3.3V 1:9 Differential HSTL/PECL/LVDS to HSTL Clock Driver with LVTTL Clock Select and Enable

Description

The MC100EP809 is a low skew 1–to–9 differential clock driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The part is designed for use in low voltage applications which require a large number of outputs to drive precisely aligned low skew signals to their destination. The two clock inputs are one differential HSTL and one differential LVPECL. Both input pairs can accept LVDS levels. They are selected by the CLK_SEL pin which is LVTTL. To avoid generation of a runt clock pulse when the device is enabled/disabled, the Output Enable (OE), which is LVTTL, is synchronous ensuring the outputs will only be enabled/disabled when they are already in LOW state (Figure 9).

The MC100EP809 guarantees low output-to-output skew. The optimal design, layout, and processing minimize skew within a device and from lot to lot. The MC100EP809 output structure uses open emitter architecture and will be terminated with 50 Ω to ground instead of a standard HSTL configuration (Figure 7). To ensure the tight skew specification is realized, both sides of the differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

Designers can take advantage of the EP809's performance to distribute low skew clocks across the backplane of the board. Both clock inputs may be single-end driven by biasing the non-driven pin in an input pair (Figure 8).

Features

- 100 ps Typical Device-to-Device Skew
- 15 ps Typical within Device Skew
- HSTL Compatible Outputs Drive 50 Ω to GND with no Offset Voltage
- Maximum Frequency > 750 MHz
- 850 ps Typical Propagation Delay
- Fully Compatible with Micrel SY89809L
- PECL and HSTL Mode Operating Range: V_{CCI} = 3 V to 3.6 V with GND = 0 V, V_{CCO} = 1.6 V to 2.0 V
- Open Input Default State
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

1

All V_{CCI}, V_{CCO}, and GND pins must be externally connected to appropriate Power Supply to guarantee proper operation (V_{CCI} \neq V_{CCO}).

Figure 2. 32-Lead QFN Pinout (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
HSTL_CLK*, HSTL_CLK**	HSTL or LVDS Differential Inputs
LVPECL_CLK*, LVPECL_CLK**	LVPECL or LVDS Differential Inputs
CLK_SEL**	LVCMOS/LVTTL Input CLK Select
OE**	LVCMOS/LVTTL Output Enable
<u>Q0 - Q8,</u> <u>Q0 - Q8</u>	HSTL Differential Outputs
V _{CC1}	Positive Supply_Core (3.0 V – 3.6 V)
V _{CC0}	Positive Supply_HSTL Outputs (1.6 V – 2.0 V)
GND	Ground
EP	The exposed pad (EP) on the QFN-32 package bottom is thermally connected to the die for improved heat transfer out of the package. THe exposed pad must be at- tached to a heat-sinking conduit. The pad is electrically connected to GND.

* Pins will default LOW when left open. ** Pins will default HIGH when left open.

Table 2. TRUTH TABLE

OE*	CLK_SEL	Q0 – Q8	Q0 – Q8
L	L	L	Н
L	Н	L	Н
Н	L	HSTL_CLK	HSTL_CLK
Н	Н	LVPECL_CLK	LVPECL_CLK

*The OE (Output Enable) signal is synchronized with the rising edge of the HSTL_CLK and LVOCL_CLK signals.

Table 3. ATTRIBUTES

Characteri	Va	lue		
Internal Input Pulldown Resistor	75 kΩ			
Internal Input Pullup Resistor		37.5	5 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 20	kV 00 V kV	
Moisture Sensitivity, Indefinite Tim	ne Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg	
	LQFP-32 QFN-32	Level 2 N/A	Level 2 Level 1	
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0	@ 0.125 in	
Transistor Count	478 D	evices		
Meets or exceeds JEDEC Spec E	IA/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC1}	Core Power Supply	GND = 0 V	V_{CC0} = 1.6 to 2.0 V	4	V
V _{CC0}	HSTL Output Power Supply	GND = 0 V	V_{CC1} = 3.0 to 3.6 V	4	V
VI	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC1}$	4	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	LQFP-32 LQFP-32	80 55	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	LQFP-32	12 to 17	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	QFN-32 QFN-32	31 27	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. LVPECL DC CHARACTERISTICS V_{CCI} = 3.0 V to 3.6 V; V_{CCO} = 1.6 V to 2.0 V, GND = 0 V

			0°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Core Power Supply Current	75	95	115	75	95	115	75	95	115	mA
V _{IH}	Input HIGH Voltage (Single-Ended)	V _{CCI} – 1.165		V _{CCI} - 0.88	V _{CCI} – 1.165		V _{CCI} - 0.88	V _{CCI} – 1.165		V _{CCI} – 0.88	V
V _{IL}	Input LOW Voltage (Single-Ended)	V _{CCI} – 1.945		V _{CCI} - 1.6	V _{CCI} – 1.945		V _{CCI} - 1.6	V _{CCI} – 1.945		V _{CCI} - 1.6	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 2) (Figure 5) LVPECL_CLK/LVPECL_CLK	1.2		V _{CCI}	1.2		V _{CCI}	1.2		V _{CCI}	v
I _{IH}	Input HIGH Current	-150		150	-150		150	-150		150	μA
IIL	Input LOW Current	-150		150	-150		150	-150		150	μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. VIHCMR max varies 1:1 with V_{CCI}. The VIHCMR range is referenced to the most positive side of the differential input signal.

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage	2.0			2.0			2.0			V
V _{IL}	Input LOW Voltage			0.8			0.8			0.8	V
I _{IH}	Input HIGH Current	-150		150	-150		150	-150		150	μA
IIL	Input LOW Current	-300		300	-300		300	-300		300	μA

Table 6. LVTTL/LVCMOS DC CHARACTERISTICS V_{CCI} = 3.0 V to 3.6 V; V_{CCO} = 1.6 V to 2.0 V, GND = 0 V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

		0°C			0°C 25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (Note 3)	1.0		1.2	1.0		1.2	1.0		1.2	V
V _{OL}	Output LOW Voltage (Note 3)	0.1		0.4	0.1		0.4	0.1		0.4	V
V _{IH}	Input HIGH Voltage (Figure 6)	V _X + 0.1		1.6	V _X + 0.1		1.6	V _X + 0.1		1.6	V
V _{IL}	Input LOW Voltage (Figure 6)	-0.3		V _X - 0.1	-0.3		V _X - 0.1	-0.3		V _X - 0.1	V
V_{X}	HSTL Input Crossover Voltage	0.68	-	0.9	0.68	-	0.9	0.68	-	0.9	V
I _{IH}	Input HIGH Current	-150		150	-150		150	-150		150	μA
IIL	Input LOW Current	-300		300	-300		300	-300		300	μA
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) HSTL_CLK/HSTL_CLK	0.6		V _{CCI} - 1.2	0.6		V _{CCI} - 1.2	0.6		V _{CCI} - 1.2	v v

Table 7. HSTL DC CHARACTERISTICS V_{CCI} = 3.0 V to 3.6 V; V_{CCO} = 1.6 V to 2.0 V, GND = 0 V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. All outputs loaded with 50 Ω to GND (Figure 7).

4. V_{IHCMR} max varies 1:1 with V_{CCI}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			0°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{Opp}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	600 600 450	850 750 575		600 600 450	850 750 575		600 600 450	850 750 575		mV mV
t _{PLH} t _{PHL}	Propagation Delay (Differential Configura- tion) LVPECL_CLK to Q HSTL_CLK to Q	680 690	800 830	930 990	700 700	820 850	950 1000	780 790	920 950	1070 1110	ps ps
t _{skew}	Within-Device Skew (Note 6) Device-to-Device Skew (Note 7)		15 100	50 200		15 100	50 200		15 100	50 200	ps ps
t _{JITTER}	Random Clock Jitter (Figure 4) (RMS)		1.4	3.0		1.4	3.0		1.4	3.0	ps
V _{PP}	Input Swing (Differential Configuration) (Note 8) (Figure 5) LVPECL HSTL	200 200			200 200			200 200			mV mV
t _S	OE Set Up Time (Note 9)	0.5			0.5			0.5			ns
t _H	OE Hold Time	0.5			0.5			0.5			ns
t _r /t _f	Output Rise/Fall Time (20% – 80%)	350		600	350	450	600	350		600	ps

Table 8. AC CHARACTERISTICS V_{CCI} = 3.0 V to 3.6 V; V_{CCO} = 1.6 V to 2.0 V, GND = 0 V (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Measured with 750 mV (LVPECL) source or 1 V (HSTL) source, 50% duty cycle clock source. All outputs loaded with 50 Ω to GND (Figure 7).

6. Skew is measured between outputs under identical transitions and conditions on any one device.

7. Device-to-Device skew for identical transitions and conditions.

8. V_{PP} is the Differential Input Voltage swing required to maintain AC characteristics listed herein.

 OE Set Up Time is defined with respect to the rising edge of the clock. OE High-to-Low transition ensures outputs remain disabled during the next clock cycle. OE Low-to-High transition enables normal operation of the next input clock (Figure 9).

Figure 4. Output Frequency (FOUT) versus Output Voltage (VOPP) and Random Clock Jitter (tJITTER)

Figure 5. LVPECL Differential Input Levels

Figure 6. HSTL Differential Input Levels

Figure 7. HSTL Output Termination and AC Test Reference

*Must be CLK/ $\overline{\text{CLK}}$ common mode voltage: ((VIH + VIL)/2).

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EP809FA	LQFP-32	250 Units / Tray
MC100EP809FAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC100EP809FAR2	LQFP-32	2000 / Tape & Reel
MC100EP809FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel
MC100EP809MNG	QFN32 (Pb-Free)	74 Units / Rail
MC100EP809MNR4G	QFN32 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

http://onsemi.com 8

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

QFN32 5*5*1 0.5 P CASE 488AM-01 ISSUE O

NOTES:

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM TERMINAL 4. COPLANARITY APPLIES TO THE EXPOSED
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS						
DIM	MIN	NOM	MAX				
Α	0.800	0.900	1.000				
A1	0.000	0.025	0.050				
A3	0.	200 REI	F				
b	0.180	0.250	0.300				
D	5	.00 BSC					
D2	2.950	3.100	3.250				
Е	5	.00 BSC					
E2	2.950	3.100	3.250				
е	0.	500 BSC	2				
K	0.200	0.200					
L	0.300	0.400	0.500				

SOLDERING FOOTPRINT* 5.30 3.20 000000000 3.20 5.30 32 X 0.28 28 X 0.50 PITCH

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to all paplicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC100EP809/D