5V ECL Programmable Delay Chip #### Description The MC10E/100E196 is a programmable delay chip (PDC) designed primarily for very accurate differential ECL input edge placement applications. The delay section consists of a chain of gates and a linear ramp delay adjust organized as shown in the logic symbol. The first two delay elements feature gates that have been modified to have delays 1.25 and 1.5 times the basic gate delay of approximately 80 ps. These two elements provide the E196 with a digitally-selectable resolution of approximately 20 ps. The required device delay is selected by the seven address inputs D[0:6], which are latched on chip by a high signal on the latch enable (LEN) control. The FTUNE input takes an analog voltage and applies it to an internal linear ramp for reducing the 20 ps Least Significant Bit (LSB) minimum resolution still further. The FTUNE input is what differentiates the E196 from the E195. An eighth latched input, D7, is provided for cascading multiple PDC's for increased programmable range. The cascade logic allows full control of multiple PDC's, at the expense of only a single added line to the data bus for each additional PDC, without the need for any external gating. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The 100 Series contains temperature compensation. #### **Features** - 2.0 ns Worst Case Delay Range - ≈20 ps/Delay Step Resolution - Linear Input for Tighter Resolution - >1.0 GHz Bandwidth - On Chip Cascade Circuitry - PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V - Internal Input 50 kΩ Pulldown Resistors - ESD Protection: Human Body Model; > 1 kV, Machine Model; > 75 V #### ON Semiconductor® http://onsemi.com PLCC-28 FN SUFFIX CASE 776 #### **MARKING DIAGRAM*** xxx = 10 or 100 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package *For additional marking information, refer to Application Note AND8002/D. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity Level: Pb = 1; Pb-Free = 3 For Additional Information, see Application Note AND8003/D - Flammability Rating: UL 94 V-0 @ 1.125 in, Oxygen Index: 28 to 34 - Transistor Count = 425 devices - Pb-Free Packages are Available* ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### LOGIC DIAGRAM AND PINOUT ASSIGNMENT * All V_{CC} and V_{CCO} pins are tied together on the die. Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Pinout: PLCC-28 (Top View) **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |--|---| | IN/IN EN D[0:7] Q/Q LEN SET MIN SET MAX CASCADE FTUNE VBB VCC, VCCO VEE NC | ECL Signal Input ECL Input Enable (H Forces Q Low) ECL MUX Select Inputs ECL Signal Output ECL Latch Enable ECL Min Delay Set ECL Max Delay Set ECL Cascade Signal ECL Linear Voltage Input Reference Voltage Output Positive Supply Negative Supply No Connect | **Table 2. TRUTH TABLE** | ĒN | L | Q = IN | |--------|---|----------------------| | ĒN | Н | Q Logic Low | | LEN | L | Pass Through D[0:10] | | LEN | Н | Latch D[0:10] | | SETMIN | L | Normal Mode | | SETMIN | Н | Min Delay Path | | SETMAX | L | Normal Mode | | SETMAX | Н | Max Delay Path | ^{*} delays are 25% or 50% longer than standard (standard ≈ 80 ps) Figure 2. Logic Diagram - Simplified **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|--|---|----------------------------|--------------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_{I} \! \leq \! V_{CC} \\ V_{I} \! \geq \! V_{EE} \end{array}$ | 6
-6 | V | | I _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | 0 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | PLCC-28
PLCC-28 | 63.5
43.5 | °C/W
°C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | PLCC-28 | 22 to 26 | °C/W | | V _{EE} | PECL Operating Range
NECL Operating Range | | | 4.2 to 5.7
-5.7 to -4.2 | V | | T _{sol} | Wave Solder Pb Pb-Free | | | 265
265 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Table 4. 10E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1) | | | | 0°C | | | 25°C | | | 85°C | | | |--------------------|---|------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 130 | 156 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3980 | 4070 | 4160 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3050 | 3210 | 3370 | 3050 | 3210 | 3370 | 3050 | 3227 | 3405 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3830 | 3995 | 4160 | 3870 | 4030 | 4190 | 3940 | 4110 | 4280 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3050 | 3285 | 3520 | 3050 | 3285 | 3520 | 3050 | 3302 | 3555 | mV | | V _{BB} | Output Voltage Reference | 3.62 | | 3.74 | 3.65 | | 3.75 | 3.69 | | 3.81 | ٧ | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration) (Note 3) | 2.2 | | 4.6 | 2.2 | | 4.6 | 2.2 | | 4.6 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | 0.3 | | 0.5 | 0.25 | | 0.3 | 0.2 | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.06~V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . Table 5. 10E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 4) | | | 0°C | | | 25°C | | 85°C | | | | | |--------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 130 | 156 | mA | | V _{OH} | Output HIGH Voltage (Note 5) | -1020 | -930 | -840 | -980 | -895 | -810 | -910 | -815 | -720 | mV | | V _{OL} | Output LOW Voltage (Note 5) | -1950 | -1790 | -1630 | -1950 | -1790 | -1630 | -1950 | -1773 | -1595 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1170 | -1005 | -840 | -1130 | -970 | -810 | -1060 | -890 | -720 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1950 | -1715 | -1480 | -1950 | -1715 | -1480 | -1950 | -1698 | -1445 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.27 | -1.35 | | -1.25 | -1.31 | | -1.19 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration) (Note 6) | -2.8 | | -0.4 | -2.8 | | -0.4 | -2.8 | | -0.4 | ٧ | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μА | | I _{IL} | Input LOW Current | 0.5 | 0.3 | | 0.5 | 0.065 | | 0.3 | 0.2 | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 4. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary -0.46 V / +0.06 V. 5. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V. - 6. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . Table 6. 100E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 7) | | | 0°C | | | 25°C | | 85°C | | | | | |--------------------|---|------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 150 | 179 | mA | | V _{OH} | Output HIGH Voltage (Note 8) | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | mV | | V _{OL} | Output LOW Voltage (Note 8) | 3190 | 3295 | 3380 | 3190 | 3255 | 3380 | 3190 | 3260 | 3380 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3835 | 3975 | 4120 | 3835 | 3975 | 4120 | 3835 | 3975 | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3190 | 3355 | 3525 | 3190 | 3355 | 3525 | 3190 | 3355 | 3525 | mV | | V _{BB} | Output Voltage Reference | 3.62 | | 3.74 | 3.62 | | 3.74 | 3.62 | | 3.74 | ٧ | | V _{IHCMR} | Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 9) | 2.2 | | 4.6 | 2.2 | | 4.6 | 2.2 | | 4.6 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | 0.3 | | 0.5 | 0.25 | | 0.5 | 0.2 | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 7. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.8~V. - 8. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. - 9. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. Table 7. 100E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 10) | | | 0°C | | | 25°C | | | 85°C | | | | |--------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 150 | 179 | mA | | V _{OH} | Output HIGH Voltage (Note 11) | -1025 | -950 | -880 | -1025 | -950 | -880 | -1025 | -950 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 11) | -1810 | -1705 | -1620 | -1810 | -1745 | -1620 | -1810 | -1740 | -1620 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1165 | -1025 | -880 | -1165 | -1025 | -880 | -1165 | -1025 | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1810 | -1645 | -1475 | -1810 | -1645 | -1475 | -1810 | -1645 | -1475 | mV | | V _{BB} | Output Voltage Reference | -1.38 | | -1.26 | -1.38 | | -1.26 | -1.38 | | -1.26 | V | | V _{IHCMR} | Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12) | -2.8 | | -0.4 | -2.8 | | -0.4 | -2.8 | | -0.4 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μА | | I _{IL} | Input LOW Current | 0.5 | 0.3 | | 0.5 | 0.25 | | 0.5 | 0.2 | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 10. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary -0.46 V / +0.8 V. 11. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V. - 12. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. Table 8. AC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 13) | | | | 0°C | | | 25°C | | | 85°C | | | |--------------------------------------|--|---------------------------------|---|----------------------------------|---------------------------------|---|----------------------------------|---------------------------------|---|----------------------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{MAX} | Maximum Toggle Frequency | | | | | >1.0 | | | | | GHz | | t _{PLH}
t _{PHL} | Propagation Delay IN to Q; Tap = 0 IN to Q; Tap = 127 EN to Q; Tap = 0 D7 to CASCADE | 1210
3320
1250
300 | 1360
3570
1450
450 | 1510
3820
1650
700 | 1240
3380
1275
300 | 1390
3630
1475
450 | 1540
3880
1675
700 | 1440
3920
1350
300 | 1590
4270
1650
450 | 1765
4720
1950
700 | ps | | t _{RANGE} | Programmable Range t _{PD} (max) – t _{PD} (min) | 2000 | 2175 | | 2050 | 2240 | | 2375 | 2580 | | ps | | Δt | Step Delay (Note 14) D0 High D1 High D2 High D3 High D4 High D5 High D6 High | 55
115
250
505
1000 | 17
34
68
136
272
544
1088 | 105
180
325
620
1190 | 55
115
250
515
1030 | 17.5
35
70
140
280
560
1120 | 105
180
325
620
1220 | 65
140
305
620
1240 | 21
42
84
168
336
672
1344 | 120
205
380
740
1450 | ps | | Lin | Linearity (Note 15) | D1 | D0 | | D1 | D0 | | D1 | D0 | | | | tskew | Duty Cycle Skew t _{PHL} -t _{PLH} (Note 16) | | ±30 | | | ±30 | | | ±30 | | ps | | t _{JITTER} | Random Clock Jitter (RMS) | | < 5 | | | < 5 | | | < 5 | | ps | | t _s | Setup Time D to LEN D to IN (Note 17) EN to IN (Note 18) | 200
800
200 | 0 | | 200
800
200 | 0 | | 200
800
200 | 0 | | ps | | t _h | Hold Time LEN to D IN to EN (Note 19) | 500
0 | 250 | | 500
0 | 250 | | 500
0 | 250 | | ps | | t _R | Release Time EN to IN (Note 20) SET MAX to LEN SET MIN to LEN | 300
800
800 | | | 300
800
800 | | | 300
800
800 | | | ps | | t _{jit} | Random Clock Jitter (RMS) | | < 5 | | | < 5 | | | < 5 | | ps | | t _r
t _f | Output Rise/Fall Time
20-80% (Q)
20-80% (CASCADE) | 125
300 | 225
450 | 325
650 | 125
300 | 225
450 | 325
650 | 125
300 | 225
450 | 325
650 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 13.10 Series: V_{EE} can vary -0.46 V / +0.06 V. - 100 Series: \overline{V}_{EE} can vary -0.46 V / +0.8 V. - 14. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range. - 15. The linearity specification guarantees to which delay control input the programmable steps will be monotonic (i.e. increasing delay steps for increasing binary counts on the control inputs Dn). Typically the device will be monotonic to the D0 input, however under worst case conditions and process variation, delays could decrease slightly with increasing binary counts when the D0 input is the LSB. With the D1 input as the LSB the device is guaranteed to be monotonic over all specified environmental conditions and process variation. - 16. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output. - 17. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set. - 18. This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than ±75 mV to that IN/IN transition. - 19. This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response greater than ±75 mV to that IN/IN transition. 20. This release time is the minimum time that EN must be de–asserted prior to the next IN/IN transition to ensure an output response that meets - the specified IN to Q propagation delay and transition times. #### ANALOG INPUT CHARACTERISTICS FTUNE = V_{CC} to V_{EE} Propagation Delay versus FTUNE Voltage (100E196) Propagation Delay versus FTUNE Voltage (10E196) #### **USING THE FTUNE ANALOG INPUT** The analog FTUNE pin on the E196 device is intended to add more delay in a tunable gate to enhance the 20 ps resolution capabilities of the fully digital E195. The level of resolution obtained is dependent on the number of increments applied to the appropriate range on the FTUNE pin. To provide this further level of resolution (See Logic Diagram), the FTUNE pin must be capable of adjusting the additional delay finer than the 20 ps digital resolution. From the provided graphs one sees that this requirement is easily achieved as over the entire FTUNE voltage range a 100 ps additional delay can be achieved. This extra analog range ensures that the FTUNE pin will be capable even under worst case conditions of covering the digital resolution. Typically the analog input will be driven by an external DAC to provide a digital control with very fine analog output steps. The final resolution of the device will be dependent on the width of the DAC chosen. To determine the voltage range necessary for the FTUNE input, the graphs provided should be used. As an example if a tuning range of 40 ps is selected to cover worst case conditions and ensure coverage of the digital range, from the 100E196 graph a voltage range of –3.25 V to –4.0 V would be necessary on the FTUNE pin. Obviously there are numerous voltage ranges which can be used to cover a given delay range, users are given the flexibility to determine which one best fits their designs. #### Cascading Multiple E196's To increase the programmable range of the E196 internal cascade circuitry has been included. This circuitry allows for the cascading of multiple E196's without the need for any external gating. Furthermore this capability requires only one more address line per added E196. Obviously cascading multiple PDC's will result in a larger programmable range, however, this increase is at the expense of a longer minimum delay. Figure 3 illustrates the interconnect scheme for cascading two E196's. As can be seen, this scheme can easily be expanded for larger E196 chains. The D7 input of the E196 is the cascade control pin. With the interconnect scheme of Figure 3 when D7 is asserted it signals the need for a larger programmable range than is achievable with a single device. An expansion of the latch section of the block diagram is pictured below. Use of this diagram will simplify the explanation of how the cascade circuitry works. When D7 of chip #1 above is low the cascade output will also be low while the cascade bar output will be a logical high. In this condition the SET MIN pin of chip #2 will be asserted and thus all of the latches of chip #2 will be reset and the device will be set at its minimum delay. Since the RESET and SET inputs of the latches are overriding any changes on the A0–A6 address bus will not affect the operation of chip #2. Chip #1 on the other hand will have both SET MIN and SET MAX de-asserted so that its delay will be controlled entirely by the address bus A0–A6. If the delay needed is greater than can be achieved with 31.75 gate delays (1111111 on the A0–A6 address bus) D7 will be asserted to signal the need to cascade the delay to the next E196 device. When D7 is asserted the SET MIN pin of chip #2 will be de-asserted and the delay will be controlled by the A0–A6 address bus. Chip #1 on the other hand will have its SET MAX pin asserted resulting in the device delay to be independent of the A0–A6 address bus. When the SET MAX pin of chip #1 is asserted the D0 and D1 latches will be reset while the rest of the latches will be set. In addition, to maintain monotonicity an additional gate delay is selected in the cascade circuitry. As a result when D7 of chip #1 is asserted the delay increases from 31.75 gates to 32 gates. A 32 gate delay is the maximum delay setting for the E196. When cascading multiple PDC's it will prove more cost effective to use a single E196 for the Most Significant Bit (MSB) of the chain while using E195 for the lower order bits. This is due to the fact that only one fine tune input is needed to further reduce the delay step resolution. Figure 3. Cascading Interconnect Architecture Figure 4. Expansion of the Latch Section of the E196 Block Diagram Figure 5. Change in Delay vs. Change in Supply Voltage Figure 6. Delay vs. Temperature (Fixed Path) Figure 7. Delay vs. Temperature (Max. Delay). Figure 8. 100E196 Temperature Effects on Delay. Figure 9. Delay vs. Temperature (Per Gate). Figure 10. E195 Delay Linearity. Figure 11. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | | | |----------------|----------------------|-----------------------|--|--| | MC10E196FN | PLCC-28 | 37 Units / Rail | | | | MC10E196FNG | PLCC-28
(Pb-Free) | 37 Units / Rail | | | | MC10E196FNR2 | PLCC-28 | 500 / Tape & Reel | | | | MC10E196FNR2G | PLCC-28
(Pb-Free) | 500 / Tape & Reel | | | | MC100E196FN | PLCC-28 | 37 Units / Rail | | | | MC100E196FNG | PLCC-28
(Pb-Free) | 37 Units / Rail | | | | MC100E196FNR2 | PLCC-28 | 500 / Tape & Reel | | | | MC100E196FNR2G | PLCC-28
(Pb-Free) | 500 / Tape & Reel | | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS #### PLCC-28 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 776-02 ISSUE E - DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS - PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE - MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. - 0.010 (0.250) PER SIDE. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BUIRDS, GATE BUIRDS, AND INTERLIFAD. BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. - 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635). | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.485 | 0.495 | 12.32 | 12.57 | | В | 0.485 | 0.495 | 12.32 | 12.57 | | С | 0.165 | 0.180 | 4.20 | 4.57 | | E | 0.090 | 0.110 | 2.29 | 2.79 | | F | 0.013 | 0.019 | 0.33 | 0.48 | | G | 0.050 | BSC | 1.27 | BSC | | Н | 0.026 | 0.032 | 0.66 | 0.81 | | J | 0.020 | | 0.51 | | | K | 0.025 | | 0.64 | | | R | 0.450 | 0.456 | 11.43 | 11.58 | | U | 0.450 | 0.456 | 11.43 | 11.58 | | ٧ | 0.042 | 0.048 | 1.07 | 1.21 | | W | 0.042 | 0.048 | 1.07 | 1.21 | | Х | 0.042 | 0.056 | 1.07 | 1.42 | | Υ | | 0.020 | | 0.50 | | Z | 2 ° | 10° | 2° | 10° | | G1 | 0.410 | 0.430 | 10.42 | 10.92 | | K1 | 0.040 | | 1.02 | | ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative