FUJITSU MICROELECTRONICS UV ERASABLE 32,768-BIT READ ONLY MEMORY

MBM2732-35 MBM2732-45

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

DESCRIPTION

The Fujitsu MBM2732 is a high speed 32,768-bit static N-channel MOS erasable and electrically reprogrammable read only memory (EPROM). It is especially well suited for applications where rapid turn-around and/or bit pattern experimentation are important.

A 24-pin dual-in-line package with a transparent lid is used to package the MBM2732. The transparent lid allows the user to expose the device to ultraviolet light in order to erase the memory bit pattern previously programmed. At the completion of erasure, a new pattern can then be written into the memory. The MBM2732 is fabricated using N-channel double polysilicon gate technology with single transistor stacked gate cells. It is organized as 4096 words by 8-bits for use in microprocessor applications. Single +5V operation greatly facilitates its use in systems.

FEATURES

- 4096 words by 8-bits organization, fully decoded
- Simple programming requirements
- Single location
 programming
- Programs with one 50ms pulse
- Low power requirement: 825mW max (active) 165mW max (standby)
- No clocks required (fully static operation)
- TTL compatible inputs and outputs

- Three-state output with
 OR-tie capability
- Output Enable (OE) pin for simplified memory expansion
- Fast access time: MBM2732-35 350ns MBM2732-45 450ns
- Single +5V operation
- Standard 24-pin DIP package
- Pin compatible with Intel
 2732

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

17 08

16 07

15 06

14 05

13 04

A0 🗌 8

01 🗌 9

02 10

03 [11

V_{SS}□12

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

MBM2732-35 / MBM2732-45

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit	
Temperature Under Bias	Τ_	-25 to +85	°C	
Storage Temperature	T _{stg}	-65 to +125	°C	
Inputs/Outputs (Except OE/Vpp) with Respect to Vss	VIN, VOUT	-0.3 to +7	V	
Output Enable/Program Input with Respect to Vss	OE/V _{PP}	-0.3 to +26.5	<u>v</u>	
V _{CC} with Respect to V _{SS}	Vcc	-0.3 to +7	<u>v</u>	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operations sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

FUNCTIONS AND PIN CONNECTIONS V_{CC}(24) = +5, V_{SS}(12) = GND

Function (Pin No.)	Address Input (1~8,19,21~23)	Data VO (9~11,13~17)	ČE (18)	0E/V _{PP} (20)	icc Supply (24)
Read	AIN	Роит	VIL	VIL	ICC2
	Don't Care	High Z	VIH	Don't Care	ICC1
Stand By		DIN	VIL	VPP	1002
Program	AIN			VIL	ICC2
Program Verify	AIN	DOUT	,V _{IL}		
Program Inhibit	Don't Care	High Z	VIH	VPP	ICC1

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS} = GND)

Parame		Symbol	Min	Тур	Max	Unit	Operating Temperature
	MBM2732-35	Vee	4.5	5.0	5.5	v	
Supply Voltage(1) MBM2732-45	Vcc	4.75	5.0	5.25			
Supply Voltage		VSS	-	GND		V	0°C to +70°C
Input High Voltage		ViH	2.0	—	V _{CC} +1	V	
Input Low Voltage			-0.1		0.8	V	

Note: (1) V_{CC} must be applied either before or coincident with V_{PP} and removed either after or coincident with V_{PP}.

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Тур	Max	Unit
Input Load Current (VIN = 5.5V)	ILI	_	_	10	μA
Output Leakage Current (VOUT = 5.5V)	ILO			10	μA
V _{CC} Supply Current (Standby)	ICC1			30	mA
V _{CC} Supply Current (Active)	ICC2		. –	150	mA
Output Low Voltage ($I_{OL} = 2.1$ mA)	VOL	_	-	0.45	V
Output High Voltage ($I_{OH} = -400\mu A$)	Voн	2.4		_	V

MBM2732-35 / MBM2732-45

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

Fig. 2 - AC TEST CONDITIONS (Including Programming)

Input Pulse Levels:	0.8V to 2.2V	
Input Rise and Fall Time:	≤ 20ns	
Timing Measurement Reference Levels:	1.0V and 2.0V for inputs 0.8V and 2.0V for outputs	+c. ↓
Output Load:	1 TTL gate and $C_L = 100 pF$	Ŧ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

		MBM2732-35			MBM2732-45			Unit
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	
	tACC			350	-	_	450	ns
Address to Output Delay				350			450	ns.
Chip Enable to Output Delay	^t CE						120	ns
Output Enable to Output Delay	tOE	-	- 1	120	—		120	
		0	_	_	0	-	- 1	ns
Address to Output Hold	ton			100	0		100	ns
Output Enable High to Output Float	^t DF	0		100	0			

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

MBM2732-35 / MBM2732-45

PROGRAMMING/ERASING INFORMATION

Memory Cell Description

The MBM2732 is fabricated using a single-transistor stacked gate cell construction, implemented via double-layer polysilicon technology. The individual cells consist of a bottom floating gate and a top select gate (see Fig. 14). The top gate is connected to the row decoder, while the floating gate is used for charge storage. The cell is programmed by the injection of high energy electrons through the oxide and onto the floating gate. The presence of the charge on the floating gate causes a shift in the cell threshold (refer to Fig. 15). In the initial state the cell has a low threshold (VTH1) which will enable the transistor to be turned on when the cell is selected (via the top select gate). Programming shifts the threshold to a higher level (VTH0), thus preventing the cell transistor from turning on when selected. The status of the cell (i.e., whether programmed or not) can be determined by examining its state at the sense threshold (VTHS), as indicated by the dotted line in Fig. 15.

Programming

Upon delivery from Fujitsu, or after each erasure (see Erasure section), the MBM2732 has all 32,768 bits in the "1", or high state. "0's" are loaded into the MBM2732 through the procedure of programming.

The programming mode is entered when 425V is applied to the OE/VPP pin. A 0.1µF capacitor between OE/Vpp and VSS is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels. When both the address and data are stable, a 50 msec, TTL lowlevel pulse is applied to the CE input to accomplish the programming.

The procedure can be done manually, address by address, randomly, or automatically via the proper circuitry. All that is required is that one 50 msec program pulse be applied for each address to be programmed. It is necessary that this program pulse width not exceed 55 msec. Therefore, applying a DC level to the CE input is prohibited when programming.

Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the MBM 2732 to an ultraviolet light source. A dosage of 15 W-second/cm² is required to completely erase an MBM'2732. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000μ W/cm² for 15 to 20 minutes. The MBM2732 should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MBM2732 and similar devices, will erase with light sources having wavelengths shorter than 4000Å. Although erasure times will be much longer than with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MBM2732, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

MBM2732-35 / MBM2732-45

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

PROGRAMMING / ERASING INFORMATION (continued)

DC Characteristics

 $(T_A = 25^{\circ}C, V_{CC}(1) = 5V \pm 5\%, V_{PP}(1,2) = 25V \pm 1V, V_{SS} = GND$

Parameter	Symbol	Min	Тур	Max	Unit
Input Leakage Current (V _{IN} = 5.25V/0.45V)	ILI	_		10	μA
V _{PP} Supply Current During Programming Pulse (CE = V _{IL} , OE/V _{PP} = V _{PP})	Ipp			30	mA
V _{CC} Supply Current		<u> </u>		150	mA V
Input Low Level	VIL 	<u>-0.1</u> 2.0		V _{CC} +1	V
Output Low Voltage During Verify (IOL = 2.1mA)	V _{OL}		_	0.45	v
Output High Voltage During Verify $(I_{OH} = -400\mu A)$	Vон	2.4			v

Note: (1) V_{CC} must be applied either coincidently or before V_{PP} and removed either coincidently or after V_{PP}.

(2) V_{PP} must not be greater than 26 volts including overshoot. Permanent device damage may occur if the device is taken out or put into socket when V_{PP} = 25 volts. Also, during CE = V_{IL}. V_{PP} must not be switched from V_{IL} to 25 volts or vise-versa.

AC Characteristics

 $(T_A = 25 °C)$

Parameter	Symbol	Min	Тур	Max	Unit
Address Setup Time	tAS	2	—	_	μS
Output Enable Setup Time	toes	2	—		μS
Data Setup Time	t _{DS}	2			μS
Address Hold Time	t _{AH}	0	_		μS
Output Enable Hold Time	tOEH	2	—		μS
Data Hold Time	t _{DH}	2	_		μS
Chip Enable to Output Float Delay (OE = V _{IL})	tDF	0	-	120	ns
Chip Enable to Data Valid Time ($\overline{CE} = V_{IL}$, $\overline{OE}/V_{PP} = V_{IL}$)	t _{DV}	_	-	1	μS
Program Pulse Width	tpw	45	50	55	ms
Program Pulse Rise Time	t _{PRT}	50		_	ns
Vpp Recovery Time	tvR	2	-	_	μS

NOT RECOMMENDED FOR NEW DESIGNS. SEE PART NUMBER MBM2732A.

MBM2732-35 / MBM2732-45

Note: In PROGRAMMING WAVEFORMS No. 2, Address Hold Time t_{AH} must be more than 2 μ s.