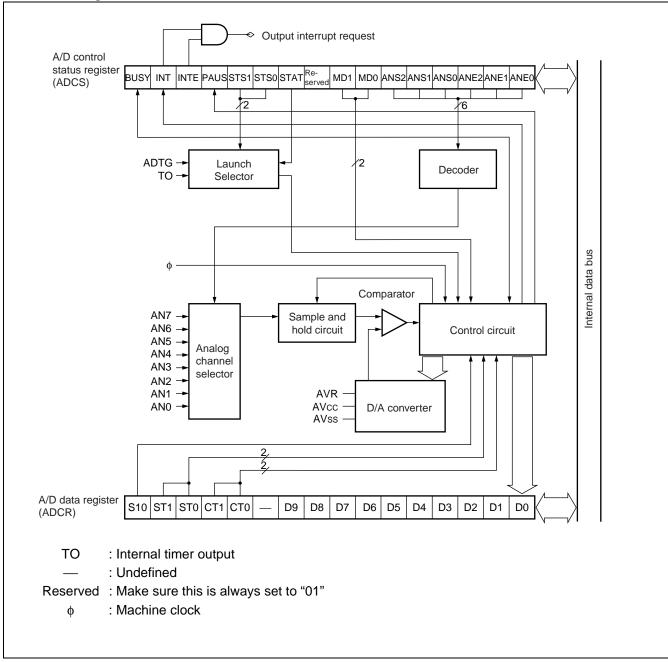
10. 8/10-bit A/D Converter

The 8/10-bit A/D converter converts analog voltage to 8 or 10-bit digital values, by means of RC successive approximation conversion.

- The input signal can be selected from an 8-channel analog input pin set.
- Select a software trigger, internal timer output, or external trigger as the start trigger.

• Functions of the 8/10 A/D Converter

Converts analog voltage (input voltage) input to the analog input pins to 8-bit or 10-bit digital values. (A/D conversion)


The 8/10-bit A/D converter has the following features :

- Single-channel A/D conversion time is a minimum of 6.12 μs, including sampling time.*
- Single-channel sampling time is a minimum of 2.0 μs.*
- RC-type successive approximation with sampling and hold circuits is used for conversion.
- Select 8 or 10-bit resolution.
- Analog input pins can use up to 8 channels.
- A/D conversion results are stored in the A/D data register, allowing them to be used to generate interrupts.
- Interrupt requests launch the El²OS. Use the El²OS to prevent dropped data even with continuous A/D conversion.
- Select software, internal timer output, or external trigger (falling edge) as the start trigger.
- *: With machine clock operating at 16 MHz

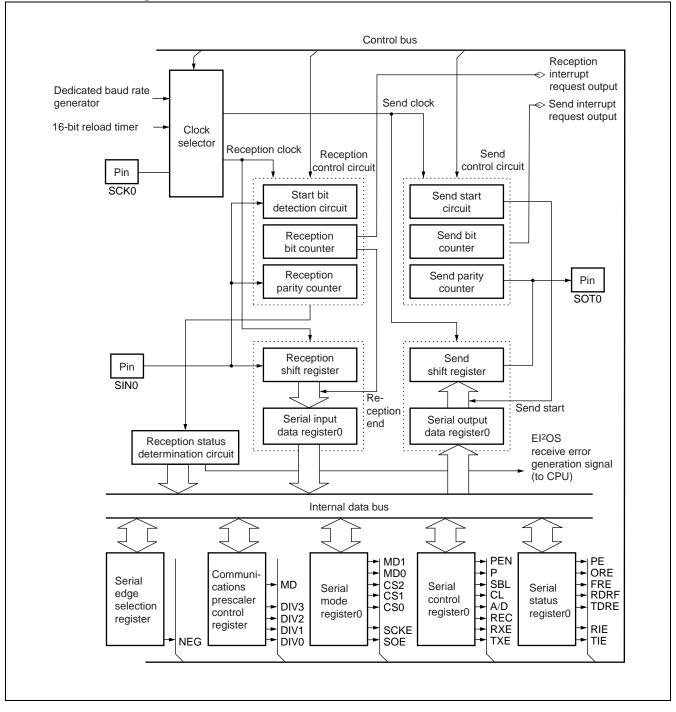
Conversion Mode	Description					
Single conversion mode	Conducts A/D conversion for each channel in turn, from the start channel to the end channel. When A/D conversion of the end channel is completed, the A/D conversion function halts.					
Continuous conversion mode	Conducts A/D conversion for each channel in turn, from the start channel to the end channel. When A/D conversion of the end channel is completed, the function returns to the start channel and continues A/D conversion.					
Stop conversion mode	Suspends each channel and conducts A/D conversion, one at a time. When A/D conversion of the end channel is completed, the function returns to the start channel and repeats the A/D conversion and channel stop.					

• Conversion Modes of the 8/10-bit A/D Converter

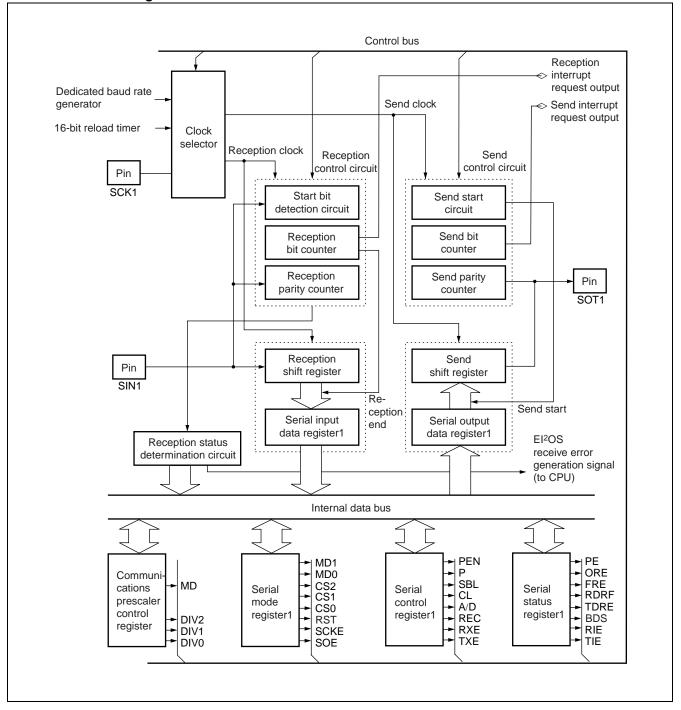
• Block Diagram

11. UART0/1

The UART is a general-purpose serial data communications interface for synchronous or asynchronous communication with external devices.


- The UART has a clock-synchronous/clock-asynchronous two-way communications feature .
- Also supplies a master/slave communications feature (multi-processor mode) . (It can be used only master side.)
- Interrupts can be generated upon send complete, receive complete, or reception error detection.
- Supports extended intelligent I/O service (EI²OS) .

	Functions
Data Buffer	Full-duplex double buffer
Transfer mode	 Clock-synchronous (no start, stop, or parity bit) Clock-asynchronous (start-stop synchronization)
Baud Rate	 Select from 8 dedicated baud rate generators External clock input possible Clock supplied from internal timer (16-bit reload timer 0) available
Data length	 7-bit (asynchronous normal mode only) 8-bit
Signal method	Non Return to Zero (NRZ)
Reception Error Detection	 Framing error Overrun error Parity error (not available in operation mode 1 (multi processor mode))
Interrupt Requests	 Receive interrupt (reception complete, reception error detected) Send interrupt (send complete) Both send and receive support extended intelligent I/O service (EI²OS)
Master/Slave Communications Function (In multiprocessor mode)	1-to-n (master to slave) communication available (can only be used as master)


• UART0/1 Functions

Note : During clock-synchronous forwarding, just the data is forwarded, with no stop or start bit appended.

• UART0 Block Diagram

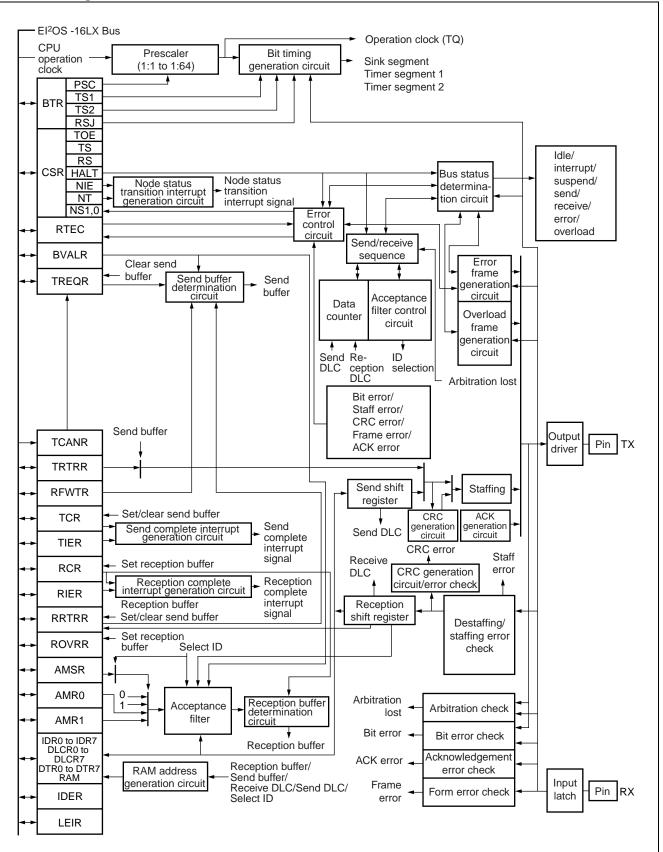
• UART1 Block Diagram

12. CAN Controller

CAN (Controller Area Network) is a serial communications protocol conforming to CAN version 2.0 A and B. Sending and receiving is available in standard and extended frame format.

Can Controller Features

- The CAN controller format conforms to CAN versions 2.0 A and B.
- Sending and receiving is available in standard and extended frame format.
- Supports automated data frame formatting through remote frame reception.
- Baud rate : 10 Kbps to 1 Mbps (when operating machine clock at 16 MHz) .

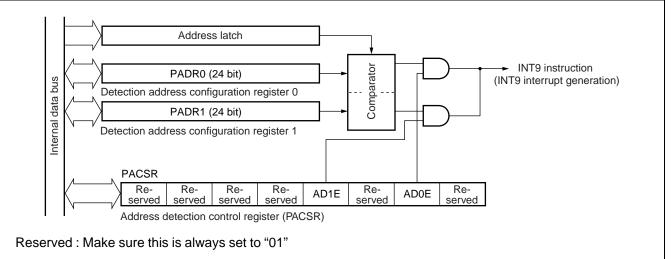

Data Transmission Baud Rates

Machine clock	Baud rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 Kbps
2 MHz	250 Kbps

Supplies 8 send/receive message buffers.

- Sending and receiving available in standard frame format (ID 11-bit), and extended frame format (ID 29-bit).
- Message data can be set to 0 to 8 bytes.
- Possible to configure a multi-level message buffer.
- The CAN controller has two built-in acceptance masks, each of which can be set to a different mask for reception message IDs.
- The two acceptance masks can receive in standard or extended frame format.
- Configure four types of partial masks with full-bit compare, full-bit mask, and acceptance mask register 0/1.

Block Diagram


13. ROM Correction Function

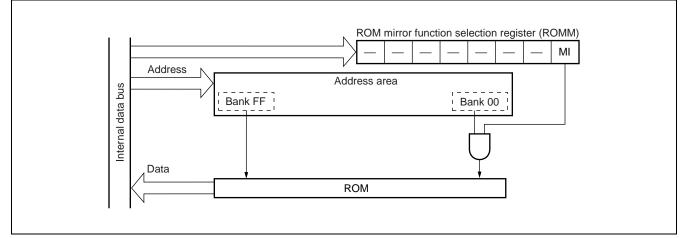
In the case that the address of the instruction after the one that a program is currently processing matches the address configured in the detection address configuration register, the program forces the next instruction to be processed into an INT9 instruction, and branches to the interrupt process program. Since processing can be conducted using INT9 interrupts, programs can be repaired using batch processing.

Overview of the ROM Correction Function

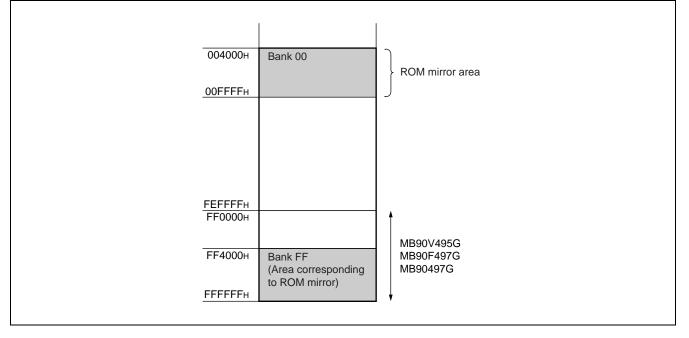
- The address of the instruction after the one that a program is currently processing is always stored in an address latch via the internal data bus. ROM correction constantly compares the address stored in the address latch with the one configured in the detection address configuration register. If the two compared addresses match, the CPU forcibly changes this instruction into an INT9 instruction, and executes an interrupt processing program.
- There are two detection address configuration registers : PADR0 and PADR1. Each register provides an interrupt enable bit. This allows you to individually configure each register to enable/prohibit the generation of interrupts when the address stored in the address latch matches the one configured in the detection address configuration register.

• Block Diagram

Address latch


Stores value of address output to internal data bus.

- Address detection control register (PACSR)
 Set this register to enable/prohibit interrupt output when an address match is detected.
- Detection address configuration register (PADR0, PADR1) Configure an address with which to compare the address latch value.


14. ROM Mirror Function Selection Module

The ROM mirror function selection module configures ROM-internal data arrayed inside bank FF to be readable by accessing bank 00.

Block Diagram

• Accessing Bank FF through ROM Mirror Function

15. 512-Kbit Flash Memory

• Overview

There are three methods available for writing/deleting data to/from flash memory :

- 1. Parallel writer
- 2. Serial dedicated writer
- 3. Program runtime write/delete

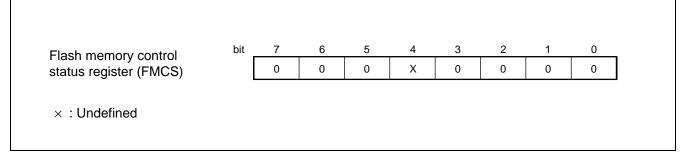
• Overview of 512-Kbit flash memory

512-Kbit flash memory is arrayed in bank FF_H on the CPU memory map. The flash memory interface circuit provides read and program access from the CPU.

Since instructions from the CPU are carried out via the flash memory interface circuit, flash memory can be overwritten at the implementation level. This allows you to efficiently improve programs and data.

• Features of 512-Kbit Flash Memory

- •128 KWords × 8-bit/64 KWords × 16-bit (16 K + 8 K + 8 K + 32 K) sector architecture
- •Auto program algorithm (Embedded Algorithm[™] : same as MBM29LV200)
- •On-chip delete suspend/delete resume functions
- •Data polling, write/delete completion detection through toggle bit
- •Write/delete completion detection from CPU overwrite
- •Sector-specific deletion available (sectors can be combined as desired)
- •Write/delete iterations : 10,000


Embedded Algorithm[™] is a trademark of Advanced Micro Device.

Notes : There is no function to read the manufacture or device code. These codes also cannot be accessed through commands.

• Flash memory write/delete

- •It is not possible to simultaneously write to and read from flash memory.
- •When writing to or deleting from flash memory, first copy the program residing in flash memory into RAM, then execute the program copied into RAM. This will allow you to write to flash memory.

• List of Flash Memory Registers and Reset Values

Sector Architecture of 512 Kbit Flash memory

• Sector architecture

When accessing from the CPU, SA0 to SA3 are arrayed in the Bank FF register.

Sector Architecture of 512-Kbit Flash Memory

Flash Memory	CPU Addresses	Writer Address
	FF0000н	70000н
SA0 (32 Kbytes)	FF7FFFH	77FFFн
	FF8000н	 78000н
SA1 (8 Kbytes)		
	FF9FFFн	79FFFн
SA2 (8 Kbytes)	FFA000H	7А000н
	FFBFFFH	7BFFFн
	FFC000н	7С000н
SA3 (16 Kbytes)	FFFFFH	7FFFFн

If a general-purpose writer is used to write/delete, this address is written to/over.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0 V)

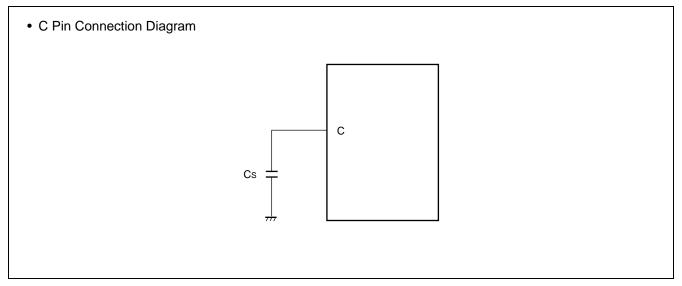
Parameter	Symbol	Rating		Unit	Remarks		
Faiameter	Symbol	Min.	Max.	Unit	I Cellial KS		
	Vcc	Vss - 0.3	Vss + 6.0	V			
Power supply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1		
	AVR	Vss - 0.3	Vss + 6.0	V	$AVcc \ge AVR$ *1		
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*2		
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2		
"L" level maximum output current	lol	_	15	mA	*3		
"L" level average output current	IOLAV	_	4	mA	*4		
"L" level maximum total output current	lol		100	mA			
"L" level average total output current	IOLAV	_	50	mA	*5		
"H" level maximum output current	Іон	_	-15	mA	*3		
"H" level average output current	Іонач	_	-4	mA	*4		
"H" level maximum total output current	Іон	_	-100	mA			
"H" level average total output current	Іонач		-50	mA	*5		
Power consumption	PD		300	mW			
Operating temperature	TA	-40	+105	°C			
Storage temperature	Tstg	-55	+150	°C			

*1 : Make sure that AV $_{\rm CC}$ and AVR must not exceed V $_{\rm CC}$.

*2 : VI and Vo must not exceed Vcc + 0.3 V.

*3 : The rating for the maximum output current is the peak value of one of the corresponding pins.

- *4 : The standard for computing average output current is the average current output from one of the corresponding pins over a period of 100 ms (the average value is taken by multiplying operating current by operational rate).
- *5 : The standard for computing average total output current is the average current output from all of the corresponding pins over a period of 100 ms (the average value is taken by multiplying operating current by operational rate).
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Value			Unit	Remarks	
Farameter	Symbol	Min.	Тур.	Max.	Unit	itemarks	
Power supply voltage	Vcc,	4.5	5.0	5.5	V	During normal operation	
Fower supply voltage	AVcc	3.0		5.5	V	Maintaining stop operation state	
Smoothing capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40		+105	°C		

*: Use a ceramic capacitor, or one with approximately the same frequency characteristics. The smooth capacitor of the Vcc pin should have a greater capacity than Cs.

See the figure below for details about connecting a smooth capacitor to the Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

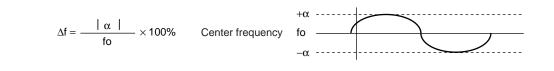
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

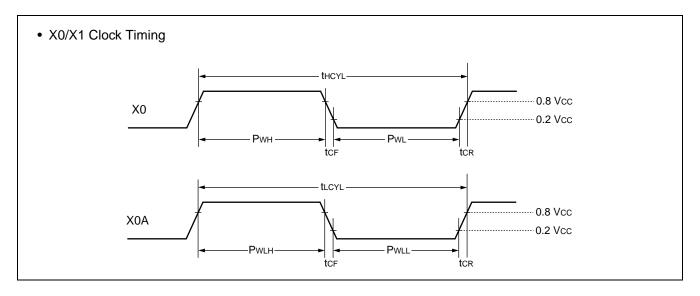
3. DC Characteristics

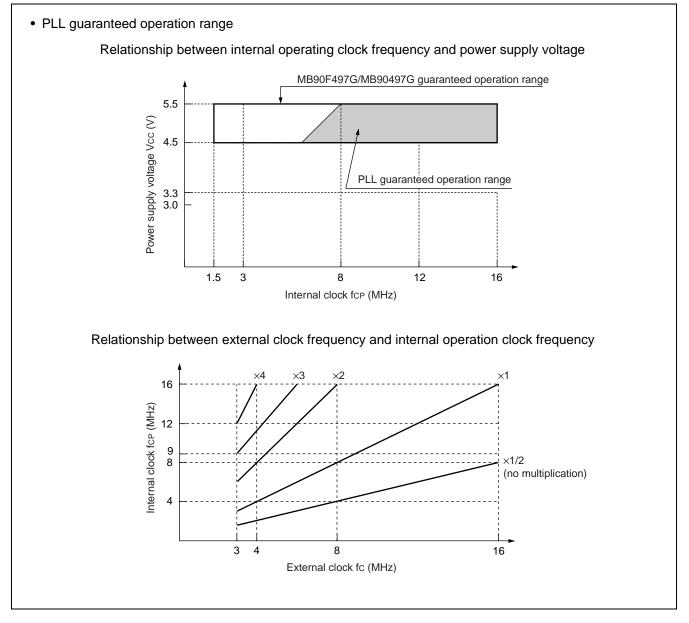
T	n		$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}}$					C to +105 °C)												
Parameter	Sym-	Pin Name	Condition	ļ	Value		Unit	Remarks												
i arameter	bol			Min.	Тур.	Max.		Remarks												
"H" level input voltage	Vihs	CMOS hysteresis input pin		0.8 Vcc		Vcc + 0.3	V													
voltage	VIHM	MD input pin	_	Vcc-0.3		Vcc + 0.3	V													
"L" level input voltage	Vils	CMOS hysteresis input pin		Vss – 0.3		0.2 Vcc	V													
voltage	VILM	MD input pin	_	V ss - 0.3	—	$V_{\text{SS}} + 0.3$	V													
"H" level output voltage	Vон	All output pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc-0.5			V													
"L" level output voltage	Vol	All output pins	$ V_{CC} = 4.5 \text{ V}, \\ I_{OL} = 4.0 \text{ mA} $			0.4	V													
Input leakage current	lı∟	All output pins	Vcc = 5.5 V, Vss < Vı < Vcc	-5		5	μA													
															$V_{cc} = 5.0 V$ Internal 16-MHz operation Normal mode	_	30	40	mA	MB90497G MB90F497G
	Icc	;	$V_{cc} = 5.0 V$ Internal 16-MHz operation Flash memory write mode	_	45	50	mA	MB90F497G												
			$V_{cc} = 5.0 V$ Internal 16-MHz operation Flash memory delete mode		45	50	mA	MB90F497G												
	Iccs		$V_{cc} = 5.0 V$ Internal 16-MHz operation Sleep mode		11	18	mA	MB90497G MB90F497G												
Power supply current [*]	Істѕ	Vcc	$V_{cc} = 5.0 V$ Internal 2-MHz operation Timer mode	—	0.6	1.2	mA	MB90497G MB90F497G												
			Vcc = 5.0 V	—	30	50	μA	MB90497G												
	lcc∟		Internal 8 kHz operation Subclock operation mode $T_A = 25 \ ^{\circ}C$	—	300	500	μA	MB90F497G												
	Iccls		$V_{cc} = 5.0 V$ Internal 8-kHz operation Subclock sleep mode $T_A = 25 \ ^{\circ}C$		10	30	μΑ	MB90497G MB90F497G												
	Ісст		$V_{cc} = 5.0 V$ Internal 8 kHz operation Clock mode T _A = 25 °C	_	8	25	μA	MB90497G MB90F497G												

<u>~</u>, - 0.V ۸** / 10~ 11 40.00 405 00 (Continued)

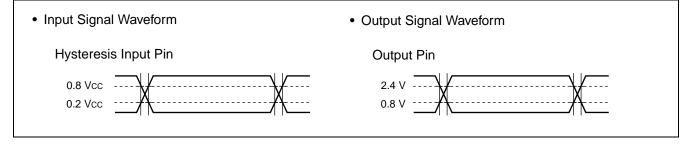
(Continueu)			$(Vcc = 5.0 V \pm$: 10% , Vss	= AVss =	0.0 V, TA	= -40	°C to +105 °C)
Parameter Sym-		Pin Name	Condition		Value	Unit	Remarks	
Faiametei	bol		Condition	Min.	Тур.	Max.	Unit	Nemarks
Power supply current [*]	Іссн	Vcc	$V_{CC} = 5.0 V$ Stop mode, $T_A = 25 \ ^{\circ}C$		5	20	μΑ	MB90497G MB90F497G
Input Capacity	Cin	Otherthan AVcc, AVss, AVR, C, Vcc, or Vss			10	80	pF	
Pull up Resistor	Rup	RST		25	50	100	kΩ	
Pull down Resistor	RDOWN	MD2		25	50	100	kΩ	


* : Power supply current is the interim value. Current values may be changed without notice in order to affect improvements in the characteristics or other aspects. This is when using the external clock as the power supply current test condition.


4. AC Characteristics


(1) Clock Timing

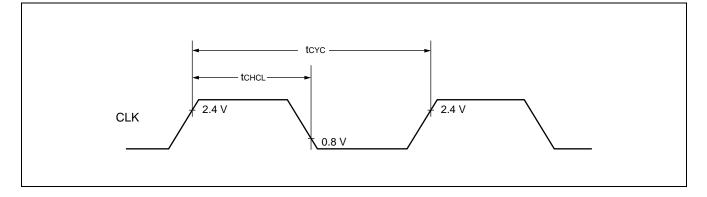
(1) electricity			(Vcc = 5	.0 V ± 10)%, Vss =	= AVss =	0.0 V, $T_A = -40 \ ^{\circ}C$ to +105 $^{\circ}C$)
Parameter	Symbol	Pin Name	Value			Unit	Remarks
Faldilleter	Symbol		Min.	Тур.	Max.	Unit	Rellidiks
Clock frequency	fc	X0, X1	3		16	MHz	
Clock frequency	fc∟	X0A, X1A		32.768		kHz	
Clock Cycle Time	t HCYL	X0, X1	62.5	—	333	ns	
	t LCYL	X0A, X1A		30.5		μs	
Frequency fluctuation rate lock time*	Δf			_	5	%	
Input clock pulse width	Pwh, Pwl	X0	10	_		ns	Duty ratio should be around 30 to 70%
	Pwlh, Pwll	X0A		15.2	_	μs	
Input clock rising/falling time	tcr, tcr	X0		_	5	ns	When external clock used
Internal operation clock	fср		1.5		16	MHz	When oscillation circuit used
frequency	flcp		_	8.192		kHz	When subclock used
Internal operation clock	t CP		62.5		666	ns	When using oscillation circuit
cycle time	t LCP			122.1		μs	When subclock used


* : The frequency fluctuation rate shows the maximum fluctuation ratio from the configured central frequency during PLL-use multiplication lock.

AC characteristics are specified by the following reference voltage values.

(2) Clock Output Timing

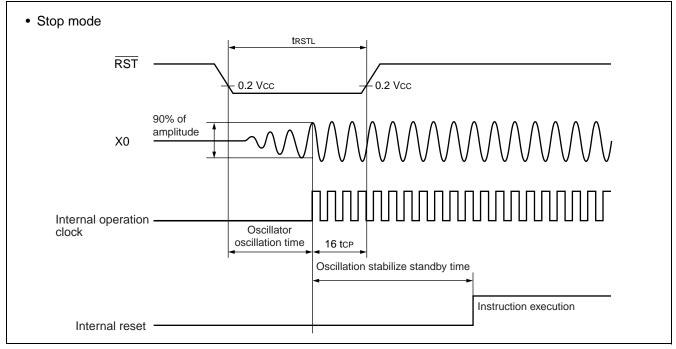
		($(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ I}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C}$					
Parameter	Symbol	Pin Name	Condition	Value		Unit	Remarks	
			Condition	Min.	Max.	Onic	Nellia KS	
Cycle time	t cyc	CLK	$V_{CC} = 5 \text{ V} \pm 10\%$	62.5		ns		
$CLK \uparrow \to CLK \downarrow$	t cHc∟			20		ns		


0.11 10~ 11

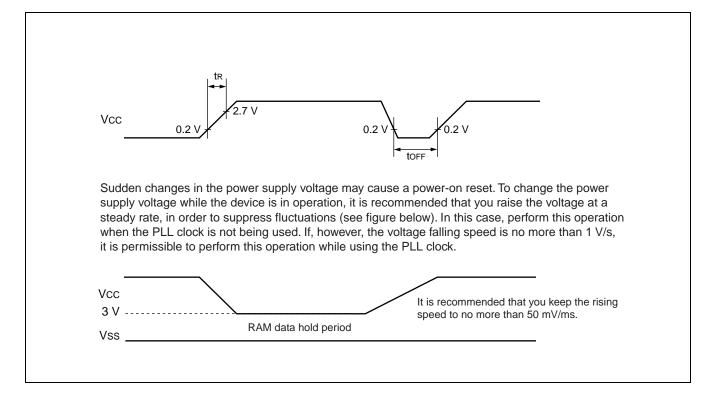
 $a a y + \pi$

10.00

405 00

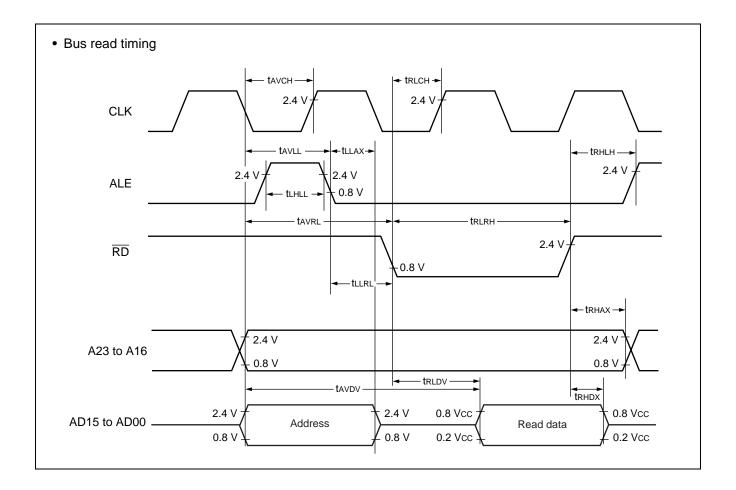

~ ,

(3) Reset Input Timing

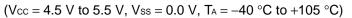

Parameter Symbol Pin Name			Condition	Value	Unit	Remarks	
		Condition	Min.	Max.	Unit	Remarks	
				16 tcp		ns	Normal mode
Reset input time	Reset input time tRSTL RST	—	Oscillator oscillation time* + 16 tcp		ms	Stop mode	

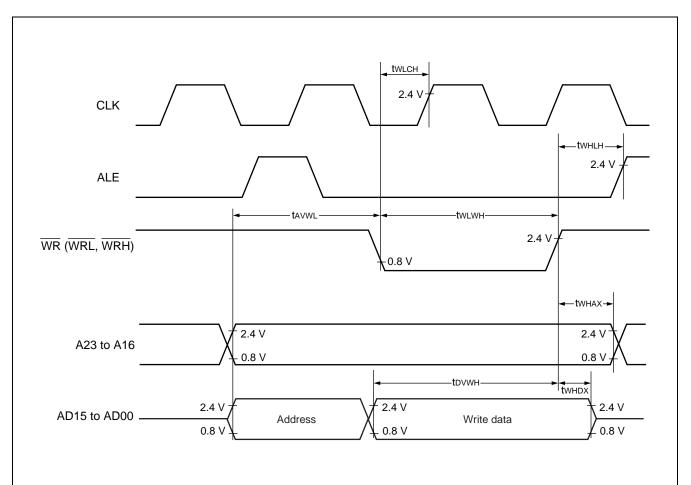
*: Oscillator oscillation time is the time to reach 90% amplitude. For a crystal oscillator, this is a few to several dozen ms; for a FAR/ceramic oscillator, this is several hundred µs to a few ms, and for an external clock this is 0 ms.

(4) Power-on Reset


$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +105 ^{\circ}\text{C}$											
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks				
	Nan	Name	lame		Max.	Onit					
Power supply rising time	tR	Vcc		0.05	30	ms					
Power supply cutoff time	toff	Vcc		50		ms	Due to repeated operations				

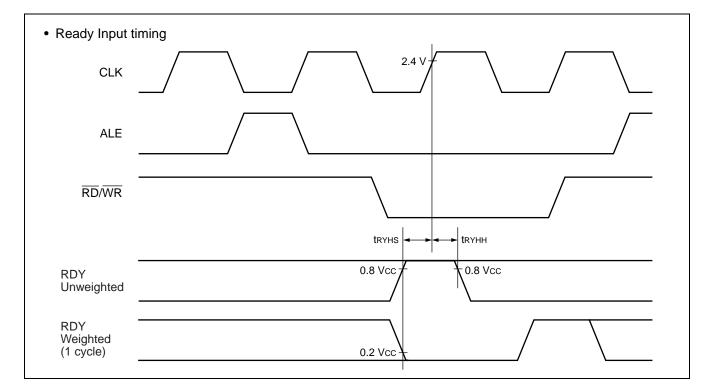
(5) Bus Read Timing


$(V_{cc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C} \text{C} $								
Parameter	Symbol	Pin Name	Va	lue	Unit	Remarks		
Falametei	Symbol			Max.	Unit	Remarks		
ALE pulse width	t lhll	ALE	tcp/2 - 20	—	ns			
Valid address $ ightarrow$ ALE \downarrow time	t avll	ALE, A23 to A16, AD15 to AD00	tcp/2 - 20	_	ns			
ALE $\downarrow \rightarrow$ address valid time	t llax	ALE, AD15 to AD00	tср/2 – 15	—	ns			
Valid address $\rightarrow \overline{RD} \downarrow$ time	t avrl	A23 to A16, AD15 to AD00, RD	tcp – 15	—	ns			
Valid address \rightarrow Valid data input	t avdv	A23 to A16, AD15 to AD00	—	5 tcp/2 - 60	ns			
RD pulse width	t rlrh	RD	3 tcp/2 - 20	—	ns			
$\overline{RD} \downarrow \rightarrow valid data input$	t rldv	RD, AD15 to AD00		3 tcp/2 - 60	ns			
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	RD, AD15 to AD00	0		ns			
$\overline{RD} \downarrow \rightarrow ALE \uparrow time$	t RHLH	RD, ALE	tcp/2 – 15	—	ns			
$\overline{RD} \uparrow \rightarrow address valid time$	t rhax	RD, A23 to A16	tcp/2 - 10		ns			
Valid address $ ightarrow$ CLK \uparrow time	tavch	A23 to A16, AD15 to AD00, CLK	tcp/2 – 20	_	ns			
$\overline{RD}\downarrow \to CLK\uparrow$ time	t rlch	RD, CLK	tcp/2 - 20		ns			
$ALE \downarrow \to \overline{RD} \downarrow time$	tllrl	ALE, RD	tcp/2 – 15		ns			


 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

(6) Bus Write Timing

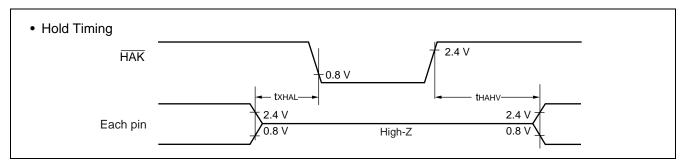
		(VCC = 4.	5 V 10 5.5 V,	$v_{33} = 0.0 v$,	TA — -4 0	°C (0 +105 °C)
Parameter	Symbol	Pin Name	Val	lue	Unit	Remarks
	Symbol		Min.	Max.	Onic	
Valid Address $ ightarrow \overline{WR} \downarrow$ time	t avwl	A23 to A16, AD15 to AD00, WR	tcp – 15	_	ns	
WR pulse width	twlwн	WR	3 tcp/2 - 20	_	ns	
Valid data output $\rightarrow \overline{\text{WR}} \uparrow$ time	t dvwh	AD15 to AD00, WR	$3 \text{ t}_{\text{CP}}/2 - 20$		ns	
$\overline{WR} \uparrow \rightarrow data hold time$	t whdx	AD15 to AD00, WR	20		ns	
$\overline{WR} \uparrow \rightarrow address valid time$	t whax	A23 to A16, WR	tср/2 – 10		ns	
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	twhlh	WR, ALE	tcp/2 – 15	—	ns	
$\overline{WR} \uparrow \rightarrow CLK \uparrow time$	t wLCH	WR, CLK	tcp/2 - 20		ns	



(7) Ready Input Timing

$(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$								
Parameter	Symbol	Pin Name	Value		Unit	Remarks		
Falameter	Symbol		Min.	Max.	Onit	Reindiks		
RDY setup time	t RYHS	RDY	45	—	ns			
RDY hold time	t ryhh	RDY	0		ns			

Note : Use the automatic ready function if the setup time for the falling edge of the RDY signal is not sufficient.

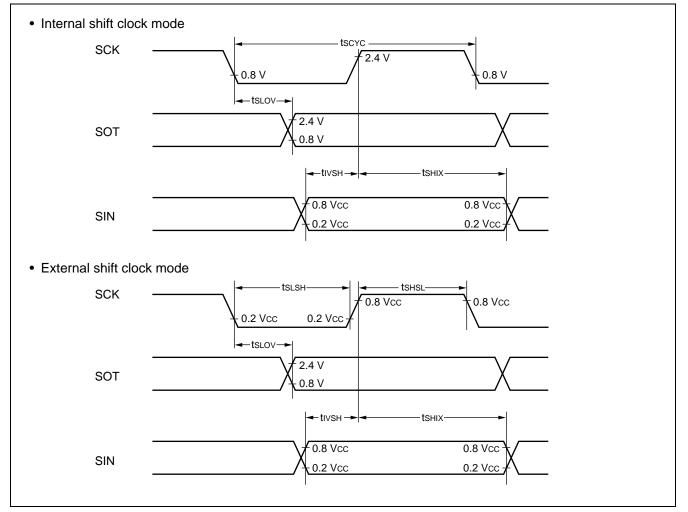


(8) Hold Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Va	Value		Remarks
Faranieter	Symbol		Min.	Max.	Unit	Itemarks
Pin in floating status $\rightarrow \overline{\text{HAK}} \downarrow$ time	t xhal	HAK	30	t CP	ns	
$\overline{HAK} \uparrow \rightarrow pin valid time$	t hahv	HAK	t CP	2 tcp	ns	

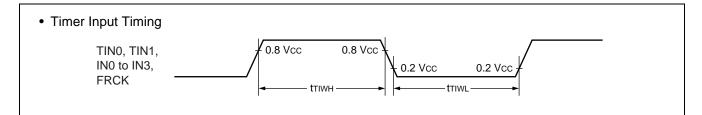
Note : It will take at least 1 cycle from the time the HRQ pin is loaded until the HAK changes.


(9) UART Timing

Demonster		Value					
Parameter	Symbol	Pin Name	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK1		8 t _{CP} *		ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK1, SOT1	Internal shift clock	-80	80	ns	
$Valid\ SIN \to SCK\ \uparrow$	tıvsн	SCK1, SIN1	mode output pin : C∟ = 80 pF + 1 TTL	100		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60		ns	
Serial clock "H" pulse width	t shsl	SCK1		4 t CP		ns	
Serial clock "L" pulse width	t _{SLSH}	SCK1	Eternal shift clock	4 t _{CP}		ns	
$SCK \downarrow \to SOT$ delay time	tslov	SCK1, SOT1	mode outputpin :		150	ns	
$Valid\ SIN \to SCK\ \uparrow$	tıvsн	SCK1, SIN1	C∟ = 80 pF + 1 TTL	60		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнix	SCK1, SIN1		60	_	ns	

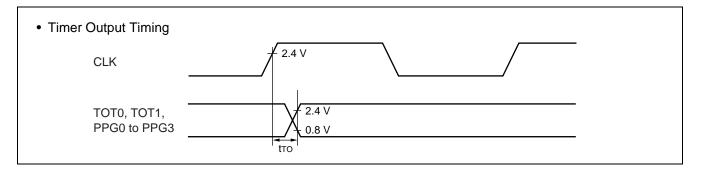
*: See "(1) Clock Timing" for details about tcp (internal operating clock cycle time).

Notes : • AC ratings are for CLK synchronous mode.


 \bullet CL is the load capacitor value connected to pins while testing.

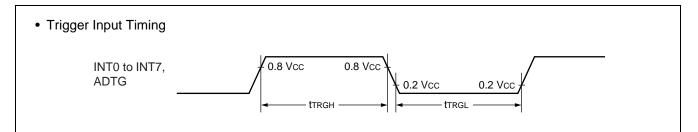
(10) Timer Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$


Parameter	Symbol	Pin Name Condition		Value		Unit	Remarks
Farameter	Symbol		Condition	Min.	Max.	Unit	ILEIIIAI KS
Input pulse width	tтіwн	TIN0, TIN1, FRCK		4 tcp		200	
input puise width	t⊤ıw∟	IN0 to IN3, FRCK		4 I CP		ns	

(11) Timer Output Timing

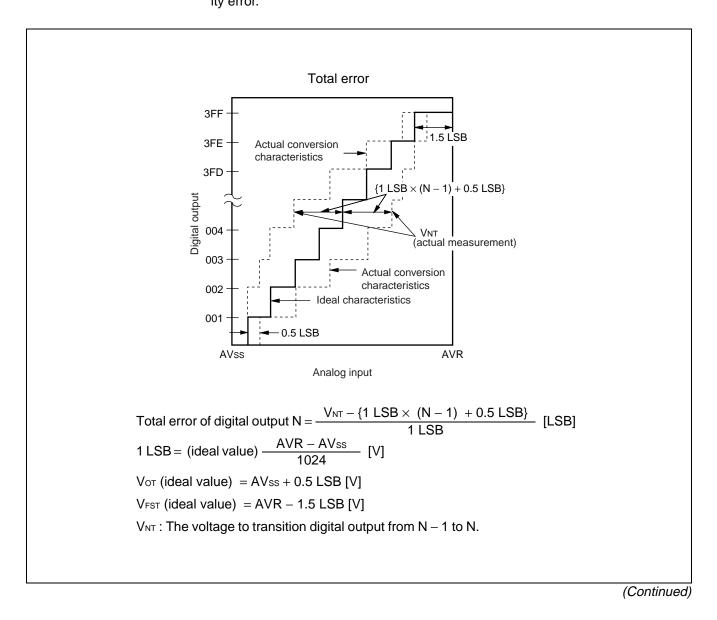
 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$


Parameter	Symbol	Pin Namo	Pin Name Condition		lue	Unit	Remarks
i didilietei	Symbol		Condition	Min.	Max.	Onic	itema ka
$CLK \uparrow \to T_{OUT} \text{ change time}$	tто	TOT0, TOT1, PPG0 to PPG3	_	30	_	ns	

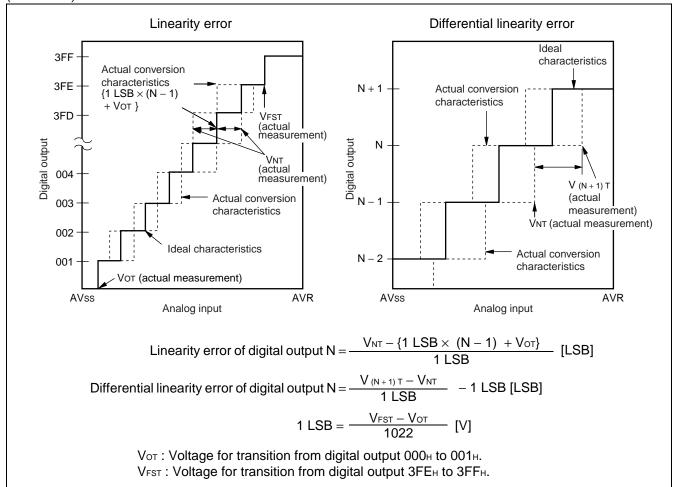
(12) Trigger Input Timing

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Pin Namo Condition		Condition		Unit	Remarks
Faiametei	Symbol	FIIIName	Condition	Min.	Max.	Unit	itellia ks	
Input pulse width	tтrgh ttrgl	INT0 to INT7, ADTG		5 tcp		ns		


5. A/D Converter

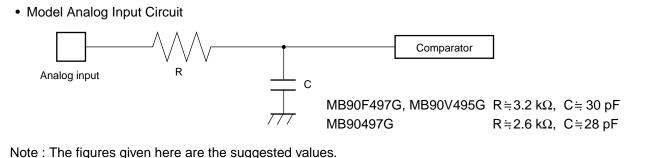
$(Vcc = AVcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, 3.0 V \le AVR - AVss, IA = -40 °C to +105 °C)$								
Parameter	Symbol	Pin Name		Value		Unit	Remarks	
i di diffeter	Symbol		Min.	Тур.	Max.	onic	itemarks	
Resolution	_		—		10	bit		
Total error	_		—	—	5.0	LSB		
Nonlinearity error	_		—		2.5	LSB		
Differential linearity error	_		—	_	1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 3.5 LSB	AVss + 0.5 LSB	AVss + 4.5 LSB	V	1 LSB =	
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 6.5 LSB	AVR – 1.5 LSB	AVR + 1.5 LSB	V	AVR / 1024	
Conversion time	_		66 tcp	_		ns	Machine clock	
Sampling period			32 tcp			ns	of 16 MHz	
Analog port input current	lain	AN0 to AN7	—		10	μΑ		
Analog input voltage	Vain	AN0 to AN7	AVss		AVR	V		
Reference voltage	_	AVR	AVss + 2.7	—	AVcc	V		
Power supply current	A	AVcc	—	2	7	mA		
Fower supply current	Ан	AVcc	—		5	μΑ	*	
Reference voltage supply	IR	AVR	—	0.9	1.3	mA		
current	IRH	AVR	—	_	5	μΑ	*	
Inter-channel variation		AN0 to AN7			4	LSB		


 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AVR - AV_{SS}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} +105 \text{ }^{\circ}\text{C})$

* : Current ($V_{CC} = AV_{CC} = AVR = 5.0 V$) when A/D converter is not operating and CPU is halted.

6.	A/D Converter Gloss	ary
	Resolution	: Analog changes that are identifiable with the A/D converter
	Linearity error	 The deviation of the straight line connecting the zero transition point ("00 0000 0000" ←→ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ←→ "11 1111 1111") from actual conversion characteristics.
	Differential linearity error	: The deviation of input voltage needed to change the output code by 1 LSB from the ideal value.
	Total error	: The difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error, linearity error, and differential linearity error.

(Continued)

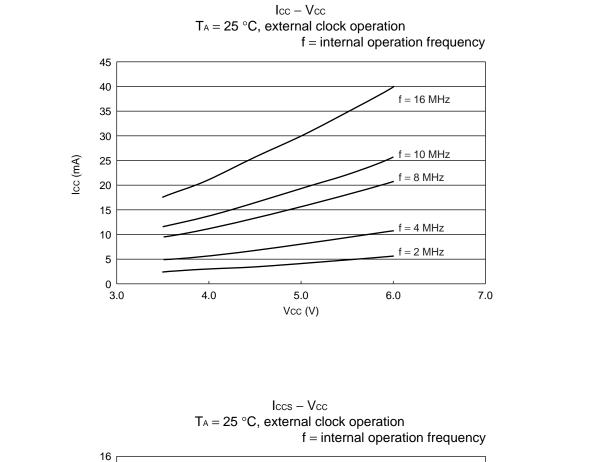

7. Notes on Using A/D Converter

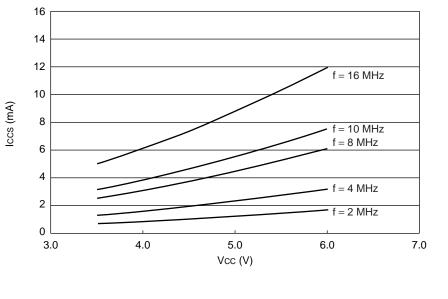
Select the output impedance value for the external circuit of analog input according to the following conditions :

External circuit output impedance values of about 5 k Ω or lower are recommended.

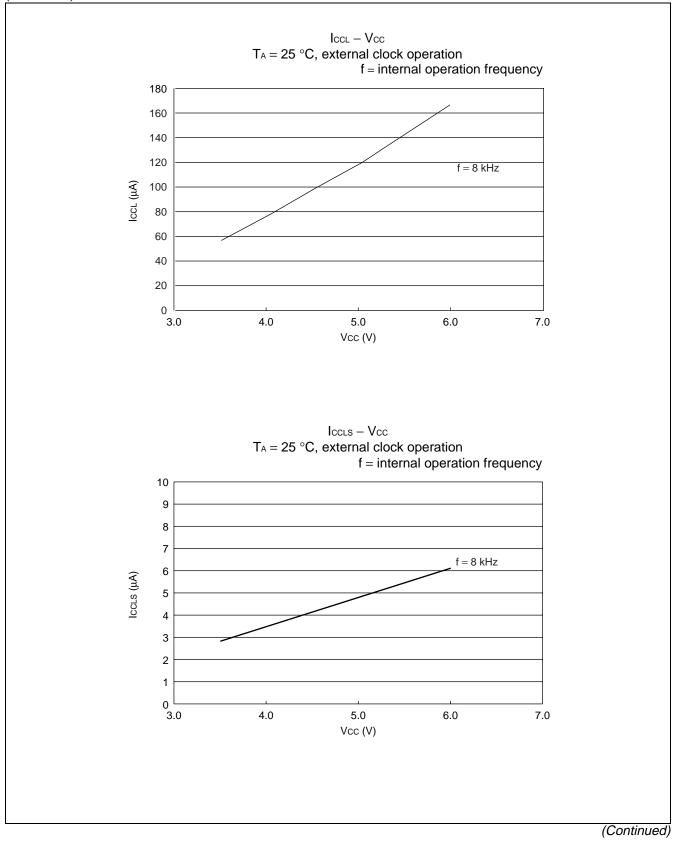
If external capacitors are used, a capacitance of several thousand times the internal capacitor value is recommended in order to minimize the effect of voltage distribution between the external and internal capacitor.

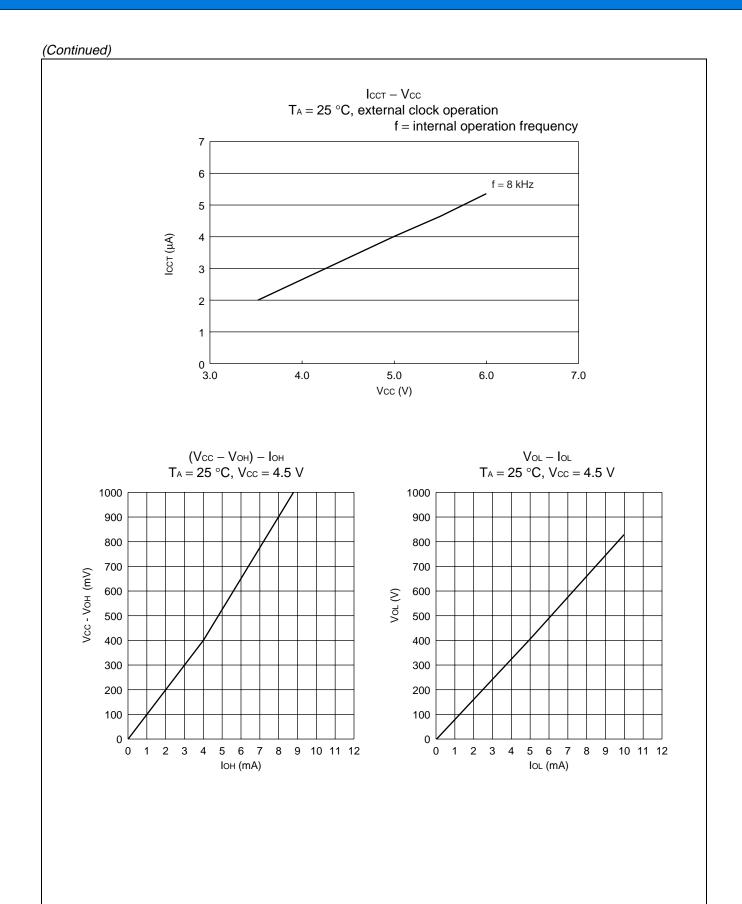
If the output impedance of the external circuit is too high, the sampling time for analog voltages may not be sufficient (sampling period = $2.00 \ \mu s \ @$ machine clock of 16 MHz).

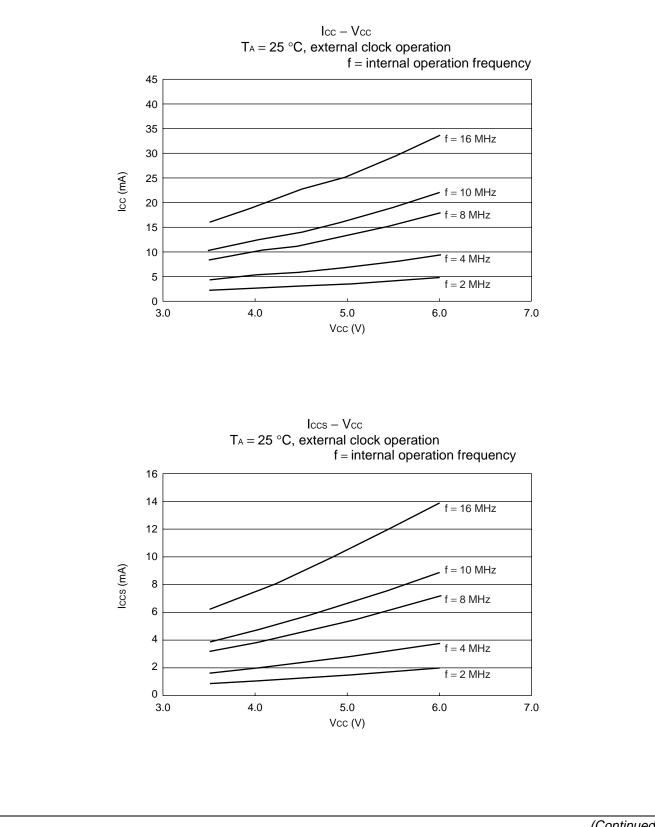


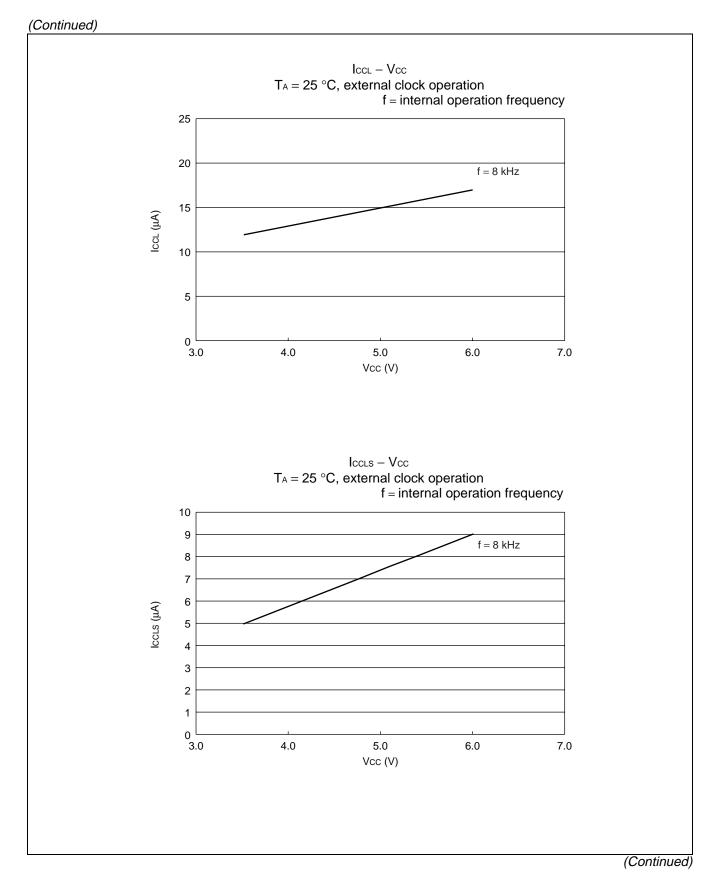

About Error

The smaller the absolute value of | AVR - AVss |, the greater the relative error.

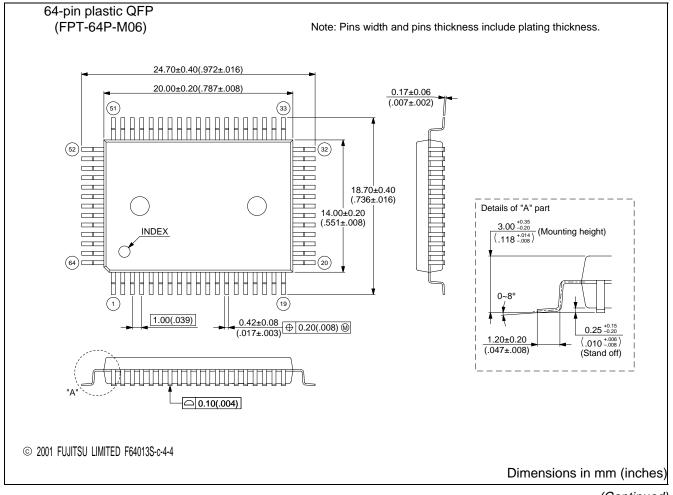

• MB90F497G

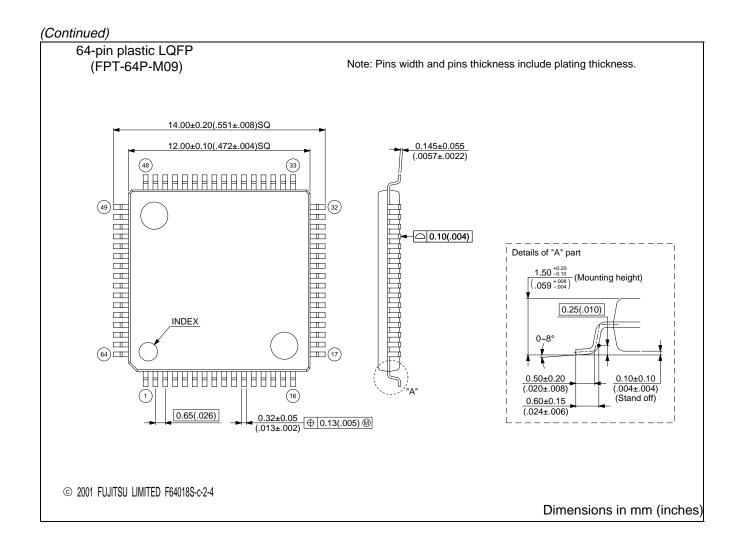



(Continued)



• MB90497G




■ ORDERING INFORMATION

Part Number	Package	Remarks
MB90F497GPF MB90497GPF	64-pin plastic QFP (FPT-64P-M06)	
MB90F495GPFM MB90495GPFM	64-pin plastic LQFP (FPT-64P-M09)	

PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0107 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.