3.3 V / 5 V ECL Differential **Data and Clock D Flip-Flop**

Description

The MC10EP/100EP52 is a differential data, differential clock D flip-flop. The device is pin and functionally equivalent to the EL52 device.

Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP52 allow the device to also be used as a negative edge triggered device.

The EP52 employs input clamping circuitry so that under open input conditions (pulled down to V_{EE}) the outputs of the device will remain stable.

The 100 Series contains temperature compensation.

Features

- 330 ps Typical Propagation Delay
- Maximum Frequency = > 4 GHz Typical
- PECL Mode: $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode: $V_{CC} = 0$ V with $V_{EE} = -3.0$ V to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

SOIC-8 NB TSSOP-8 DFN8 D SUFFIX DT SUFFIX **MN SUFFIX** CASE 751-07 CASE 948R-02 CASE 506AA

MARKING DIAGRAMS*

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION					
CLK*, CLK*	ECL Clock Inputs					
D*, <u>D</u> *	ECL Data Input					
Q, <u>Q</u>	ECL Data Outputs					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.					

* Pins will default LOW when left open.

Table 2. TRUTH TABLE

D	CLK	Q
L	Z	L
H	Z	H

Z = LOW to HIGH Transition

Table 3. ATTRIBUTES						
Characteristics	Value					
Internal Input Pulldown Resistor	75 kΩ					
Internal Input Pullup Resistor	N/A					
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV					
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg					
SOIC-8 NB TSSOP-8 DFN8	Level 1 Level 3 Level 1					
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in					
Transistor Count	155 Devices					
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	-					

1. For additional information, see Application Note <u>AND8003/D</u>.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			–65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C
θJC	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 5. 10EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	20	34	44	20	35	45	20	37	47	mA
V _{OH}	Output HIGH Voltage (Note 2)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 2)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1430		1755	1490		1815	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.

2. All loading with 50 Ω to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	20	34	44	20	35	45	20	37	47	mA
V _{OH}	Output HIGH Voltage (Note 2)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 2)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3065		3390	3130		3455	3190		3515	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μA

Table 6. 10EP DC CHARACTERISTICS, PECL (V_{CC} = 5.0 V, V_{EE} = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to –0.5 V.

2. All loading with 50 Ω to V_{CC} – 2.0 V.

3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 7. 10EP DC CHARACTERISTICS, NECL (V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	20	34	44	20	35	45	20	37	47	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 2)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	0 V _{EE} +2		0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current	0.5	0.5		0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}.

2. All loading with 50 Ω to V_{CC} – 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

-40°C 85°C 25°C Symbol Characteristic Min Тур Max Min Тур Max Min Тур Max Unit IFF Power Supply Current 20 34 44 20 35 45 20 37 47 mΑ mV Output HIGH Voltage (Note 2) 2155 2280 2405 2155 2280 2405 2155 2280 2405 VOH 1605 Output LOW Voltage (Note 2) 1355 1480 1355 1480 1605 1355 1480 1605 mV VOL Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIH VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR V Input HIGH Voltage Common Mode 2.0 3.3 2.0 3.3 2.0 3.3 Range (Differential Configuration) (Note 3) I_{H} Input HIGH Current 150 150 150 μA Input LOW Current 0.5 0.5 0.5 μA Ι_{ΙL}

Table 8. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.

2. All loading with 50 Ω to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. 100EP DC CHARACTERISTICS, PECL ($V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	20	34	44	20	35	45	20	37	47	mA
V _{OH}	Output HIGH Voltage (Note 2)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 2)	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
VIH	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3055		3375	3055		3375	3055		3375	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
١ _{١L}	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +2.0 V to -0.5 V.

2. All loading with 50 Ω to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	20	34	44	20	35	45	20	37	47	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 2)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	V _{EE} +2.0		0.0	V _{EE} +2.0		0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

Table 10. 100EP DC CHARACTERISTICS, NECL (V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC} .

2. All loading with 50 Ω to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTpp}	Output Voltage Amplitude @ 3.0 GHz (Figure 2)	630	750		610	730		520	640		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential CLK, CLK-> Q, Q	250	300	350	280	330	380	310	360	410	ps
t _S t _H	Setup Time Hold Time	50 0			50 0			50 0			ps
t _{JITTER}	CLOCK Random Jitter (RMS) (Figure 2)		0.2	1		0.2	1		0.2	1	ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times (20%-80%) Q, Q	70	110	170	80	120	180	90	130	200	ps

Table 11. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

Figure 2. F_{max} Typical

Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EP52DG	SOIC-8 NB (Pb-Free)	98 Units / Tube
MC10EP52DR2G	SOIC-8 NB (Pb-Free)	2500 Tape & Reel
MC10EP52DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC10EP52DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel
MC10EP52MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel
MC100EP52DG	SOIC-8 NB (Pb-Free)	98 Units / Tube
MC100EP52DR2G	SOIC-8 NB (Pb-Free)	2500 Tape & Reel
MC100EP52DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC100EP52DTR2G	TSSOP-8 (Pb-Free)	2500 Tape & Reel
MC100EP52MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SOIC-8 NB **D SUFFIX** CASE 751-07 **ISSUE AK**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- З.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.
- 6.

	MULTIN	ETEDE	INCHES	
	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
κ	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
s	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX CASE 948R-02 **ISSUE A**

DETAIL E

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.060) PER SIDE
- (0.06) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
C	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
M	0 °	6 °	0°	6°

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal i

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 32 700 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative