3.3V ECL Differential Receiver #### Description The MC100LVEL16 is a differential receiver. The device is functionally equivalent to the EL16 device, operating from a 3.3 V supply. The LVEL16 exhibits a wider V_{IHCMR} range than its EL16 counterpart. With output transition times and propagation delays comparable to the EL16 the LVEL16 is ideally suited for interfacing with high frequency sources at 3.3 V supplies. Under open input conditions, the Q input will be pulled down to V_{EE} and the \overline{Q} input will be biased to $V_{CC}/2$. This condition will force the Q output low. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. #### **Features** - 300 ps Propagation Delay - High Bandwidth Output Transitions - The 100 Series Contains Temperature Compensation - PECL Mode Operating Range: V_{CC} = 3.0 V to 3.8 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -3.8 V - Internal Input Pulldown Resistors on D, Pullup and Pulldown Resistors on \overline{D} - Q Output will Default LOW with Inputs Open or at V_{EE} - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### ON Semiconductor® www.onsemi.com #### MARKING DIAGRAMS* SOIC-8 D SUFFIX CASE 751 TSSOP-8 DT SUFFIX CASE 948R CASE 506AA A = Assembly Location L = Wafer Lot Y = Year W = Work Week M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Figure 1. Logic Diagram and Pinout Assignment ### **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |---|---| | D, D
Q, Q
V _{BB}
V _{CC}
V _{EE}
NC
EP | ECL Data Inputs ECL Data Outputs Reference Voltage Output Positive Supply Negative Supply No Connect (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. | **Table 2. ATTRIBUTES** | Character | istics | Value | |--|---|-------------------------------| | Internal Input Pulldown Resistor | | 75 kΩ | | Internal Input Pullup Resistor | | 75 kΩ | | ESD Protection | Human Body Model
Machine Model
Charged Device Model | > 4 KV
> 400 V
> 2 kV | | Moisture Sensitivity, Indefinite Time
Pb-Free Packages (Note 1) | out of Drypack,
SOIC-8
TSSOP-8
DFN8 | Level 1
Level 3
Level 1 | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | | 79 | | Meets or Exceeds JEDEC Spec El | | | ^{1.} Refer to Application Note AND8003/D for additional information. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|-------------------|----------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | ٧ | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0
-6 to 0 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 LFPM
500 LFPM | SO-8
SO-8 | 190
130 | °C/W | | θЈС | Thermal Resistance (Junction-to-Case) | Standard Board | SO-8 | 41 to 44 ± 5% | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 LFPM
500 LFPM | TSSOP-8
TSSOP-8 | 185
140 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-8 | 41 to 44 ± 5% | °C/W | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | DFN8
DFN8 | 129
84 | °C/W | | T _{sol} | Wave Solder Pb Pb-Free | <2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C | | 265
265 | °C | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | (Note 2) | DFN8 | 35 to 40 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) Table 4. LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 3) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|-------------|-------|------------|-------------|------|------------|-------------|------|------------|--------------------------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 17 | 23 | | 17 | 23 | | 18 | 24 | mA | | V _{OH} | Output HIGH Voltage (Note 4) | 2215 | 2295 | 2420 | 2275 | 2345 | 2420 | 2275 | 2345 | 2420 | mV | | V _{OL} | Output LOW Voltage (Note 4) | 1470 | 1605 | 1745 | 1490 | 1595 | 1680 | 1490 | 1595 | 1680 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2135 | | 2420 | 2135 | | 2420 | 2135 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1490 | | 1825 | 1490 | | 1825 | 1490 | | 1825 | mV | | V _{BB} | Output Voltage Reference | 1.92 | | 2.04 | 1.92 | | 2.04 | 1.92 | | 2.04 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 5)
Vpp < 500 mV
Vpp ≧ 500 mV | 1.2
1.5 | | 2.9
2.9 | 1.1 | | 2.9
2.9 | 1.1
1.4 | | 2.9
2.9 | V
V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current DDD | 0.5
-600 | | | 0.5
-600 | | | 0.5
-600 | | | μ Α
μ Α | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. Table 5. LVNECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 6) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|----------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 17 | 23 | | 17 | 23 | | 18 | 24 | mA | | V _{OH} | Output HIGH Voltage (Note 7) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 7) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single–Ended) | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 8)
Vpp < 500 mV
Vpp ≧ 500 mV | -2.1
-1.8 | | -0.4
-0.4 | -2.2
-1.9 | | -0.4
-0.4 | -2.2
-1.9 | | -0.4
-0.4 | V
V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current DDD | 0.5
-600 | | | 0.5
-600 | | | 0.5
-600 | | | μΑ
μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} 2 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. Table 6. AC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0.0 V or V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 9) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------------------------|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Toggle Frequency | | 1.75 | | | 1.75 | | | 1.75 | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay to Output Differential Single-Ended | 150
100 | 275
275 | 400
450 | 225
175 | 300
300 | 375
425 | 240
190 | 315
315 | 390
440 | ps | | t _{SKEW} | Duty Cycle Skew (Differential) (Note 10) | | 5 | 30 | | 5 | 20 | | 5 | 20 | ps | | t _{JITTER} | Random Clock Jitter (RMS) | | 0.7 | | | 0.7 | | | 0.7 | | ps | | V_{PP} | Input Swing (Note 11) | 150 | | 1000 | 150 | | 1000 | 150 | | 1000 | mV | | t _r
t _f | Output Rise/Fall Times Q
(20% – 80%) | 120 | 220 | 320 | 120 | 220 | 320 | 120 | 220 | 320 | ps | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. V_{EE} can vary ±0.3 V. ^{10.} Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device. 11. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|----------------------|-----------------------| | MC100LVEL16DG | SO-8
(Pb-Free) | 98 Units / Rail | | MC100LVEL16DR2G | SO-8
(Pb-Free) | 2500 Tape & Reel | | MC100LVEL16DTG | TSSOP-8
(Pb-Free) | 100 Units / Rail | | MC100LVEL16DTR2G | TSSOP-8
(Pb-Free) | 2500 Tape & Reel | | MC100LVEL16MNR4G | DFN8
(Pb-Free) | 1000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPICE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS #### SOIC-8 NB CASE 751-07 **ISSUE AK** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751—01 THRU 751—06 ARE OBSOLETE. NEW STANDARD IS 751—07. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | C | 1.35 | 1.75 | 0.053 | 0.069 | | | D | 0.33 | 0.51 | 0.013 | 0.020 | | | G | 1.27 | 7 BSC | 0.050 BSC | | | | Η | 0.10 | 0.25 | 0.004 | 0.010 | | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | М | 0 ° | 8 ° | 0 ° | 8 ° | | | Ν | 0.25 | 0.50 | 0.010 | 0.020 | | | S | 5.80 | 6.20 | 0.228 | 0.244 | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** #### TSSOP-8 **DT SUFFIX** CASE 948R-02 **ISSUE A** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INCHES | | | | |-----|--------|--------|--------|-------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | | | В | 2.90 | 3.10 | 0.114 | 0.122 | | | | С | 0.80 | 1.10 | 0.031 | 0.043 | | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | | F | 0.40 | 0.70 | 0.016 | 0.028 | | | | G | 0.65 | BSC | 0.026 | BSC | | | | K | 0.25 | 0.40 | 0.010 | 0.016 | | | | L | 4.90 | BSC | 0.193 | | | | | М | 0° | 6 ° | 0° | 6° | | | #### PACKAGE DIMENSIONS #### DFN8 2x2, 0.5P CASE 506AA ISSUE E С A B 0.10 0.05 С NOTE 3 #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED - PAD AS WELL AS THE TERMINALS | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | 0.80 | 1.00 | | | | | | A1 | 0.00 | 0.05 | | | | | | А3 | 0.20 | REF | | | | | | b | 0.20 | 0.30 | | | | | | D | 2.00 | BSC | | | | | | D2 | 1.10 | 1.30 | | | | | | Е | 2.00 | BSC | | | | | | E2 | 0.70 | 0.90 | | | | | | е | 0.50 BSC | | | | | | | K | 0.30 REF | | | | | | | L | 0.25 | 0.35 | | | | | | L1 | | 0.10 | | | | | #### RECOMMENDED **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC). **BOTTOM VIEW** ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative